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Fundamentals of Discretization: Finite Difference and Finite Volume Method 

 

In the previous few lectures, we were discussing about the weighted residual method, 

and several forms of that including its discretized discretized form in terms of the Finite 

elements method. We will proceed further with that one, but before that let me give you 

some homework exercises, which you can solve by considering the discussions that we 

had in our previous couple of lectures.  
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So, the first problem consider the differential equation with the boundary conditions 

solve the above equation; using say least square, Point collocation, Galarkin, and 

Rayleigh Ritz method for the methods where you require to choose a Trial function. You 

can choose a Trial function u equal to a sine pi x, where a is the undetermined parameter. 

So, we have worked out similar examples in the in the class. So, you can use that concept 

to solve this problem.  



Second problem, consider a heat conduction problem with the following governing 

differential equation d dx of A k dT dx plus Q equal to 0, where A is equal to 10 meter 

square, k is equal to 5 joule per Kelvin meter second, Q equal to 100 joule per second 

meter. This problem is valid within the domain x lies between 2 centimeter to 8 

centimeter. The boundary conditions are T at x equal to 2 equal to 0 degree centigrade 

and the heat flux at x equal to 8 both are centimeter, 2 centimeter and 8 centimeter is 

equal to 15 joule per meter square second obtain temperature distribution in the domain 

using finite element method with three linear elements and compare with the analytical 

solution. 

 So, these are the two problems that you can try and the second problem you can try by 

hand because there are three linear elements, but I would prefer that you first get familiar 

with it by trying it by hand and then write a computer program to regenerate the same 

solution and check whether your program is working fine. 

Now, we will move on to our subsequent discussions and when we say subsequent 

discussions we have to keep in mind that our agenda broad agenda for all these 

discussions were to introduce was to introduce the fundamental concepts of 

discretization. We have introduced one concept of discretization by going through the 

roots of variational formulation, but that is not all that is not all because variational 

formulation is one way of arriving at the discretized equations one could have other 

possibilities.  
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Because one has the differential equation in its D form, variational form is a variant of 

that and one could have M formed from that one. So, we have till now focused our 

attention on V form and similar concepts could also be valid for M form because, like we 

have seen that under certain special circumstances these forms are inter changeable.  

So, you could derive for example, finite element finite element equations starting from 

the M form provided the M form exists and it is it is physically a very meaningful way of 

deriving some of the finite elements equations because M form sometimes has a very 

important physical meaning like, if you are solving a structural mechanics problem then 

M form M form essentially is the statement of minimization of potential energy of a 

system which governs the stability of a system in equilibrium. 

 So, if you minimize the potential energy of the system then that will give you the 

equilibrium configuration. So, the numerical method turns out to be consistent with the 

physical requirements as well. So, M form also happens to be physically appealing, but it 

is possible to derive discretized equations without going through these roots, but directly 

through the D form and one such method which does that is known as the Finite 

Difference Method. 

So, what is the basic philosophy of the finite difference method what we do is in the 

governing differential equation. We manipulate with the governing differential equation 

directly rather than through its V form or M form. So, we use the D form, in the D form 



there are expressions for derivatives and we express the derivatives in terms of suitable 

algebraic differences by using the Taylor series expansion, that is what is the basic 

philosophy of the finite difference method. So, Express derivatives in terms of suitable 

algebraic differences by using Taylor series expansion . 
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Let us, see a simple illustration of how we do it, if you have a domain like this say one 

Dimensional domain, we divide the domain into or we identify a few numbers of grid 

points. So, we actually do not divide the domain into a number of sub domains in the 

meaning of an element what we do for Finite elements, but what we do is essentially, we 

do a very similar thing because essentially we represent domain by a collection of 

discrete grid points. So, these grid points are similar to the nodes of a finite element 

method, but there are conceptual differences because you here, you do not have logical 

elements which are connected by the nodes.  

Here, you have just discrete grid points now, how they are logically connected or how 

they are laid out is a matter of choice of the geometry rather than or it is a matter of 

choice of the coordinate system. So, to say rather than having some particular shapes 

corresponding to each element. So, there is a no concept of element as such, but you 

have just discrete grid points. So, let us say that you have some grid points say i, you 

could have i plus 1, i minus 1. In a two dimensional frame work, you could have the 

other direction. So, here then you would have got (i j), i plus (1 j) like that and so on.  



