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Hello and welcome to this lecture number 17 of the course robot motion planning. In the last 

class we looked at the motion of a car like mobile robot and the kinematic constraints that 

such robots are subjected to, for example, they cannot move sideways. Now, today we will 

move on with the same discussion on kinematic constraints and then look at controllability 

that is if a robot is subjected to these kinematic constraints, then what happens to the 

controllability of the robot? So, in the last class, we were looking at kinematic constraints and 

I will very briefly go through what we were doing in the last class just to revise and then we 

will move on to controllability.  

(Refer Slide Time: 00:52) 

 

Now, we said that a vehicle like a car which has two control inputs, for example there is a 

drive at the back, so drive and steering. So, it has v and Φ as inputs whereas the output is 3 

DOF output. That means we have x, y of the centre point P that is my point P having 

coordinates x and y plus there is an angle θ. Now, we said that when this car moves, it has a 

particular velocity v and the direction of the velocity vector is always in that direction. 

 

And because of which if the car is taking a turn, for example if it is turning about this point 

like this, what is going to happen is that at that point, so, let us say the car is turning like this. 



So, at this point what will happen the velocity vector will be tangential to the point on the 

curve. Now, because of which because this is my velocity vector v, if I take this projection in 

the x direction and y direction what we get is cos
dx

v
dt

 and sin
dy

v
dt

 .  

 

Now, the local axis of the car is in this direction, let me draw the local axis also. So, the local 

axis is in the side that is my local axis. Now, because of these two cos
dx

v
dt

 and 

sin
dy

v
dt

 , when I divide both of these equations, this by this, what I do get is that 

sin cos 0dx dy   . Now, this is what is the non-holonomic constraint with this robot is 

subject to and what does it mean? 

(Refer Slide Time: 02:40) 

 

It basically means that for conditions where θ = 0, the velocity in the y direction will become 

equal to 0 and when θ = 90 then the velocity in the x direction will become zero, which 

essentially means that the car cannot move sideways. So, this is something that we have seen 

in the last class.  

(Refer Slide Time: 03:05) 



 

Now, something to remember very carefully is that at this point the velocity vector is 

tangential to the curve because of which the car is turning, right, is taking a curve. Now, if it 

is turning, then it has the instantaneous centre of rotation which is located at this point and ρ 

is the length from the instantaneous centre of rotation to the centre of the front wheel there. 

Now, if that is the case and ρ also has the turning radius Φ it would be having a maximum 

and a minimum. 

 

For example, a car can turn only maybe 40
0
 left or right, it can turn more than that. So, 

because of which we end up with a constraint that 
2 2 2

2

min 0x y     . Now, this comes from 

here 
max

min

1 1
tan

L



 and we can get this from geometry. Now, just from geometry, we can 

get this equation in terms of the L the length between the centre of the front wheels and that 

of the rear wheel.  
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Now, because of this constraint what is happening is that the velocity vector that is there, 

now, let us look at this again. So, this is my centre point P and this is my P (x, y). So, when it 

is taking a curve like this on my X-Y plane, this is my X-Y plane, from the X-Y plane this is 

the curve right it is taking. Now, at that point what is going to happen is depending on the θ, 

this is my θ axis, at that particular location the velocity vector is going to be tangential to that 

point depending on whatever θ you have. Now, this is one.  

(Refer Slide Time: 04:58) 

 

Now, we also saw that the velocity vector is bound by this equation here because of the 

turning radius by this equation. So, what will actually happen is that this velocity vector is 

also constrained to lie inside a cone. So, this velocity vector first of all has to lie on this plane 

for a particular θ and because of the maximum turning angle constraint that is put the velocity 

vector has to lie inside this cone which is constrained by the equation which is 



here
2 2 2

2

minx y    , which means that the vector has to lie inside here, it can apply 

anywhere outside because the turning radius is constrained.  

(Refer Slide Time: 05:32) 

 

Now, that basically tells us that we can think about this as a tangent and a tangent space. So, 

you understand very nicely that this is a tangent, right. So, this is a tangent to the curve at this 

point. Now, at that point there can be many curves, right. This curve can take different turns, 

so there can be different theatres, so there can be turns in this direction or passing through 

that point, but these tangents would be in different directions.  

 

Now, the collection of all those tangents makes up a vector field. And this is better to or 

easier to understand like this if we have a sphere like this you can imagine that there is a path 

which is coming from that side coming like this and coming this side. So, this is a curve on a 

sphere, it is on the other side. Now, at this point, let us say x 0 we have a tangent which is like 

this. Now, on this at this point x 0 there can be other curves.  

 

So, you can very well imagine that they could be other curves here. Now, each of those 

curves are going to have tangents. Now collection of all those tangents are what makes up the 

tangent space, tangent space at x 0 at the point x 0. And now, there can be different x 0, x 0 can 

be different at different locations on the sphere which means at each of these x 0, there can be 

different curves and each of them will have a tangent space.  

 



So, the collection of all these tangent spaces together makes up what we call a tangent 

bundle. So, now we have seen the concept of a tangent space and the concept of a tangent 

bundle.  

