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Hello and welcome back to the discussion sessions of the course on production technology: 

theory and practice. Let me remind you that in the last session, we started discussing the 

mechanics of metal cutting. I told you that the the first treatment to mechanics of metal 

cutting is given way back in 1944 by Merchant and Ernst.  

 

Since then the Merchant’s theory and the Merchant’s circle diagram are popularly used in 

metal cutting to understand the mechanics of machining, to understand the inside of the metal 

cutting.  

(Refer Slide Time: 01:12) 

 
Here I will remind you that what we said is that for imparting shape, size, finish and accuracy 

to the workpiece, the excess material is removed from the workpiece in terms of small chips. 

When the chip moves over the rake face of the tool at a constant velocity, let us say chV , then 

the work piece material has to be rigid and perfectly plastic, i.e. homogeneous so that the chip 

could move at a constant velocity when the resultant forces acting on the chip from the tool 

side through the rake face and from the work piece side through the shear plane are equal 

opposite and collinear. 

 



Then we have resolved the R and R  into the following components. R is resolved into 2 

components, namely F and N, F is parallel to the rake face of the tool N is perpendicular to 

that. Friction force F is created because of the normal force, N. Similarly, the R  which is the 

resultant force acting on the chip from the work piece through the shear plane we have 

resolved into 2 more components, Fs and FN. 

 

Fs is parallel to the shear plane and FN is normal to the shear plane. Then we said that if   or 

  change, in that case all these components 4 components that is F, N, Fs and FN will change 

the direction. So, we do not have any unique direction, they always change with the change in 

the   and  .  

 

Therefore, we resolve the R into 2 more components which will not change their direction 

with the change in   and  . One component, which is parallel to the Vc direction. That 

component since it will have the responsibility of power consumption, is called the cutting 

force because it is parallel to the cutting velocity and perpendicular to that is the thrust force 

which is also a resolved component of the R .  

(Refer Slide Time: 03:49) 

 
So, altogether we have 6 components and those 6 components can then be related keeping in 

mind these 8 assumptions that I have already told you. All those assumptions indicate that 

this treatment given or this model, Merchant’s model, is 2-dimensional and this is for the 

orthogonal cutting not for the oblique cutting because all these assumptions are valid for only 

orthogonal cutting. In oblique cutting these assumptions are not valid.  

 



They are correlated with the 3 angles, namely shear plane angle, rake angle and the friction 

angle and we said that all the forces could be converted through the Fc and Ft because we 

measured the forces through Fc and Ft only. then we said that the Fc can be found out through 

the Fs.  

(Refer Slide Time: 04:52) 

 
Fs is the shear force which is parallel to the shear plane. Therefore, shear force Fsalong the 

shear plane can be written as the area into the shear plane area into the stress and this is the 

shear stress. The area is given by the width of cut, uncut thickness divided by sin . if you go 

back to this, In this exaggerated view, let us say this is the work piece. This is the tool.  

 

Perpendicular to that is t1, this angle is  . If you see this is the width of the work piece. let us 

say this is the width of cut w. So, 1

sin

wt


 is the area of the shear plane. 1

sin

t


 is the length of 

the shear plane and this is the stress. Stress multiplied by area is the Fs. So, we are expressing 

the Fs through the area of the shear plane.  

 

Let me write down here that this is the area of the shear plane and this is the shear stress 

which is applied to the workpiece during the cutting process where w is the width of the work 

piece under cutting this is the width and t1 is uncut thickness, s  is the shear strength of the 

work material. This is equivalent to the shear stress that I said to you earlier also during our 

discussion. 

 



In the expression of Fc, we are putting the value of Fs = 1

sin

wt


 to get this equation as shown 

in the slide. The power P, as I said, is equal to the product of Fc and the Vc, Fc is the cutting 

force component Vc is the cutting velocity which is DN . Nature always takes the path of 

least resistance. Similarly, during the cutting process,    takes the value such that least 

amount of energy is consumed or P is minimum.  

 

Let me explain it to you that in nature everything always goes to the least resistance. If you 

remember we said that in case of the lattice structure for example, the movement of the 

defects, dislocations etc., everywhere the movement is to the least resistance where the 

resistance is less. So, in the case of metal cutting also during the metal cutting as per the 

nature, the cutting process itself adjusts the   in such a way that minimum power is 

consumed for the process.  