Now, we are just considering a one dimensional example to begin with of course, we will 

go into more details in our subsequent lectures, but the objective of this part of the 

lecture is to introduce the method; rather than going into more details of the method. So, 

what we will do we will try to write a function let us say, i represents the point x and, 

this distance is h and, this distance is h.  

So, we are interested in expressing f x plus h while f is any function let us the 

temperature for a heat transfer problem in terms of f at x. That is, we are interested to 

express the value of the variable at i plus 1 grid point in terms of the variable at i grid 

point. So, f x plus h is equal to f x plus h f dash x plus h square by factorial 2 f double 

dash x and so on. This is the Taylor series expansion. Let us say this is equation number 

1. Similarly, you could also write f x minus h is equal to f x replace h with minus h. So, 

this is by keeping the point i minus 1 in mind.  

Now, let us say that we are interested about an algebraic expression for f dash x. So, 

there could be different ways in which you could derive that. For example, you could 

write f dash x from equation one as f x plus h minus f x divided by h minus h by 2 f 

double dash x and so on and so forth. So, if you truncate the Tailor series up to this and 

try to use this is the formula. So, you can see that you are replacing the continuous 

derivative as a discrete difference quantity and since it is not exactly the same.  

It has it is inaccurate and the inaccuracy is attributed to several things later on we will 

study that what are the sources of errors in this discretization methods, but at least we 

can intuitively guess one particular type of error that is we have truncated the Taylor 

series up to a finite number of terms and that is the one of the sources of the error. So, 

that is called as a truncation error and the truncation error is here of the order of h 

because this is the leading order term. So, we expect that h is small for this 

implementation to be accurate and if h is small the subsequent terms like h square h cube 

they are expected to be smaller than h and hence the truncation error is dictated by the 

leading order term that is of the order of h.  

Similarly, from equation two, you could write f dash x is equal to f x minus f x minus h 

divided by h plus h by 2 f double dash x the terms which are remaining are which are not 

considered whether it is plus or minus is not important only the order is important 

because any way we are interested about the truncation error. So, if we truncate this 



expression up to this then the truncation error is of the order of h. We can also find out f 

dash x by subtracting two from one. So, that will give you f dash x is equal to f x plus h 

minus f x minus h by 2 h then.  

So, when you subtract h square by factorial 2 term gets cancelled out. So, h cube by 

factorial 3 into f triple prime x that remains. So, that into 2. So, h cube by 3. So, h cube 

by 3 f triple dash x by. So, it is h square by. So, it was 3 factorial and that multiplied by 

2. So, that it becomes 3 and divided by 2 yes. Now, whether it is plus or minus sign let us 

just check. So, it will be f dash x, if you keep on one side then it will be minus, but at the 

end it is not important again whether it is plus or minus only the order is important. So, 

the truncation error is of the order of h square. 

 So, the these are known as different ordered difference formulas. So, this is Forward 

difference, this is Backward difference and the third one is central difference 

corresponding to the first order derivative. So, these names are quite clear I mean why 

such names do appear because Forward difference as if you are going Forward from x to 

x plus h, backward as if you are going backward from x to x minus h and central means x 

is central to x plus h and x minus h it is the mid way. So, the names are quite matching 

with the corresponding implications. Now, this is about the first order derivative you can 

do similar things with the second order derivative.  

So, let us try to do that let us say we are interested about f double dash x. So, to get f 

double dash x what we can do we can add one and two. So, if you add one and two you 

get f x plus h plus f x minus h is equal to 2 f x plus h square f double dash x then h cube 

by factorial 3 term gets cancelled out. So, you have h 4 by factorial 4 into 2 that means, h 

4 by 12. So, from here you can write f dash x is equal to f x plus h plus f x minus h 

minus 2 f x divided by h square minus h square by 12 .  

So, this formula where you can truncate it up to this term. This is known as central 

difference for the second order derivative and truncation error of the order of h square. 

You can also express the second order derivative in terms of differences in the first order 

derivative. 
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For example, you can write f double dash x as f dash x plus h minus f dash x divided by 

h. What formula is this one, which difference - forward difference, backward difference 

or central difference, this is forward difference right. Now, you can write individual f 

dash terms in terms of f by considering the first order difference formula. So, you can 

write this as f(x plus h) minus f(x) divided by h for f dash x plus h. So, which formula is 

this one backward difference. Similarly, for f dash x f(x) minus f(x minus h) divided by h 

the whole thing divided by h.  