(Refer Slide Time: 07:08) 

 

Now, we have also seen that any kinematic constraint can be written in the form ,G q q
 
 
 

in 

the case of non-holonomic kinematic constraints basically it is written in this form and what 

we have seen that these are functions of velocity like in this case. There we have a dx and dy, 

these are incremental velocities. Now, at any given configuration the robot velocity can be 

expressed as a linear combination of different vector fields.  

 

Each of this is a vector field which are a set of independent vector fields spanning at Δ. So, 

this basically tells us that at any given configuration, the robot's velocity can be expressed as 

a linear combination that is what we have seen that they are vector fields and which are a set 

of independent vector fields spanning all of Δ. Now, X and Y are a set of independent vector 

fields in Δ. Now, what is this X and Y?  

 

This is my X in the X direction that is my Y in the Y direction. So, there are different vector 

fields at any given configuration of the robots and this velocity can be expressed as a linear 

combination of X 1, X 2, X 3, X 4 which are a set of independent vector fields spanning Δ. 

(Refer Slide Time: 08:22) 



 

Now, we move on to what is controllable and non controllable. Basically, why this question 

comes up is essentially because we have seen that there are two control inputs. The control 

inputs are wheel velocity and steering angle Φ, but the outputs are x, y and θ they are 3. So, 

this is 2 and that is 3. So, for example if you look at this figure here is it possible for this car 

to go and park there? So, the car is here. This is my initial point and this is my final point or 

this my goal configuration, let us say this is my goal configuration, is it possible to go and 

park? How do you know? Now, if the car is only moving forward then it is impossible to get 

to the final position. 

(Refer Slide Time: 09:10) 

 

Whereas if the car can move forward and can move backward then the car can go and park 

like this. For example it goes front like this and then it goes back like that and it is parked in 

this configuration. Now in this case, the car is controllable, in the previous case the car is not 



controllable. Now, I hope you understand the meaning of not controllable means you cannot 

get to the desired position.  

 

Now, this was an easy example and we have eyes so we can see and try and figure out that 

okay maybe we can move like this and move like this and go there. But you would remember 

that in path planning program which is doing this automatically, so how would the program 

figure out is there any mathematics behind that?  

(Refer Slide Time: 09:49) 

 

Now, so controllability is two control inputs for controlling 3 degree of freedom system. Now 

due to a non-holonomic constraint, some motions are not possible this we have seen. For 

example, a car cannot go sideways. So, this car cannot go sideways direction that is not 

possible because of this non-holonomic constraint. So, it is natural to ask if the car or mobile 

robot can reach all positions in the workspace, can it reach all positions? So, I have a 

workspace like this and I have a car.  

 

So, the question being asked is, this car is subjected to a non-holonomic constraint, which 

means it can go sideways, but can it go and park anywhere in this workspace? That means are 

all configurations possible? How would you figure that out? Is there some mathematics 

behind that that is what we are looking at here now. So, I have a mobile robot which is 

subjected to non-holonomic constraint and I want to find out if this non-holonomic mobile 

robot can go and park at any configuration in this workspace.  

(Refer Slide Time: 10:51) 



 

So, we're trying to answer this question of controllability. So, the control Lie algebra 

associated with Δ denoted by CLA, so CLA stands for control Lie algebra, is the smallest 

distribution which contains Δ and is closed under the Lie bracket operations. So, we will just 

come to what is Lie bracket. CLA is a distribution generated by X 1, X 2 and all their Lie 

brackets successively computed. What this means I will just come to an explain.  

 

So, we are seeing this new term control Lie algebra associated with Δ denoted by CLA Δ is 

the smallest distribution which contains Δ and is closed under the Lie bracket operation. CLA 

is the distribution generated by X 1, X 2 and all their Lie brackets recursively computed. Now, 

any two configurations  qinitial to qfinal of an open connected subset of C, C is the configuration 

space, can be connected by a physical path by following the flow of a finite sequence of 

vectors of Δ if and only if the dimension of CLA is m.  

 

That means the control Lie algebra of Δ is m, which is the dimension of the configuration 

space. Let us try to understand this by looking, I will just come back to this page again.  

(Refer Slide Time: 12:09) 



 

But let us look at this example, what I am trying to explain here or what this mathematics is 

all about. So, first of all it says that suppose there is a mobile robot which cannot go 

sideways, in that case by a combination of motions can it actually goes and park sideways. 

For example, this is a mobile robot, this is a car kind of a mobile robot. Now we know it 

cannot go sideways. But then by making or following different paths, can it actually 

successively have different parts and then finally go and park sideways.  

 

So, in that case, it is not going sideways exactly and parking there, but it is probably making 

a series of manoeuvres and then going there, say for example it goes like this, then comes like 

this, then goes like that. It has actually gone sideways, but by following different paths not 

exactly there. Now let us take the case of a wheel. Now this is a wheel as you can see in this 

figure, this is the wheel. Now in this wheel, this wheel can rotate about this axis like that.  