 

Like in nature, this phenomenon of using least energy happens in metal cutting as well. That 

means the power P will be minimum. Now, if we take the value of cutting force, Fc from the 

expression as shown in the slide and multiply that with the Vc, we will get the power, P. In 

this expression of power, all the terms in the numerator will be constant if you take the P as a 

function of  . Meaning that as the   is changing or   is changing, let us say here the   is 

changing; we have taken as a function of  .  

 

So, here in the numerator it will be constant but the denominator will not because here we 

have the  . So, if we take the power, P as a function of the  , then this equation can be 

considered as the numerator divided by denominator, numerator being constant and the 

denominator is sin cos( )   + − . Now for the least energy, for P to be minimum, the first 

derivative of this equation has to be equal to 0.  

 

And if you take the first derivative of this, because the numerator is constant, and for the 

power to be minimum, the denominator has to be maximum. Therefore, the first derivative of 

this expression should be equal to 0 and if you take that it will give you 2
2


  + − =  and 

this equation is known as the Merchant's first equation.  

(Refer Slide Time: 10:45) 



 
Now, from that shear stress, we know that this is the shear force divided by area of the shear 

plane and the area of shear plane we have already seen that this area of the shear plane is  

1

sin

wt


. Therefore, the shear stress is equal to s

s

F

A
. Fs we already found out as 

cos sins c TF F F = − . This expression divided by the area of the shear plane which is 1

sin

wt


 

gives the expression of shear stress as shown in the slide.  

 

Now, if you measure Fc and FT and if you have the value of the  , you can find out the value 

of the shear stress which is required because the w  and the 1t  are the physical parameters; 

this is the width of the work piece and 1t  is uncut thickness; these are physical parameters. 

similar to shear stress, we can also find out the normal stress which is if it was s

s

F

A
 in case of 

shear stress this will be N

s

F

A
.  

 

Because it is a normal stress divided by the same area of the shear plane since we are 

measuring along the shear plane or we are determining analytically what will be the shear 

stress and the normal stress along the shear plane. Therefore, here it will be the area of the 

shear plane. Now, put the value of the NF  from the Merchant’s equations through the Fc and 

FT and this results to this equation, as shown in the slide. So, by measuring Fc and FT  you can 

find out the value analytically by knowing the physical parameters and the shear plane angle.  

(Refer Slide Time: 13:01) 



 
Shear strain in the chip information can be found out in the following way. Shear strain I 

have already shown it to you. I will once again show you that if this work piece has been 

strained to this way, let us say, this much is x and this much is b then the shear strain was 

equal to x / b. This I already told you earlier. In case of metal cutting the shear strain 

therefore, could be found out using this concept.  

 

Chip which is flowing along the rack face of the tool can be assumed to be segregated, as if 

we are taking this into different slices. So, the entire chip we are dividing into various slices 

each one having a particular thickness. This is the kind of playing card pack. Each playing 

card has some thickness. That thickness is the same for all the playing cards.  

 

Now when the force is applied, let us say you we have a stack of playing cards and you hold 

it like this and push from the top gently. Then what happens is that the whole stack will be 

sliding in the following way as it is shown here. Let us assume that it is equivalent to that 

stack of the playing card.  

 

So, if we draw this and if we take this triangle, let us say we will consider this triangle here, 

then let us say this is A, this point is A, this point is B and this point is C. Now, from point B, 

we can take a perpendicular and this we have called as the D. If you see this first slice for 

example, this slice has been deformed up to this AC, if that tool had not been there, this chip 

could have slided up to this. 

 



So, AC is the deformation which is equivalent to x in this diagram. AC is the amount of 

deformation that has taken place as this shear force is applied to the work piece. This is 

equivalent to x. Then D is the perpendicular from the point B on the AC Therefore, this is the 

shortest distance and the distance between these 2 layers will be this value, this is the BD. 

 

So, BD will be equivalent to b here. Then the shear strain from this diagram could be said as 

equal to 
AC

BD
 because AC here in this case x and BD is the b. So, shear strain is x / b which is 

AC

BD
and then you can find out that AC is equal to CD + AD. So, it will be 

AD DC

BD BD

 
+ 

 
. 

From the geometry, finally we get the value of strain as, tan( ) cot   = − + . 

 

Overall, we will find out that the shear strain is equal to tan( ) cot   = − + . This concept 

is the same as shown here that if this is the layer with the thickness of delta and this layer 

could have gone to this much had the tool not been there. We are considering this triangle. 

This is the triangle and from here we are putting a perpendicular to the AK. Here also you 

will see that the AK is equivalent to this AC or equivalent to x.  

 

In this case the shear strain will be tan( ) cot
AK AN KN

ON ON
   

+
= = = − + . So, it will be 

ultimately the same expression. This is just to understand that how we can make the 

equivalent of this diagram in case of metal cutting.  