So, f x plus h plus f x minus h minus 2 f x by h square. So, the central difference formula 

may be perceived as two successive steps of one Forward difference and another 

Backward difference formula for first order derivatives. If the matter it is the manner in 

which you perceive it is the ultimate interpretation, but eventually whatever may be the 

formula it may be generated by the Taylor series expansion that is the simple way of 

looking into it. Next is, how do we make use of this formula to understand that let us, 

consider an example let us take the same same one dimensional steady state heat 

conduction problem this is example. 
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So, we take the same problem which we considered for illustrating the finite elements 

method that is d dx of k dT dx plus S equal to 0 and we consider k to be constant for the 

particular example that we choose the boundary conditions. So, we considered a rod 

from x equal to 0 to x equal to L at x equal to 0 it is insulated and, at x equal to L it is 

giving temperature. So, now, let us write the corresponding derivative in terms of a 

difference quantity and see that how the corresponding finite difference looks like.  

So, if you write express it in terms of a difference quantity you you of course, are free to 

choose Forward difference, Backward difference, central difference whatever formula 

that you are interested in the central difference is a good one because its error is of the 

order of h square. Now, if you use the central difference formula our assumption is k and 

s both are constants. So, you have f x plus h that is T i plus 1 plus f x minus h plus T i 

minus 1 minus 2 f x minus 2 T i divided by h square what is h, h is that distance between 

the grid points. 

 Now, if it is the non uniform distance between the grid points then; obviously, h for one 

particular term and h for another term they will be different. So, you when you are 

writing f x plus h in terms of f x then there is 1 h when you are writing f x minus h then 

that h may be h 1 another different h. So, this h may be h 1 accordingly the algebra will 

change, but basic philosophy will remain the same for illustration we consider the same 

h. Although, it is not necessary that one has to use same h why is it not necessary that we 



have to use the same h what will dictate that what whether we should use a large h or a 

small h. 

 In a domain, there may be locations where the temperature gradient is very large to 

capture that you require grid points which are spaced in a very fine manner. So, they are 

very closely spaced or densely placed. On the other hand, there are may be parts of the 

domain where the temperature gradient is not that steep. So, you can use a courser grid at 

those locations. So, obviously, depending on the physics of the problem you can 

economize it by choosing finer grids and courser grids. It is not necessary that 

everywhere you use fine grids that will unnecessary increase the computational cost. 

So, wherever there is a less steep gradient you use courser grids. So, you it is possible 

and it is very much practical that in a particular problem you have non uniform grids. So, 

this example is an illustration with uniform grids, but similar algebra can be arrived with 

non uniform grids the expression will be different, then plus s equal to 0. So, what we 

have basically done is since k is a constant we have taken it out of the derivative. So, k d 

square T dx square in place case of d square T dx square we have written that difference 

expression.  

So, from here you can write T i or T i plus 1 plus T i minus 1 minus 2 T i plus s h square 

by k is equal to 0. So, you have an algebraic equation involving T i T i plus 1 and T i 

minus 1. So, if you have let us let us consider three elements and see that how we can 

assemble it. Again when we say three elements in finite difference there is nothing called 

an element; it is just for our own perception. So, we consider basically that there are four 

grid points, but that does not mean that it has three elements because concept of element 

is not there. So, it is just some isolated points 1 2 3 4. 

 So, the domain is now of just a collection of 1 2 3 4 four points disregarding how they 

are connected and all that that information is not a part of the finite difference method. 

So, you can write this remember that these equations are valid this equation is valid for 

the internal grid points not the boundary because when you consider the boundary say 

one you require basically three grid points at a time, one to the right and another to the 

left there is nothing at the left of the boundary. 

 So, it is not valid at the boundary it is valid only at points two and three. So, for point 

two you have T 3 plus T 1 minus 2 T 2 plus s h square by k is equal to 0 this is for the 



grid point two, for the grid point three you have T 4 plus T 2 minus 2 T 3 plus s h square 

by k equal to 0 then you have a boundary condition say T 4 is equal to T L that is given. 

So, that is given, but still you have T 1, T 2, T 3 as three unknowns. So, you require 

another equation obviously, grid point one will give you another equation. So, for grid 

point one what is your corresponding governing equation that you have to derive from 

the boundary condition.  