 

So, this might suppose I say there is an axis there, so it can rotate like this and it can twist 

about this axis. So, there is one more accuracy on which it can turn. So, this wheel can rotate 

and it can steer it that is my steering axis, then it can also change its direction there. So, it can 

rotate and can become in some other direction. So, there is a θ there and there is a velocity 

here. Now let us look at this video and it becomes clearer there.  

 

(Video Starts: 13:36) So this vehicle or wheel can go forward like that. It can roll forward, it 

can rotate forward and then go back like that. So, rotate forward and go back like that and it 

can twist about its main. There is a steering, it can steer about the main axis. So, this is my 



steering, it can twist like that. This is like a unicycle model. So, it can twist about the axis. 

So, it has two motions. One motion it can go front and back you can see that.  

 

The number two is it can twist about his axis, this is what it can do. Now, the wheel cannot 

go sideways, see the wheel cannot go sideways, this sideways motion is not possible because 

of the single non-holonomic constraint. So, because of this non-holonomic velocity 

constraint, this robot cannot go sideways. So, my question here is we know the robot cannot 

go sideways, but it has these two motions, it can rotate and it can, so in that case how would 

you make it go and park sideways? So just see what is being done.  

 

It is going forward, so this is my first motion. Notice this carefully, it goes forward. It rotates 

forward then it twists, the steering angle changes. Then it goes straight back, then the steering 

angle changes again. I will reply it. So here what it is doing is it is going forward that is one 

velocity vector field. It can have different velocities, so that is a vector field that is one, let us 

call it X 1. Next it can steer, let us call it X 2. 

 

Once it goes there, it is turning, this one you can see it is turning there so that is my X 2 that is 

another vector field. Then it is going back in a straight line. Now because it is at an angle, 

you can see it has gone at an angle that is my vector field 3. And it has again steered that is 

my vector field 4 forward. (Video Ends: 15:28) I can say X 1 is the forward direction, X 2 is 

the rotation, X 3 is back, and X 4 is minus X 2 again.  

 

That is what I mean by saying that this what we were talking about here that any two 

configurations qinitial and qfinal of an open connected subset of C, C is the configuration space, 

can be connected by a feasible path by following the flow of finite sequence of vectors. So, 

we have a finite sequence of vectors which is it was going forward, it was changing the 

steering angle then going back, changing the steering angle again.  

 

So those are finite, it is a flow of finite sequence of vectors of Δ if and only if the dimension 

of CLA is m and where m is the maximum dimension of the C-space. So this basically tells 

us that this car which is subjected to a single non-holonomic velocity constraint can actually 

go and park if we can get a sequence of vectors, X 1, one X 2, X 3 vector fields like this and 

using control Lie algebra if we can generate vector fields such that this can go and park there.  

 



And that can only happen if the dimension of Δ is equal to the dimension of the C-space. 

Now, there is a corollary here. The corollary is any robot that is subjected to a single non-

singular scalar non-holonomic equality constraint is fully controllable. That means if you 

have a single constraint like this which is given here that a car is subjected to such systems 

are fully controllable means you can take and place them anywhere inside the workspace. 

Now, let us look at an example which will make it a little bit clearer.  
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Let us look at an example which will tend to make this clearer. So, what this is basically 

telling is that a single wheel can move sideways by combining different motions. This is X 1, 

X 2, X 3, X 4 like this, each of this is a vector field. So this is a single wheel. Now, it can 

rotate forward similar to the wheel that I just showed, this can rotate about the axis and it can 

steer about that axis. So, it has two inputs now.  

 

There is a velocity let us call it ω and there is a steering angle which is Φ. Now, with these 

two inputs, can it go to every position in every configuration in the workspace? Now, the 

configuration has three dimensions, right. So, the vehicle has, a normal car has x, y and θ, 

right. So, now what we can see is let me take the top view of this wheel. This my top view is 

three axes. So, if this is the top view, it can rotate forward which has gone forward like this 

what I just showed in the video.  

 

So it has gone like this, it has gone forward then what we do is we rotate or we change the 

steering angle. When I change the steering angle it comes like this. So this was X 1, this is X 2 

it has turned in that direction. Then X 3 is it comes backwards like that. I can say this is –X 1. 



So it has come backwards and the wheel has positioned here now. And then what I do is I do 

–X 2 again. I do –X 2, so it comes here. So, it goes this side to become –X 2.  

 

So you can see that this was +X 1, that is –X 1, this is +X 2, this is –X 2. So what it did is 

basically it used different manoeuvres to actually go sideways and it has gone in park 

sideways like this. That means this point here, Lie configuration space is accessible. The 

robot cannot go sideways or this wheel cannot go sideways, but then by using different 

manoeuvres it can actually go and position there. That means the system is fully controllable 

because it can go and position at every point in the workspace. 

 

Now, let us go back to the definition again and try to make sense out of it. So, it says that the 

control Lie algebra associated with Δ, denoted by a CLA Δ, is the smallest distribution which 

contains Δ and is closed under the Lie bracket operation. I will just come to what is Lie 

bracket operations. Now CLA is the distribution generated by X 1, X 2, and all their Lie 

brackets recursively computed. We have seen what is X 1, X 2.  

