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Finite Volume Method: Boundary Condition Implementation and Discretization of  
Unsteady State Problems 

 

In the previous lectures, we were discussing about the finite volume discretization of 

one-dimensional steady state diffusion type of problems. We discussed about some 

important aspects of discretization, some basic rules that one may possibly follow, but 

we did not discuss anything specific about the implementation of boundary conditions in 

using the finite volume method, so that we will do now. 
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To illustrate that let us take an example, let us say that you have a rod like this of length 

L and let us consider that T is equal to T 0 at x equal to 0, and T equal to T L at x equal 

to L. So, we are discussing about implementation of boundary conditions, so this is the 

first example that we consider. Remember that while implementing the boundary 

condition, we must keep in mind that what is the discretized system of equations. So, let 



us say that we had divided the domain into a number of control volumes like this with 

grid points at the boundary. 

So, let us give this grid point some number 1, 2, 3, 4, 5, 6 like that. Assume the heat 

transfer to be one-dimensional, so for any interior grid point, we have derived the 

discretization equation. So, that derive discretization equation is of the form a p T p is 

equal to a E T E plus a w T w plus b. So, for the grid point two, it is like a 2 T 2 is equal 

to a 3 T 3 plus a 1 T 1 plus b. And we know that given at the point 1, T 1 is equal to T 0; 

that is given. 

So, that is the implementation of boundary condition when you consider the grid point 2 

for the discretization equation. Similarly, for the given temperature boundary condition 

at 6, you can write the discretized equation for the grid point 5 and at T equal to T 6.You 

substitute T L, that is very straight forward. If you are not willing to make this 

substitution specifically, but still you want to impose a given temperature boundary you 

can use ultimately the penalty approach that we have discussed in the finite elements 

method context. 

So, essentially after you get your system of algebraic equations, you will get similar 

system of algebraic equations as that of the finite element method and then, what you can 

do is you can for a specified temperature boundary condition you can use the same trick 

that we were discussing in the context of the finite elements method.  

So, we will not discuss this case in more details, because we have learnt by this time that 

imposing a constant temperature boundary condition is very, very trivial; it is either you 

enforce its value specifically at the locations where it is appearing in the discretization 

equation or you write the discretization equation as it is, but you enforce its specific 

value by using the penalty approach. So, either of these two ways you can follow. 

More interesting will be the other types of boundary conditions that we will consider 

with the subsequent examples. Let us say that you have a T equal to T 0 at left boundary, 

but at the right boundary you are given the heat flux at x equal to L is given, what will be 

the first step again divide the domain into a number of control volumes .Let us say we 

divide it in to 3 control volumes and identify the grid points.  



So, 1, 2, 3, 4, 5 now to implement the boundary condition that is the condition which is 

given in terms of the heat flux here we have to consider a control volume at the boundary 

and sometimes to do that one may take half of a control volume, it one may take also a 

full control volume, but if you take half of a control volume the boundary condition is 

more accurately implemented because, if you take a greater extent of a control volume. 

Your gradient approximation becomes weaker and weaker if you take a smaller length 

you can capture the gradient more sharply. So, this is the control volume now what is 

your governing equation d dx of k d T dx plus S equal to 0. So, what we will do is we 

identify this as a half control volume. we will implement the boundary condition by 

using the governing equation and integrating the governing equation over the half control 

volume, if you do that then this heat flux will naturally appear in a boundary term the 

reason is that this is just like a natural outcome of the variational formulation, because in 

the variational formulation you have the natural boundary condition which is the flux 

boundary condition comes out automatically as a result of the variational formulation 

itself. Here, we have seen the finite volume method may be interpreted as a special type 

of weight weighted residual method where the weight is equal to 1 and therefore, similar 

sort of confluence may be expected. 

Let us see that whether that can happen or not. So, what we do we integrate the 

governing differential equation over the half control volume. So, integral of d dx of k d T 

dx th e limit of integration is from grid point 4 to grid point 5.  So, if the total length of 

the control volume is delta x then this is delta x by 2 that we have to remember. So, 4 to 

5 the distance is delta x by 2. So, this becomes k d T dx at 5 minus k d T dx at 4, plus S 

delta x by 2 , equal to 0 what is k d T dx at 5, that is equal to minus of q L. So, in place 

of this one we will write minus of q L k d T dx at 4 for that we have to make a profile 

assumption to make a representation of that 1. 