So, this was grid point four for grid point one boundary condition is the heat flux is 0; 

that means, k d T dx at 1 is equal to 0. So, you can write it in terms of a difference 

formula T 2 minus T 1 by h equal to 0 as a Forward difference formula, where h is the 

distance between each of the grid points. So, which implies T 2 or rather T 1 is equal to 

T 2. Remember, when you write a computer program there is a difference in the 

statement T 1 equal to T 2, and T 2 equal to T 1. Always when you are writing a 

statement for a boundary; that means, you are writing the expression for the boundary 

condition. 

 So, express the boundary as a function of the interior; that means, there is some value T2 

which is assigned to T 1 which is the value at the boundary. So, it is not T 2 equal to T 1 

of course, when you do it by hand it does not matter, but when you do it through 

computer programming it is the boundary assigned in terms of interior once that is how 

you have to organize the boundary condition. We will come to the more details on the 

boundary condition subsequently. 

But here, the objective is to illustrate that at the end what you have achieved at the end 

you have these three equations, three linear algebraic equations with three unknowns. So, 

you can solve for T 1, T 2, T 3. So, and in between how it varies it depends on your 

interpolation, but it has no sense of an element. So, it does not care how you interpolate 

it it is up to you and then. So, it will give you just the values of temperature at discrete 

points and then you can may maybe you can smoothly join them or join them by 

piecewise straight lines it is up to you. 

So, this is the basic implementation philosophy of a Finite Difference Method, of course, 

we have to remember that is it sufficient to know this implementation strategy it is not 

because, many times we may use the same implementation strategy, but the method may 

fail the method may become. So, called unstable, the method may become inconsistent. 



So, these are certain important terms and we will see that eventually, if these are the 

cases then there is the high chance that the method does not converse to the exact 

solution or even an approximate form of exact solution that you are looking for. 

 So, mere implementation of the Taylor series expansion is not all. We have to see that at 

the end whether it satisfies certain requirements which are called as consistency and 

stability requirements. So, later on when when we will be considering error analysis. We 

will revisit the finite difference method and see that for study as well as unstudy 

problems whether any type of discretisation will work or not, but again as I am repeating 

that the objective of this part of discussion is not to go into the details of the method, but 

to introduce the method and that is why we are just restricted to such a simple example 

we will take up more involved examples on finite difference method in subsequent part 

of our course. 

Now, we have seen one example of a method through the D form and one example of the 

discretization method through the V form. We will make their relative assessments, but 

before that we will try to make a few remarks on the nature of the problem through 

which you are intending to get the discretized solution. That is, how well the problem is 

posed that is one of the important natures of the problem that we need to discuss on not 

only that how does it relate to the boundary conditions. 
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So, we will look into certain terminologies the first terminology that we will consider is 

what we call as a Well posed boundary value problem. Sometimes, we in a loose sense 

say that the problem is ill posed or the problem is well posed. So, we have to understand 

that what we mathematically mean by these terminologies at least in a in a qualitative 

sense if not by very rigorous mathematical definitions. So, when we say that a problem 

boundary value problem is well posed. We have already discussed what is the boundary 

value problem were you require boundary conditions throughout the domain of the 

problem just like an elliptic problem elliptic partial differential equation. 

Now, what are the requirements first of all, the requirement is Existence of the solution. 

That is, the boundary value problem should be posed in such a way that the solution 

exists. It should not be posed in a way that the solution does not exist not only that, the 

solution should be unique and there is a third requirement that a small perturbation in the 

boundary conditions should not result in a large change in the solution. So, these are very 

obvious things for obtaining a numerical solution. Remember these we are these 

terminologies we are introducing in a context of getting a numerical solution.  

So, Existence of a solution is important; obviously, otherwise there is no need or there is 

no good in going through the definition of the problem if the definition does not give you 

a solution. The solution has to be unique. So, that you get a solution without ambiguities 

and a small perturbation in the boundary conditions should not result in a large large 

change in the solution; that means, it should not be over sensitive to a small change in 

the boundary conditions. 

This is very very important because, a perturbation in the boundary condition may be 

unwillingly implemented through round of errors and then it may be possible that 

because of that slight round of error you could have a large change in the solution; and 

that means, the problem is over sensitively dependent on changes in the boundary 

condition. So, if such situations occur we do not call it a Well posed boundary value 

problem. 