 

Now any two configurations qinitial to qfinal of an open connected subset of C can be connected 

by a physical path that means it can go from qinitial to qfinal by following the flow of finite 

sequence of vectors of Δ if and only if the dimension of CLA is m. That means the dimension 

of the control Lie algebra is equal to the dimension of the C-space. In that case the system is 

fully controllable this what it is saying.  

 

So, here we saw the example that this wheel can actually go sideways just by making 

different manoeuvres. First it goes like this, then it turns that side, then goes back and then it 

turns in that direction. So, this is X 1, this is X 2, this is –X 1 and that is –X 2. Now, so this is 

the case of a single wheel that can move sideways by combining different motions.  
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Now, let us look at the mathematics of control Lie algebra. Now what is control Lie algebra? 

In this particular case, it was moving forward by X and turning Y. So, X and Y are vector 

fields. Now the Lie bracket operation is written this way with bracket X and Y. This is some 

sort of manoeuvre based on two motions X and Y, X during δt, very small amount δt during 

that time and Y during Δ t, –X during δ t and –Y during δ t.  

 

Now, what this basically means is that this wheel can go forward. This is my velocity vector 

v cos θ, v sin θ and the turning angle is Φ, so, it can turn by this much. Now, let us look at 

here. So, this is my starting point. So, it went like this X, then when turned Y, then turned –X, 

then turned –Y that is exactly what I did here. So, there was a plus X, X 1 is plus and X 2 is 

plus, then it went –X 1, then it went by this amount –X 2.  

 

So, this is exactly what it is doing, and in the process it is going from here to here, which is 

actually sideways motion. So, by changing this combination, now there can be different axes 

right, it can go like this, like this, like this, like this, like this; all axes are possible, whatever 

axes are possible. So, by using different axes, it can go sideways and park in different places 

that mean all points here are actually controllable. So, the wheel can go sideways and park 

anywhere.  

(Refer Slide Time: 22:29) 



 

Now, let us look at this again. What control Lie algebra is actually doing is by using Lie 

brackets we are generating another motion which is given this way. So, this is basically 

generating a new motion. So, it is taking X vector field, Y vector field and then generating 

another motion by using Lie brackets. Now, what this basically means suppose you are at q 

and you want to go to 'q , there are basically four motions that are required.  

 

And it means from here if you look at the
20

'

t

q q
Lt

t 


. If I take the Taylor series expansion of 

that what I get is this term. So, what I do is I use Taylor series expansion on this and I get 

 ,X Y dY X dX Y     using Taylor series expansion 

where

1 1 1

2 2 2

3 3 3

X X X
x y

X X X
dX

x y

X X X
x y







   
   

 
   

   
   
    

.  

In our case, remember for the car it is x, y and θ these are the three variables that are there.  

 

Similarly,

1 1 1

2 2 2

3 3 3

Y Y Y
x y

Y Y Y
dY

x y

Y Y Y
x y







   
   

 
   

   
   
    

. So, what this is telling us is if you have two vector 

fields X and Y, by doing this operation which is called Lie bracket, you can generate a third 



motion, this is a third possible motion and successively you can generate different motions 

simply by taking the Lie bracket of these vector fields that is what it is telling us.  
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So, let us look at the analysis of this unicycle. Now for this unicycle let us look at it this way. 

So, this is my unicycle that one wheel and the kid was sitting on top of it that is this one. So, 

this is a unicycle. So, this is one wheel, which can rotate about the axes and it has a steering 

about the vertical axis. So, if you look at that one wheel, then basically this is my wheel, it is 

making contact there. So, I can say the unicycle  1 2 3X x x x these are vectors x 1, x 2, 

and x 3.  

 

So x, y and θ which I can write in terms of q as q 1, q 2 and q 3. Now in terms of velocities, I 

can simply put a dot there indicating with these I can also find the velocity. Now, in this 

particular case let us write down the frame of reference, this is q 1 that is q 2. So the contact 

point it is q 1, q 2 at that contact point and it is pointing in this direction so that is my q 3. So, 

it is like x, y of this point and θ is the angle, the steering angle.  

 

Now, this wheel can roll forward or backward, and it can spin about a point or we can also 

call the steering. Please note that it has to go forward and backward, in the case of the car we 

saw if the car can go only forward and not backward, then it is not controllable. So, it has to 

be able to move forward and backward and it must have a steering. Now, suppose I define 

two vector fields when the robot is going forward and turning.  

 



So going forward is equal to let us call this, this is one vector field  1 3 3cos ,sin ,0g x x . So 

this is going forward with unit velocity. So, this wheel is rotating about this axis with unit 

velocity. So in the x direction y direction it is going to be cos x3 and sine x3 and there is going 

to be 0 because this contact point is always there. Now, what about the spinning or steering? 

Steering is another vector field  2 0,0,1g  ; let us say unit velocity.  

 

So we have two vector fields, one vector field for going forward and another vector field for 

turning for steering the steering angle. Now, I can draw this vector field in terms like this, this 

is my x 1, x 2. This is x 1, x 2 and this is my x 3. This corresponds to x, y and Φ if you want it 

that way. So, if it is going only in the x direction these are the vectors or vectors field which 

are pointing in this direction, it is going only in the x direction.  