So, we make we can make a profile assumption as piece wise linear temperature profile 

between the grid points that we have earlier seen that it is a legitimate profile 

assumption. So, then it will be k into in place of d T dx it will be T 5 minus T 4 by delta 

x by 2.  
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So, if you assemble it becomes minus q L minus 2 k by delta x T 5 minus T 4 plus S 

delta x by 2. So, 2 k by delta x T 5 minus T 4 is equal to minus q L plus S delta x by 2; 

that means, T 5 is equal to this one plus S by k.  So, let us check the algebra T 5 equal to 

T 4 plus something what is that something that we will write T 4 plus this entire thing 

times delta x by 2 k. So, this one plus S delta x square by 4 k.  

So, this is again an equation of the form, a 5 T 5 is equal to a 6 T 6 plus a 4 T 4 plus 

some B where there is nothing called a 6, because there is no grid point 6. The whole 

purpose of this is to show that this is also of the form a p T p equal to a E T E plus a w T 

w plus B where p is this one, w is this one and the remaining is B, a 5 and a 4 are one in 

this case and again see we are writing organizing the equation in such a way that it is a 

governing equation for temperature at the grid point 5. So, that comes in the left hand 

side; that means, boundary as a function of the interior that is how we are writing. It now 

it may be interesting to compare this implementation of boundary condition with the 

common finite difference based implementation of boundary conditions for the same 

problem. So, in the finite based difference condition often what we do? 
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So, finite difference we write the heat flux is equal to k into T 5 minus T 4 by delta x by 

2, that is what we write. So, then it becomes T 5 is equal to T 4 may be somewhere we 

had made a mistake here in the plus minus sign that we need to check. So, here sorry 

here Minus k d T dx . So, that was here you have a minus k d T dx. So, T 5 is equal to T 

4 minus q L double prime k delta x by 2 k. So, with this one line exercise you can see 

that the difference between this finite difference on the finite volume way of writing the 

boundary term is the existence of the source term. It seems to be more logical to have the 

source term in the implementation of the boundary condition here in the finite volume 

method, because what it tries to do it tries to represent the boundary condition through 

the conservation of energy over the small control volume and there the heat source 

definitely plays a role. 

So, you cannot write the conservation of energy by considering that the heat flux. 

Whatever is the heat flux entering, same is the heat flux leaving I mean that is of course, 

the case had there be no heat source, but now there is a heat source that is present many 

times, this is a short fall of the implementation of the boundary condition in this way one 

can get rid of the problem in most of the cases because the control volume being small 

this extra term is not of great importance, but technically this is a more accurate way of 

representing the boundary condition then in this standard way of doing it. Now we can 

consider a third example, where we implement a boundary condition which is of mixed 

type. 
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Let us say that, we have a boundary condition at this end, where there is a heat exchange 

with the ambient, the ambient temperature is T infinity and heat transfer coefficient is h. 

So, that one can write minus k d T dx At x equal to L is equal to h into T At x equal to L 

minus T infinity, remember that that minus k d T dx At x equal to L, this is nothing but q 

at x equal to L the heat flux at x equal to l. 

So, if we consider the same discretization as that in the previous example. So, 1, 2, 3, 4, 

5 then we will get back essentially the same thing that is minus q L minus 2 k by delta x 

into T 5 minus T 4 plus S delta x by 2 equal to 0, that is from this particular step. Now 

the heat flux at x equal to L you can write h into T at x equal to L minus T infinity.  So, 

that is the only the extra effort that you have to put in place of this one we will write h 

into T at x equal to L is T 5 minus T infinity. So, the remaining work is the same. So, 

you can write it in this form something into T 5 is equal to something into T 4 plus some 

constant just by algebraic arrangement of the equation.  

So, it is basically the same implementation of the mixed type of boundary condition is 

very much analogous to the implementation of the normal type of boundary condition. 

There only thing is you substitute the heat flux in terms of the heat transfer coefficient. 