(Refer Slide Time: 18:53) 

 



The strain rate involves time that I told you during the discussion on material. Therefore, the 

strain rate is 
1s

y t

• 
=
 

Shear strain rate can also be obtained in terms of shear velocity from 

the velocity diagram. If we see from this diagram, this is the diagram. This is the shear plane 

angle and this is the cutting velocity. This is the shear velocity and this is chip velocity.  

 

It will be difficult to find out the value of the s ,  y  and 
1

t
. So, we take the help of the 

velocity diagram. Here, the Vch ,Vc and the Vs they can be coupled in this way because you 

see that the Vc is in the direction of cutting velocity, Vs is in the direction of shear plane and 

Vch is in the direction of chip flow and these are the angles. This angle will be   that is the 

rake angle, this angle will be the shear plane angle between the Vs and the Vc and so on.  

 

Using the sine rule we can write the following,  
 sin(90 ) sin 90 ( ) sin

s c chV V V

   
= =

− − −
 From 

here we can find out the shear velocity, 
cos

cos( )
s cV V



 
=

−
 . This value can be determined 

since Vc and   will be known to us and the value of shear plane angle,  can be analytically 

determined.  

 

The shear strain rate we can express as 
1s

t y

• 
=
 

, where 
s

t




 is the shear velocity, Vs. So, 

for any given layer thickness, y what will be the 
s

t




 or Vs will define the strain rate.  

 

Therefore, if we know the shear plane angle,  ,   will be known because we are using a 

tool and for that tool the rake angle we have given according to our choice. I have already 

discussed with you that depending on the work piece material hardness or the tool material, 

we have to find out the value of the rake angle,  .  

 

So, if we can find out the   which is the shear plane angle, we can analytically find out the 

value of the shear strain, as you can see, we can find out the value of all these factors, i.e. 

shear stress, normal stress and the analytical values of the sF , NF  etc.  



(Refer Slide Time: 23:14) 

 
There are 2 ways to find out the shear plane angle; one way is shown here. This is 

experimental procedure, that means there is a device which is called the quick stop 

mechanism. And on the quick stop mechanism there is a cylinder which can actually move 

freely and the movement is stopped from the front by a shear pin and on this cylinder work 

piece is mounted here on this slide.  

 

At the back of the workpiece there is a tool with the tool post and it moves forward. The tool 

is at the another level which will remove the work piece material from here, but this is the 

tongue behind the tool. When the tool is removing the material, after sometime, this tongue, 

located at the back of the tool, will starts contacting with the cylinder.  

 

The cylinder is loosely fitted on this semi-circular groove. it can be stopped from moving 

forward by the shear pin. So, when the tool has started removing material then this tongue 

will come from behind and it will hit this cylinder and the cylinder will move forward 

breaking the shear pin. As a result, what will happen is that the machining process will be 

stopped and we will get the work piece with partially made chip. 

 

 This is important for further measurement of the shear plane angle to get a clear picture of 

the of the chip. The work piece is graduated as shown in the slide. These grids are  painted on 

the work piece. These grids, these lines will be deformed which are painted on the work 

piece.  

 



Then whenever it started getting deformed, these are not deformed because the plastic 

deformation not taking place here, but at this point that is along the shear plane it will be 

deformed and you will clearly see the points along which the material started deforming. If 

you join them with the tip of the tool, you will get a straight line and that straight line makes 

an angle with the cutting velocity vector which is equal to the shear plane angle.  

 

Of course, , there are  difficulties and is inaccuracy in this measurement. You have to exactly 

stop the machining process so that a clear picture can be found out when the chip is being 

formed. The second error or the inaccuracy creeps in when these points are to be connected 

with the tool tip because otherwise you will not get the accurate value of this angle. Because 

of that fact the measurement of shear plane angle is not used popularly in practice and the 

value of the shear plane angle is determined analytically.  

(Refer Slide Time: 27:16) 

 
Let us see how this shear plane angle can be analytically found out. If you see this diagram, 

there is a concept of chip thickness ratio that is given by the ratio of 1

2

t

t

 
 
 

. where t1  is the 

undeformed thickness. t2  is the chip thickness which can be measured from the chip itself. 

This one is uncut thickness. 

 

 This is the chip thickness. The ratio of the 1

2

t

t

 
 
 

is given as the chip thickness ratio. In 

practice it has been seen that this is roughly about 0.5 to 0.6. That means from here the 



conclusion is that first of all, after the plastic deformation along the shear plane, OS,  the chip 

thickness ratio is 0.5 - 0.6.  