 

If it is going only in the y direction, then I can have another one here which is going only in 

the y direction. It is going on in the y direction. And if it is going only in the z direction, then 

I can also have a set of vector fields which are going only in the x 3 direction. This is my x 1, 

x 2, in that direction. So basically, what we are saying is that the final motion of this wheel is 

going to be made up of all these vector fields. 

 

And to perform the Lie bracket I am going to take one vector field of going forward, one 

vector field of steering, and I am going to perform the Lie operations and see if I can generate 

another vector field. So, what we do here is basically I am going to use this formula. This 

formula I am going to use here as given here.  

(Refer Slide Time: 28:48) 



 

So, the way we write it is  2 1
1 2 1 2,

g g
g g g g

x x

 
 
 

. This is exactly what we wrote there. So, 

this is if you just go back and see what is written here is this derivative with respect to the 

second field into X and derivative of the first field into Y. So, this my first field and this my 

second field, the way we have written it here is like this. 

 

Now remember what is g 1 and g 2? The g 1 and g 2 are given here, g 1 and g 2. So, if I take the 

derivative now, this is   2 2 2 1 1 1
1 2 1 2

1 2 2 1 2 2

,
g g g g g g

g g g g
x x x x x x

        
    

        
. So this is equal to this. 

Now all I have to do is put in the values. So, let us look at I am taking the derivative of g 2 

with respect to x 1, x 2, x 3.  
3 3

1 2 3 3

0 0 0 cos 0 0 sin 0

, 0 0 0 sin 0 0 cos 0

0 0 0 0 0 0 0 1

x x

g g x x

       
       

 
       
              

. 

 So this term will fully become 0 because this matrix is fully 0.  

 

So this term will fully become 0 and what we will be left with is

3

3

sin

cos

0

x

x

 
 

 
  

. So, I have 

generated a third, this is my g 3 now. So this was one vector field, this was another vector 

field, I have generated a third vector field now by using the Lie bracket. So this is what I call 

by Lie brackets.  

 



So, I have taken two vector fields, performed the Lie bracket operation and I have generated a 

third vector field now which is sin x 3 and cos x 3. Now, let us go back and look at what is the 

meaning of this. So, this is the axis. So let me draw the figure again or can we do it here 

itself. So basically, what we are doing here is if I look at the top view, the top view is in this 

direction. No, I just draw it in the other figure, there is no space. I will just write here.  

 

So if I draw my axis here x 1, x 2 and x 3. Now, how did this wheel go sideways. Basically, if 

this is my x axis, x1 and that is my x2, then the wheel was here. The wheel first moves 

forward, so this is my wheel, this is my top view. It moved forward, it went there, then it 

rotated, it rotated like this, then it came backward like this and then it rotated again. Rotated 

means there was a steering angle change, it became like this that is how it went sideways 

from here to here. 

 

So, this was one vector field x 1, there is another vector field x 2, this is –x 1 and this is –x 2. If 

I draw it in terms of axes, it went in this direction, this is my g 1 vector field, it went forward. 

Then what happened is it rotated. So, if it rotates means it is using the x 3 axis so it is rotated 

by some angle, the steering has changed. So, this my g 2. Now, it has gone back again, it has 

gone back this is my g 1. 

 

This is –g 1 and it has come here now this is my –g 2 because it is having a steering and 

rotating it will not come back to x 1, x 3 plane, this is going to be a slightly different point. So, 

this is my –g 2 now. Now if we look in terms of what was the third vector field that we 

obtained, what was the vector field that we got, we got sine x 3 –cos x 3, this might be the 

third fellow, this is my g 3. So, sine x 3 cos x 3. 

 

So, it is what we got the third fellow g 3 as sine x 3 and cos x 3 minus. So, if you look in the x 

direction, this is my x, x is in this direction right. So, it has gone minus in the y direction 

which is indicating that it has gone in the minus direction here. So that is my x 1, x 2 axis so it 

has come here now, it has moved sideways. So, this is my –cos x 3. So, now this is indicating 

that wherever we started off from. 

 

We started from cos x 3 and sine x 3 and we generated another field which was a sine of x 3 

and minus cos of x 3. Now because this is a minus it is showing that has gone sideways 

actually. So, this basically is telling us that the vehicle has actually gone sideways and it has 



parked by using a third vector field which is g 3 now. So, successively I can have another 

vector field g 1 and g 3 now or g 2 and g 3 to generate another motion.  

 

So, by successively generating these motions, the car can go and park anywhere this is what it 

is saying. So, basically, let us go back to that definition again that we talked about. So, the 

theorem is very important there. So, it says that any two configurations in q initial to q final of an 

open connected subset of C can be connected by a feasible path by following the flow of a 

finite sequence of vectors using control Lie algebra. 

 

And the system is controllable if and only if the dimension of control Lie algebra is m which 

is the dimension of C-space. So, this is what it is saying in terms of controllability. And this 

also we can use to prove that the single wheel is actually going sideways because by using 

Lie brackets we are generating a third vector field which is actually making it go sideways, 

means it has a velocity in that direction which can actually go sideways and go and park 

anywhere it wants. Now, this is basically to do with control Lie algebra. 