The other important characteristic of course, it if it is a boundary value problem it is 

boundary conditions are to be well posed. So, then the question comes that small 

perturbation in the boundary conditions value first, boundary conditions have to be posed 



then of course, you you test for perturbations and so on. So, what are the possible types 

of boundary conditions. So, that we will look into more carefully.  
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Possible types of boundary conditions through the variational formulation we have come 

across two types of boundary conditions, but those are not the only two types, but let us 

first note down the two types, the first one is the boundary condition, where value of the 

dependent variable is specified. So, that in the variational formulation terminology we 

called as essential boundary condition and in general, we call it Dirichlet boundary 

condition which is equivalent to the essential boundary condition this means value of the 

dependent variable is specified.  

The other one is that, the gradient of the value of the dependent variable is specified 

which for a second order problem remember, when we are considering possible types of 

boundary conditions. We are restricting our self to second order problems why because 

second order problem, we have seen that those are more common in the numerical heat 

transfer and fluid flow that we are going to discuss. We have looked into the equations 

we have found that the equations are maximum up to the second order derivatives. 

So, for a second order problem the value of the dependent variable specified is the 

Dirichlet boundary condition, then the natural boundary condition is termed as the 

Neumann boundary condition, of course, these are to honour the names of the 

mathematicians who contributed a lot towards understanding these concepts. Neumann 



boundary condition means value of the gradient of the variable gradient of that 

dependent variable is specified. So, for example, for a heat transfer problem if the 

temperature is specified it is Dirichlet boundary condition, if the temperature gradient is 

specified it is a Neumann boundary condition that is if the heat flux is specified. 

The third type of boundary condition is called as Mixed boundary condition where value 

of the dependent variable is expressed as a function of the gradient. So, it is mixed 

because it is neither the value is specified nor the gradient is specified, but one is 

specified as the function of the other. Classical example is the convective heat transfer 

boundary condition.  

So, let us say that you have a rod like this at the tip, the temperature is T L which is not 

known this is exchanging heat with the ambient which has a temperature T infinity and 

there is a heat transfer coefficient because of heat transfer from the rod to the ambient T 

infinity is less than T L as an example. So, the boundary condition here is whatever heat 

flux comes at the tip because of by virtue of conduction the same heat flux is dissipated 

to the outside because of convection. So, minus k d T dx at x equal to L is equal to h into 

T l Minus T infinity where h is called as convective heat transfer coefficient.  

So, it is basically the conduction flux equal to convection flux at the interface. Can you 

use the same boundary condition, if the heat transfer is unsteady yes or no why why do 

you if you are saying no, then why do you think that you cannot use the same boundary 

condition if it is unsteady, of course, T if it is if it is unsteady T is function of both x and 

time. So, you can replace this by the partial derivative with respect to x. 

If you replace that, that is if you replace d T dx with del T dx then can we use the same 

boundary condition you can definitely use because this is what, this is an expression that 

at the interface whatever is the heat flux coming by conduction the same is the heat flux 

that is leaving because of convection and that remains true even if it is unsteady because 

interface is not a volume it cannot store any thermal energy. So, no matter whether it is 

steady or unsteady at any instant whatever energy comes to the interface by virtue of 

conduction the same has to be dissipated by it to the surroundings . 

So, you can use the same with the ordinary derivative replaced by the partial derivative 

for an unsteady problem. So, here you can see that the temperature is expressed in terms 

of the gradient of temperature at the boundary. So, it is a Mixed type of boundary 



condition. There is an another type of boundary condition which we commonly come 

across in numerical solution of equations . That is called as periodic boundary condition . 
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So, if you have a domain where the physics of the problem is such that the solution is 

periodically repeated. So, let us say that you have some vertices like this, again the same 

vertex like this, again the same vertex like this and it is a periodic structure in the flow 

that is repeated. So, that means, that if you can solve one periodic or repeating part of the 

domain sub which is the sub domain and then extrapolate or extend in all directions then 

it will give you the complete solution of the domain. So, then what kind of boundary 

condition you put here. 

So, let us let us let us isolate this particular cell let us let us say this is x equal to 0 this is 

x equal to l. So, we say that let us say this is velocity at x equal to L say u L and this is 

velocity at x equal to 0 say u 0 we do not know these one, but what are the things that we 

know we know that they are repeating; that means, what we can say is that, whatever is 

the value of u 0 numerically we can say that the same is repeating at let us say x at L 

minus delta x. So, u at L minus delta x and similarly whatever was u at 0 plus delta x the 

same u is repeated at l. So, so we can say that u L is equal to u delta x and u 0 is equal to 

u L minus delta x. So, the periodicity is actually not equal to l, but equal to L minus delta 

x. 