Now, implementation of boundary condition has lots of issues there are certain 

interesting issues and tricks. That, we may discuss which in while somebody is coding it 

in a computer can use usually whenever there are heat flux boundary conditions. There 



are two different ways in which one can implement it one is that you implement it as a 

heat flux boundary condition and other is you implement it as an artificial source term.  

So, if you consider this control volume what does the heat flux do for the control 

volume. So, there is. So, let us take an example to illustrate that let us consider different 

example. 
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Let us say that you have a domain like this there is some heat flux which is into the 

domain at x equal to 0. So, what does this heat flux do if you consider a control volume 

like this. This heat flux essentially make sure that the same amount of heat flux leaves 

the other face of the control volume. Now compare it with a hypothetical case that this 

boundary is insulated that is the heat flux is 0. 

But our objective is that the same heat flux. Whatever entered through this face the same 

will leave through this face, but this is insulated what should be adjusted here. So, that 

that is possible there must be a heat source inside right. So, if you compensate for this 

consideration of insulation with a heat source inside. Can you write the heat source as  

function of the heat flux see heat flux is the rate of heat transfer per unit area. 

 So, heat flux times the area of this face is the total rate of heat transfer and that divided 

by the volume of the control volume is the volumetric heat generation because the unit of 

the source term is rate of heat generation per unit volume. So, these two conditions may 

physically refer to a similar situation. 



 So, far as the heat flux through this face is concerned, but mind it physically they are not 

identical it is just an equivalence many times this equivalence is considered. So, for 

implementing a constant heat flux boundary condition sometimes what one can do is one 

can consider an insulated boundary condition and whatever was the heat flux there that 

one can dump as a source term in the corresponding adjacent control volume. 

This source term remember this S extra. So, whatever was if there is some other source 

term this is not that one it is whatever was other source term plus this extra source term. 

To compensate for the non consideration of the heat flux at the boundary where it is 

actually there at the boundary question is why people try to play this trick. The reason is 

that what is the solution of a physical problem? See most of the problems will have very 

similar governing equations like you have the energy equation, the Navier strokes 

equation, these do not vary from one problem to another problem, but where the solution 

varies from one problem to another problem. Why does it vary? Of course, because 

different properties of the fluid, but most importantly because of different boundary 

conditions.  

So, it is the manner in which you allow the boundary conditions to propagate inside the 

domain of the solution is the mechanism by which you get the solution. So, the solution 

mechanism physically is that you have a boundary condition by mathematics you are try 

allowing the boundary condition to propagate inside the solution of the domain. And that 

is how your domain knows that there is a boundary and the boundary condition has been 

imposed and so on more rapidly you can do it more rapidly, you can converge to the 

actual solution. 

So, here this flux is at the boundary, but it is not penetrative inside the control volume in 

one shot here you have made the effect penetrative inside the control volume in one shot 

by making it as a source term and that makes it to converge faster in many cases as 

compared to the direct implementation of the boundary term it is of course, in many 

cases these the difference is marginal, but in some very extensive simulations these 

difference may be of some importance. 

So, this is one trick in implementation of the heat flux boundary condition, when we are 

describing this boundary conditions and governing equations. Remember, we are giving 

one-dimensional steady state heat conduction as a example, but this is for any general 



flux type of boundary condition that we are talking about.  So, it does not just 

specifically refer to a heat transfer function problem because it is more convenient to 

take as something as an illustration and give it a short by on the basis of that illustration 

that is what we are doing, but we should not keep this prejudice in mind that this is the 

only for a heat transfer problem that we are talking about. Now the other issue that we 

have discussed earlier that any condition at the boundary is not boundary condition right. 

So, it has to fulfill certain requirements. Now, let us ask ourselves a converge question, if 

there is some lack of condition at the boundary; that means, some at a boundary no 

condition is given still can you have a boundary condition. 
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That means, let us take an example. So, let us say that you have a domain x equal to 0 to 

x equal to L. We are giving a boundary condition that at x equal to L by 2 T equal to say 

T star and at x equal to L T equal to T L, actual physical domain boundary x equal to 0 

we have not given a boundary condition here.  

So, no condition at the boundary can it be a boundary condition till now we have 

answered the question that whether any condition at the boundary condition or not now 

we are trying to answer a question that there is a problem where we are not giving a 

condition at the boundary, but still can it be a well posed boundary value problem. 