 

And by using Lie brackets we can prove that there is a forward direction of motion which is 

given here, there is a steering motion here, but Lie bracket is giving you a third motion which 

is also possible which is actually sideways. Now, the sideways fellow is the combination of 

other two vector fields. Now why successively using differently brackets, so g 1 and g 3, g 2 

and g 3 I am going to generate more vector fields. So, each of this will become a new vector 

field, it may be new, may not be new, but I can generate more vector fields, right.  
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So, this is how we use Lie brackets to try and generate other motions which apparently seem 

to be constrained by the non-holonomic constraints. So, if the systems like a car or a wheel is 

fully controllable because again they are subjected to a single non-holonomic constraint and 

hence some systems are fully controllable that is what we are told. That means, if this is my 

workspace and there is a car there, you should be able to take this car and park it anywhere 

you like, not with one motion, but with many motions following many paths.  

 

Let us look at one example here. The car is here, I want to park it sideways. I want to park it 

exactly here. So, I want to take this car and I want to park this car sideways. We looked at the 

example of the single wheel robot, now this is a case of that. How is it possible? It cannot go 

straight like that, but Lie algebra tells us that there is another vector field which can actually 

take it sideways. Now, how do we do that? It takes a curve like this, the car is here now. 

 

So, it has taken the steering wheel, it has taken a particular angle Φ, the car is here now. Then 

the car goes backwards, it is here now. So, it has gone straight back like this. Now, here it 

turns the steering wheel that side and then goes like this and it is parked here now. So, the car 

is actually gone and parked there. So, there was one motion here, second motion here and 

third motion there. Now, because the car can have different steering angles, of course there is 

a limit to that. 

 

It has different steering angles, so for different steering angles it can have this kind of a circle 

or it can have slightly what is a wider circle or it can have maybe a slightly smaller circle 

there depending on Φ now the turning radius. From here it can probably come backward like 

that and then go again. So by doing this set of motions, the robot can actually go sideways 

and park wherever it wants because the system is fully controllable.  

 

And we are able to prove it by showing that if it has a set of vector fields like this, we can use 

Lie brackets and then generate other vector fields x1 and x2, will give you a third one x3 

which can be in some other direction, it can be sideways. Now this is mathematically 

showing us that the car can actually go and park sideways using Lie brackets. Now, in terms 

of an algorithm how do you make the car go in park sideways that is what is more interesting 

to us.  

 



Now let us look at this example a little bit more detail. What did this car actually do? The car 

actually changed this angle δ θ. So, this is the angle that it is making at the centre depending 

on whatever is the turning radius, this my turning radius that is Φ, right. So, depending on 

this turning radius there is going to be a δ Φ. So, if I look at my graph if this is x, y and Φ, if 

this is x, this my x axis, y axis and that is my θ axis this side.  

 

Then the first thing it did is it changed the θ angle. So, basically it changed the θ angle. So, 

from here it went up like that, so it is changing this one now. So, this is what it is doing it is 

going here. Then it went back straight. So, this is my straight motion. So, it went straight and 

then it changed the θ angle again to come back here. So, what it is doing it is basically having 

a cylinder kind of motion which basically means that it is taking a curve like this which is on 

the X-Y plane with a particular δ θ. 

 

Then it is going straight it is on that plane itself it is going straight there for that particular δ θ 

and then this changing the δ θ coming back here, changing the δ θ and then going. So, 

basically this is a cylinder, we can call this a cylinder of unit motion.  
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Now, by having a connection of the cylinders, we can make it go in different directions. Now, 

let us look at this example again. The car is here, what about pure rotation. I am wanting to 

rotate the car and face it this side. In the previous case, in this case it was going sideways, we 

are talking about the system going sideways. Here, we want to rotate the car. So, the car is 

like this, let me draw and explain it again. This is my car. So, this is the point P. 

 



I want to rotate the car, let us say I want to rotate it and make it like this at that point. It 

cannot rotate like this about this point, in one motion it cannot because of that non-holonomic 

constraint, but what we can do is see the car is here initially the blue one. It goes forward like 

this, it has a particular steering angle Φ. Once it has reached this point it is like this now. 

Then comes backward and becomes like this. Then you turn the steering angle like this, take 

the turn and comes in. So, what happens?  

 

The car is now here. So, this is actually showing you that there is a pure rotation about the 

point P and you can again prove this using Lie algebra by using Lie brackets, the car can 

actually rotate. You can take any angle, the car can actually go in position to any angle. The 

previous one showed the car is actually going sideways. This one is showing you that the car 

is rotating about that point now that means it can take any rotation. That means it is fully 

controllable, so it can take all rotations.  
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Now, what about a combination of this, for example suppose the car has to go and park here. 

It can take a combination of these motions like this, like this, like this, like this, like this, like 

this and then go there. Each of this one unit was one motion, one motion that I showed here. 