So, in this way one can implement the periodic boundary condition again you can see 

that we have put the boundary as a function of the interior and not the interior as a 

function of the boundary this is how to write it technically. Now, the other important 

issue is we have discussed about the boundary conditions and we will keep in mind that 

in the second order boundary value problems either of these boundary conditions will 

appear and one can specify the boundary conditions, but there is a more important (( )) 

issue the (( )) issue is any condition specified at the boundary a boundary condition. 

Boundary condition of course, is a collection of two English words. So, boundary 

condition sometimes it is misnomer because you feel that any condition you specify at 

the boundary could be a boundary condition. 
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So, let us try to answer this question is any condition specified at the boundary a 

boundary condition. 

It is important to discuss about this through a very simple example because then it is easy 

for us to appreciate. Let us say that we have a simple one dimensional steady state heat 

conduction problem with s equal to 0 and k equal to constant. Let us say this is x equal to 

0 let us say this is x equal to L we give a boundary condition that at x equal to 0 the heat 

flux is say 1 watt per meter square and at x equal to L the heat flux is 1 watt per meter 

square this of course, we have to give right because it is a steady state problem. 



So, let us say that what is the solution of this problem we have given boundary 

conditions to the two boundaries and it is physically a consistent one because whatever is 

the rate at which heat flux enters, the same rate at which the heat flux leaves at steady 

state. So, it is consistent with the steady state energy balance. This is what type of 

boundary condition this is Neumann boundary condition at both the boundaries. Now, let 

us try to solve this problem it is it may appear to be very simple, but let us try to solve it 

and see how simple it is. So, you have d 2 T dx 2 is equal to 0 that is the governing 

differential equation. So, dT dx is equal to C 1 T is equal to C 1 x plus C 2 .C 1 and C 2 

are 2 independent constants of integration which you can find out from the boundary 

conditions if you can find out then its fine. 

Let us say that the thermal conductivity of the material is 1 watt per meter Kelvin just for 

simplicity in numbers. So, at x equal to 0 you have minus k dT dx equal to 1 so; that 

means, d T dx equal to 1 minus 1; that means, C 1 equal to minus 1 similarly at x equal 

to L also it is the same thing. So, at x equal to L also you will get if you use the boundary 

condition you will get C 1 you will not get C 2. So, you get basically T is equal to minus 

x plus C 2 you cannot determine C 2. So, it violates the requirement of uniqueness of the 

solution. So, it does not mean that the solution does not exist it only means that infinite 

number of possible solutions will exists depend on depending on C 2. So, all these 

solutions are parallel straight lines in the T x plane. 

 So, if you plot all the solutions these all these could be possible solutions question is 

when all these could be possible solutions which one will do you accept as a solution 

because for a physical problem you you expect a unique solution these boundary 

conditions are not able to answer to that question because these boundary conditions are 

simply telling that you get a family of solutions with this one where there is an 

undetermined constant, this undetermined constant may be determined provided. You are 

given the value of temperature at one of the boundaries so; that means, if you have a 

steady state heat conduction problem one dimensional heat conduction problem then at 

least at one of the boundaries you have to specify the temperature; that means, at least at 

one of the boundaries you must have a Dirichlet boundary condition otherwise you 

cannot solve the problem as a unique solution you can solve it, but you will get infinite 

number of possible solutions.  



So, we can understand from this example, that we have given some condition at the 

boundary, but that is not a legitimate boundary condition. So, whenever whenever you 

are interested to pose a well posed boundary value problem you must keep in mind that 

the boundary conditions should be such that it should be a well posed boundary value 

problem otherwise you can arbitrarily specify the boundary condition that may be 

physically consistent, but that does not give you a guarantee that it will give you a unique 

solution. 

So, till now we have studied the finite difference method to some extent, the finite 

element method to some extent. Next the logical objective will be to look into a 

comparison of these methods, and see that how these methods are relatively performing 

with respect to one another. What are there possible merits, and demerits in comparison 

to one another, and we will bring the finite volume method in perspective of that we will 

see that what are the possible consequences of this methods, and how does the finite 

volume method evolve as a consequence as a natural consequence in terms of 

overcoming some of the limits, some of the limitations of these methods. 

So, it will it will of course be established as a method which tries to consider or borrow 

the good points of both the finite elements method, and the finite difference method 

becomes inherently suitable for problems in fluid flow, and heat transfer and we will 

illustrate that in more details in a next class. Thank you. 

 