So, this like I mean this the origin of this discrepancy or dilemma comes from the fact 

that we have been trained to learn boundary condition as the condition at the boundary. 



So, boundary of the physical domain is very, very important and definitely this point 

does not belong to the boundary of the physical domain, but let us see whether this is 

appropriate.  

So, let us try to solve this problem analytically. So, you have d dx of k d T dx equal to 0 

let us say that the source term is 0 just to simplify the calculation our objective is not to 

highlight that and let us say that k is constant throughout the domain. So, d T dx is equal 

to C 1, T is equal to C 1 x plus C 2.  So, if you use that at x equal to L by 2, T is equal to 

T star and at x equal to L, T equal to T L then from that you can find out C 1 and C 2 

right you will get 2 independent algebraic equations and two unknowns from that we will 

get it there is absolutely no discrepancy this is very, very simple. 

 So, what lesson we can learn from it this is a problem where apparently from our 

common sense prospective we are not given a boundary condition, but still we are able to 

come up with a solution. We have given a boundary condition, but that is not physically 

at the domain boundary now what we can make sure is that no matter whether we have 

given the boundary condition here its effect will be also propagated towards this side the 

same cannot be talked about for a initial value problem, because we have already 

discussed that time is a one way coordinate system. 

 So, in place of space coordinate if it was time coordinate then that would have not been 

possible because whatever is happening now cannot influence what has happened 

10hours back it can only influence what is going to happen in the future, but space wise 

whatever is happening here can easily influence what is going to happen here and that in 

an fashion for an elliptic boundary value problem.  

So, it all depends on when we say boundary condition we mean not just a boundary 

condition, but also initial condition if the time dependence is there. So, all these critical 

things we have to keep in mind while designing a problem. Now, that we have learnt the 

finite volume discretization. Let us take one or two concrete examples to illustrate a bit 

more of implementation of that and for that for the heat conduction case.  



(Refer Slide Time: 33:24) 

 

We will take the example of this is you can assume an illustrative problem one-

dimensional steady state heat conduction in a fin. So, what we will do is I will partially 

work out this problem towards the discretization, and leave the remaining part for you as 

an exercise to complete it through the use of a computer program. 

 So, let us say that you have a fin like this. All of you know what is a fin, But just to 

discuss in terms of a common sense prospective say if you have a boundary from which 

you want to dissipate heat now if you want to dissipate heat and there is a high 

concentration of heat one of the ways. So, how to enhance the heat transfer? Remember 

the heat transfer from a particular location of a solid boundary to the ambient is 

proportional to several things. One is the heat transfer coefficient which depends on the 

ambient conditions the other is the temperature difference between that and the ambient 

and the third thing is the area over which the heat transfer is taking place.  So, the fin 

tries to take care of the enhancement of the area. 

So, what it tries to do it tries to provide with an extended surface and through the 

extended surface you can have a greater amount of heat to be dissipated to the 

surroundings because the essentially it has more available area, but in doing, so 

attempting to do. So, you are now playing with that temperature difference the 

temperature difference. So, if the temperature earlier was T boundary and the ambient 

was T infinity. Now the temperature inside the fin will be different from T boundary.  



So, this is still T infinity this is T boundary because heat is conducting mainly in the 

axial direction then what will happen the temperature inside that fin will fall from T 

boundary because heat will flow from high temperature to low temperature.  So, because 

the temperature inside the fin will fall that difference between the fin temperature and T 

infinity will decrease and therefore, the driving potential difference for heat transfer will 

decrease. So, on one hand you are adding surface area. So, that is augmenting heat 

transfer. 

On the other hand you are reducing the temperature difference which is the driving 

potential for heat transfer. So, the combination the fin may be effective or ineffective 

depending on whether the combination is good as a design or the design is a bad one. We 

will not go into the details of that one, but this is just to give you a common prospective 

of whether a fin can be effective or not. Now, let us say that we are interested to write a 

control volume balance for a fin derive a governing differential equation and write a 

finite volume discretization based on that one. So, for illustration let us consider that the 

fin is a rectangular one. Of course, it is not necessary to do that, but just for illustration 

let us say that the half height of the fin is delta the heat transfer coefficient to the ambient 

from all sides is h, and width of the fin is B; the length is L; h is the heat transfer 

coefficient.  