So this is one unit. So, this is my one unit and by having a number of this we can actually go 

and park anywhere.  
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Now coverage of a path by cylinders, each of this path can be covered by small cylinders, 

each one corresponding to one manoeuvre. So, here we have small cylinders which are 

covering and it is going from one point to another point and achieving. 
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So, here for example, example of a path. Suppose the car was to go and park there, what it is 

doing is it is taking one set of cylinders like this then it is taking a small set of cylinders like 

this and then going and parking there. So, although it could not go like this directly, it went 

there. Now the next important question here is, are there other ways? Now for example, if it 

does this kind of rotation can manoeuvre, you can rotate about this point go here. 

 

And after going here, you again manoeuvre and rotate yourself. So, what I am saying is that 

in the previous case what we were doing, so in this case the car wanted to go sideways, it was 



like this, it had to go there. So, it is using these manoeuvres to go there like this. It is pointing 

in the forward direction. Now suppose I make it turn, make rotate it like this, let it go till 

there and then upright it again what about that.  

 

So, if you look at this what is being suggested in this figure is that it first there was a pure 

rotation about that point, it went forward and then it corrected itself again and then took small 

motions. So, it may be possible to get into a particular configuration by following different 

paths, but the important path here is that the system is fully controllable, so you can go to any 

point and park. So, simply by looking at this it would appear that it is very difficult and may 

not be possible, but strangely this is a fully controllable system.  

 

Now more interesting as we come along is what about this case? I talked about the tractor and 

the trailer. This is one car, what if I add a trailer? So, I add a trailer there now, that is my 

trailer. Now what? Now is still controllable? That means you can take the tractor and park it 

wherever you like? Now, simply by looking at this is difficult to say, but if you follow this 

control Lie algebra, we will see that the system is also fully controllable. So actually, you can 

go and park wherever you like.  
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Now, let us see further how do we plan the path for such kind of motions? Now, the car has 

to follow a sequence of motions to get to wherever you want it to go. So, one way of doing it 

is by using RRT, so rapidly exploring or rapidly expanding random trees, this is something 

we studied long time ago. So, this is the normal RRT where we start off from here, we take a 



node out. So these are nodes and these are edges, something we studied quite a few lectures 

ago. 

 

And we generate another node which is feasible, another node connects with paths and try 

and see and connect them. So, if I have a goal point and initial points, I can connect this tree 

kind of structure. So, I start from one point, get an x node, get another node, get another node, 

get another node here okay. And then finally cover the whole workspace and then see if I can 

connect the initial point to the goal point. Now, these are straight lines.  

 

These are nodes, these are edges, but in the case of a car what we see is that we were talking 

about motions which were like this. So, this was my car and the car actually took a turn like 

this, then it went straight, then it took a turn and came here. So we are looking at this 

curvature that the car can take so we are interested in the turning radius five okay. So, the 

steering wheel Φ is very important for us.  

 

So, in the case of RRT with nonholonomic RRT, so these are holonomic RRT, in case of non-

holonomic RRT each of these edges are curves, the maximum curve that the car can take. So, 

I can go this side, I can go this side, this can go this side, this can go this side. That means 

this is the maximum steering angle the car has by which the car can go forward or backward 

because if I go backward, it will be like this. So please note that these edges are now curves 

corresponding to Φ of the steering angle of the car. So, this is a holonomic RRT, this is a 

non-holonomic RRT.  
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Now, let us see how do, we proceed further. So, we can have bi directional non-holonomic 

RRTs in which case exactly the same way we are starting from the initial point and the goal 

point in two directions. So, we grow two trees and see where they connect. And so like this is 

coming from this side this coming from the side what we can do is from here we can see 

which is the nearest node connect with a straight line and then figure out how to make small 

nodes and try and connect that is connecting or bridging two points from two different trees.  
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Now, we can also generate a sequence of primitives. For example, this car as shown here has 

a turning radius like this which means that every radius there is possible, so all these are 

possible. Similarly, in the backside there is going to be one more which will be like this, so 

all these are possible. That means this car can take any path either in the forward direction or 

in the backward direction. So, if I cover the workspace with this sequence of paths and then 

connect the initial point and the goal point to this set of points, then I have a path because all 

of this is possible for the car to go and that is what is basically done by collecting a sequence 

of paths.  
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Now for example here parking sideways, it goes forward, then this is my motion 1, this is my 

motion 2. So, it goes here like this, like this, like this, like this, like this and then parks. Now, 

this path may not be optimal. I talked about optimality that when we talk about optimal here 

basically what we mean is that it is optimal in terms of path length, it should be a shortest 

length. So, in this case it need not be the shortest length.  

 

Now, this is another manoeuvre by which it has gone and parked sideways, this is the one 

normal human drivers use, straight and like this. But this is also possible, this is also possible. 

Now, this is not applicable to robots that are not fully controllable. That means a car that can 

only move forwards it cannot do this.  
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Now, the next question that we come up with is how do you design an algorithm that is going 

to give you this? So, we are now talking about designing an algorithm that will automatically 

generate the sequence of paths and will take a robot from any point to any other point, let us 

see how that can be done.  
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So, first of all how it works is it is something like RRT only. So, we build a tree where each 

node is a feasible configuration. So, we are going to build a tree from the initial point towards 

the goal point where each node is a feasible configuration. And successors of nodes represent 

configurations where the car can be at δt time later. At each step consider only one option of 

setting the steering angle to j min or j max  and backing up or going forward. 