So, first of all let us see that what is the important mode of heat transfer then what is the 

directionality of heat transfer. So, first we considered a steady state heat conduction; that 

means, we consider that the fin is at a steady state that is temperature at a given location 

in the fin is not changing with time now if you consider the fin to be wide enough as 

compared to its thickness that we will see later on that what is its implication, but even 

before that if you consider up two- dimensional heat transfer to begin with.  

Then let us look into the different thermal resistances along different directions. So, if 

you say that you are interested in analyzing a heat transfer let us say x is this direction, y 

is the perpendicular direction and z is the direction perpendicular to the plane of this 

board then which direction will be important for that temperature gradient analysis y or 

z. x definitely yes, but out of y and z. 

So, in the y direction you have the thickness delta much, much less than the z direction 

thickness. So, the thermal resistance in one case is delta by k just like L by k. Of course, 



in terms of reduced units in another case it is b by k here the area is area of L by k A 

remember. So, area corresponding to the flow here or heat flow is say here a 1 and here it 

is a 2 the two directions are different areas, but physically without looking into these 

numbers you say that here you have a small length across which the heat is flowing here. 

You have a large length across which the heat is flowing and this length L is even larger. 

So, you can consider two different cases - one is B much greater than delta; another is 

delta much greater than B this all these examples that you can consider. So, out of these 

cases, of course, the figure we have drawn may give an indication that B is much much 

greater than like here it is better to use two delta because half of this we have considered 

as delta or two delta much much greater than B. These two are different cases to cut 

things short on this discussion out of these two considerations any one of the 

considerations will make it a two-dimensional problem instead of a three-dimensional 

one. Whether the heat transfer has to be considered along z or y is a matter of issue, but 

the thing is that once you make such a consideration you can convert it into an equivalent 

two-dimensional problem. 

Let us say that we consider that our objective is not to go into deep into the physics of a 

fin problem. So, we do not go into the details of the thermal resistances and So on. But 

just to simplify the thing let us say that we are considering a two-dimensional situation in 

the x y plane.  So, the temperature variation in the x y plane is important if it was not. So, 

it could be x z plane, but definitely along x direction the heat transfer is important. Now 

next is that if the in a x y plane it is important then there could be conduction along x, 

conduction along y out of these two, which one would you consider to be more 

important. Now if you see you have conduction along y takes place over a very short 

distance.  

So, let us try to make an assessment let us say T c is the temperature of the center line of 

the fin and T S is the temperature of the surface of the fin. So, we can just make an 

approximate analysis T c minus T S by delta that is the that into k is the heat flux due to 

conduction that goes from the center line of the fin to surface of the fin. We are 

considering y direction heat transfer that is of the order of h into T S minus T infinity.  



So, T c minus T S by T S minus T infinity is of the order of h delta by k which is called 

as biode number based on the length delta. So, to simplify our analysis we consider this 

to be small this is an assumption. 

 So, if this is small then what we can see; that means, that there is negligible temperature 

difference between the fin center line and the fin surface as compared to the difference 

between the surface and the ambient if that is. So, then there is no necessity of assessing 

the temperature difference between the center line and the surface and then there is; that 

means, there is no necessity of analyzing the heat conduction in the y direction. So, that 

renders the problem effectively a one-dimensional problem where the heat conduction 

you can analyze along x direction only. 
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So, to do that let us say that we consider at a distance x of section of width delta x and 

write an energy balance. So, we are isolating the element this one and drawing it 

separately here.  
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So, there is some heat that enters here that is q x the heat enters through the opposite face 

at the rate of q dot At x plus delta x whatever enters does the same leave here no because 

through the top, bottom, front and back heat gets lost to the surroundings by virtue of 

convective heat transfer with the surroundings. So that is given by the convective heat 

transfer coefficient h; and let’s call that as delta q convection.  
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So, we can say let us write it separately q dot in minus delta Q convection is equal to q 

dot out or in is here x and out is x plus delta x. This is true at steady state. Let us say that 



the cross sectional area of the fin is a. So, Q dot x is minus or before writing it in terms 

of the temperature gradient, let us write it in terms of heat flux - that is heat flux at x 

times A. Q dot at x plus delta x is equal to heat flux at x plus delta x times A. And q dot 

at x minus Q dot at x plus delta x is equal to heat flux at x minus heat flux at x plus delta 

x times A.  