 

Now expand the tree as it in an order that minimizes reversals. Look at this. So here, it was 

here. We took one curve like this and the curve like that. Then from here, I can take one more 

curve like this and then one curve back like this. So from here, this is one, there can be one 

more like this, this is one and that is another one. So, basically build a tree where each node is 

a feasible configuration. So, these nodes are feasible configurations.  

 

Exactly similar to what we were doing in this case where we are building. So, this is exactly 

what we were doing. We were building nodes which are feasible and then trying to see 

whether I can connect the initial point to the goal point, it will become more clear in the next 

example.  

(Refer Slide Time: 52:48) 



 

So let us look at this one. So how are we generating successors? Consider only a set of 

discrete values for v which is the velocity and Φ which is the steering angle. So specifically, 

v = –1 or 1, we say unit velocity and Φ equal to minimum or maximum, either way is okay. 

So here if you see from here, I am generating one node here, another node there. So, when it 

is going backwards, it is going like this, this is one node, this is another node, this is an edge 

now. 

 

Now, suppose I generate like this and from here I generate another one like that, another one 

like this and go back side and generate one like this, like that. Similarly, from here I generate 

one that side one this side, exactly the same way.  
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So by doing this, I can cover the whole space, I can grow the tree, right. So this is the first 

one. From here, I have generated one node like this. So let us have a look at this again. So, 

from here I am going to generate one node. Then generate one node here, one node here, one 

node here, then catches this node and generates another few nodes. So, it has generated 

another one here, so it got this one, generate another one, exactly the same way.  

 

And you are catching one-one node at a time and generating nodes and you see that is 

covering the whole workspace. So, it has covered all the workspace, on all possible paths that 

a car can take now. Now you select one path which the car can take like this, like this and like 

this. Then it is a question of selecting a path. There could be more than one path. So, you 

have to select a path now which is going to take it from the initial point to the goal point. 

 

And for selecting the path we can use A* algorithms. Now, this gave us an example of how 

we can do path planning for a non-holonomic robot to take it from one point to another point 

automatically. So, the algorithm can actually automatically generate its nodes and this is an 

automatic procedure which you can follow. 
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This is the case of the tractor and the trailer problem. So in the previous case, in this case we 

were interested only in the case of a car. And the car was having a single nonholonomic 

constraint that it cannot go sideways, it is a velocity constraint. And we showed that we can 

have an automatic path planning method similar to RRT. This is RRT for non-holonomic 

systems which can generate motions of the car. 

 



Which; is going to take the car from one point to any other point simply by generating these 

possible nodes and then following it up with edges. So, you can see that the whole workspace 

is being covered. Now, in the case of a car it is simple because the theorem clearly states that 

robots subjected to a single non-holonomic equality constraint is fully controllable, so we do 

not worry. Now what about here? Now let us look at this case. So, we have a tractor and a 

trailer.  

 

So, this is my tractor. This is my tractor here and this fellow is connected by revolute joint 

and there is a trailer at the back, that is my trailer. That is revolute joint there. So the first 

question that comes up is how many degrees of freedom does it have? Now what about this 

case? You simply look at it and you have to figure out whether it is starting from here and it 

is going in parking like that, is it possible? It is difficult to say actually.  

 

But it is interesting that we will prove in this case also that this system is fully controllable 

system, so it can go and park anywhere actually like provided in fits of course. So in this 

particular case, you see we have more degrees of freedom. This car itself has so this car is 

having x, y and θ. So let us call it θ1 because it is more than one now. Now, this trailer has a 

revolute joint there, so there is going to be another θ2 to there.  

 

So the car x, y and θ1 is the degrees of freedom of the car in front or the tractor. The trailer 

has one θ2 which is dependent on this angle here that is my θ2. So, in case of this full system, 

we have x, y, θ1 and θ2. So, it is a four degree of freedom system. So the first three are for the 

tractor and this one is for the trailer because the angle of the trailer would depend on the θ1 of 

the tractor now that is because there is a revolute joint here.  

 

Now, in such systems, we will prove that such a system is also fully controllable. And then 

the next question would come how do you plan its park to take it from any point to any other 

point? So, what we looked at today is essentially the question of controllability that is when 

we are having a system subjected to non-holonomic constraints like this, how do we ensure 

that first of all is the system fully controllable?  

 

If it is fully controllable, then how do we do the algorithms that will take it from some point 

to some other point and enable it to park? And we can do that only by using control Lie 

algebra. So, the other question we will look at in the next class that is the tractor and trailer 



problem, first we have to prove that it is fully controllable. Then the question of having an 

algorithm how would you move it to some position.  

 

In the case of the car that was not required because it is already proved that car is subjected to 

a single non-holonomic constraint and is fully controllable, so you do not need to prove it. 

But in the tractor trailer case there are four degree of freedom system now, so that first we 

have to prove, then you can have an algorithm which is going to take it from one position to 

another position. So, we will stop here today. Thank you. 