We can write heat flux at x plus delta x as a function of heat flux at x. So, we can write 

this as heat flux at x plus this 1 using the Taylor series expansion which means that q dot 

x minus q dot x plus delta x is equal to in this way times the area and what is delta q 

convection. So, there are four surfaces through the top surface. So, what is that 

dimension of the top surface, B into delta x.  

So, through the top surface the heat transfer will be B into delta x that into a h into T 

minus T infinity when we say T we imply that the entire cross section is at the same 

temperature T why because we have considered a small bio number. So, there is no 

difference between centre line and the surface temperature. So, at a particular x all y’s 

have same temperature that we call as t. 
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So, this into T minus T infinity there are two such surfaces for top and bottom and front 

and back front is 2 h into 2 delta x into T minus T infinity. So, if you add these two then 

2 h delta x into T minus T infinity will be common and you have b plus 2 delta b plus 2 

delta times 2 is what it is the perimeter of the cross section of the fin. So, delta q 



convection is nothing but the perimeter of cross section of the fin which we call as p into 

h into T minus T infinity, where p is equal to 2 into b plus 4 delta b plus 2 delta into delta 

x. 
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Since our balance is Q dot x minus q dot x plus delta x is equal to delta Q convection. 

So, we can write minus d q x dx delta x plus higher order term is equal to p h into T 

minus T infinity delta x, take the limit as delta x tends to 0 there is a area right here.  
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So, take the limit as delta x tends to 0. So, you have minus d q x dx A is equal to p h T 

minus T infinity and q is nothing but minus k d T dx here we are taking a fin of uniform 

cross sectional area. So, that is A constant, but if A is a variable it would be contain 

within d dx of A into q double prime so, but here since A is a constant we have minus d 

dx of k A k d T dx into a, but A we can put inside or outside whatever we want in this 

case because A is constant that this minus with this minus will become plus is equal to p 

h T minus T infinity. 

So, in this particular problem k and A both are constants. So, dx of k A d T dx we can 

also write as k A into d 2 T dx 2 whatever you want, but let us write the more general 

form. So, that is the governing equation. So, how do you discretize this using the finite 

volume method. So, remember that this is of the form dx of k d T dx plus S equal to 0. 

So, what is S minus p h by k into T minus T infinity. Minus p h by A So, it is already a 

implicitly linear source term.  
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So, S can be written as a combination of S equal to S C plus S p into T what is S C, p h T 

infinity by a what is S p, minus p h by a this is negative. So, this is such a well designed 

problem to be implemented that you have to do basically nothing extra, because the 

source term is already linearised and it is linearised in such a way that no basic rule will 

be violated.  



So, then you can cast this particular problem into that discretization mode of a one-

Dimensional steady state problem with a source term that varies linearly with 

temperature we have discussed that particular problem and you can implement this 

particular problem using that strategy what boundary condition you will put. Let us 

consider an example. let us say that you consider that At x equal to 0 T is equal to T B 

and At x equal to L the fin is insulated. 
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So, this I leave you on you as a homework that at x equal to 0 you have T equal to the 

base temperature at x is equal to L. You have d T dx equal to 0. So, using this boundary 

conditions you assume suitable numerical data as per your choice and obtain the 

temperature distribution along the fin. So, that is the first thing. So, you can discretize it 

into a number of control volumes say you non dimensionalise the entire equation.  

So that your value of non-dimensional x will be which is x by L will be between 0 to 1. 

You can divide it into say five number of control volumes, and then you will get 

requisite number of grid points at each grid point you solve for the temperature by using 

the finite volume method. Also obtain the temperature distribution using finite difference 

method and finite element method and compared those with the analytical solution the 

analytical solution corresponding to this problem is also there.  

So, you compare with the corresponding analytical solution in the same graph and 

comment on whether you are getting the same solution as the approximate solution or 



not the same as the analytical solution, and different approximate solutions whether they 

are same or not. Let us stop here today, and we will continue in the next class. Thank you  