 

That means, the chip is expanded by 50 to 60%, than the uncut thickness. From this triangle 

shown in the slide, let us say, SN is perpendicular to the rake face of the tool and SP is the 

extension of this line. This will be then equivalent to the or parallel to the Vc.  

 

This is the direction of the cutting velocity vector, Vc . Therefore, if this angle is   between 

the rake face and the line perpendicular to cutting velocity vector, then perpendicular to this 

line, that means, this line SN is perpendicular to rake face of the tool and SP is perpendicular 

to this line that means, it is parallel to the Vc. Therefore, between SP and the SN the angle 

will also be the rake angle. Between the SO and the direction of the cutting velocity vector is 

the shear plane angle.  

 

. So, from this triangle, you can see that the t1 is equal to sinOS  . From this triangle SNP 

you can find out that know from SON this triangle SO and the N you can find out that OS is 

equal to 2

cos( )

t

 −
.  

 

Therefore, the chip thickness ratio will be 1

2

sin

cos( )

t

t



 
=

−
 Then to get the reverse of this chip 

thickness ratio, we are inverting them and opening that cos( ) −  as shown in the slide. So, 

this will be then 
cos cos sin sin

sin

   



+
= 

cos
sin

tan





+  because sin is getting cancelled 

here. from here you can find out the tan  analytically that this is equal to 
cos

1 sin

 

 −
.  

 

So, the   can be then analytically determined that this is 1 cos
tan

1 sin

 


 

−  
=  

− 
.   is known 

to us because it is the rake angle. This is the tool that we are using. If we take the value of  

1

2

0.5 0.6
t

t
 = = −  which is experimentally found out, in that case analytically we can find out 

the value of the  .  



 

This is important because once we find out analytically the value of the shear plane angle in 

that case many of the other parameters we can also find out analytically without having the 

actual machining process or actual machine. This is the idea here that how to estimate the 

shear plane angle and through that how to estimate the stress strain, strain rate and so on.  

(Refer Slide Time: 32:50) 

 
Let us discuss few numerical examples which will be the direct implementation of whatever 

we have discussed. Let us say we have a problem that a mild steel workpiece is being 

machined at a cutting speed of 200 m/min with the tools specified as 00 - 80 - 50 - and so on. it 

is in ASA. In ASA, I will remind you that if it is given in ASA you have to understand that 

this is back rake angle, followed by side rake angle, next are the flank angles and so on.  

 

This is the flank angle and these are the cutting edge angles, s  and e . The depth of cut and 

uncut thickness are 0.5 mm and 0.2 mm respectively; if the average value of coefficient of 

friction between the chip and the tool given is 0.5 and the shear stress of the work material is 

400 N/mm2, then determine the shear plane angle and determine the cutting and the thrust 

components of the machining force. So, first we have to find out the  .  

 

To find out the  , we have the formula Merchant’s formula 2
2


  + − = . Here, the   can 

be found out because this is given as 0.5, the average value of coefficient of friction. Mind it, 

  we have shown as  when we derived the Merchant’s equation. These are the same. This 



is the friction angle, friction angle either   or what we have seen as  . So, this will be the 

1tan − because tan
F

N
 = = .  

 

Therefore,   is the friction angle. Since   is given, so, you can find out the value of  , 

friction angle which is in this case it is 26.570. Then   can be found out because   is given 

from here, if you see this. In this we have to actually take the alpha value as 80 .Well let us 

see, why?  

 

The first angle is given as 00 which is the back rake angle and the second angle is the side 

rake angle. If you remember I told you that the side rake angle influenced the cutting force 

and the power whereas, back rake angle decides whether the movement of the chip will be 

appropriate, not parallel to the workpiece, and not entangling the workpiece. So, s  is the 

angle which works here in this example; s  is the one that we have to take because it is 

responsible for the power consumption and the force.  

 

So, we are taking this value 80 but not the 00 here; it is the alpha this is we found out that is 

the   and therefore, we can find out the   = 35.715.  So, this will be the value of the shear 

plane angle. Now determine the cutting and the thrust components Fc and FT. These are the 

two force components that we have to finally find out. 

(Refer Slide Time: 36:46) 

 
First we will determine the value of shear force, Fs through the width of cut, uncut thickness 

and shear stress in the following way as shown in the slide:  



( ) ( )
1 0.5 0.5

; 1.997 2
sin sin sin 90 sin 90 75.5

s
s

p s

wt d
F w



  
= = = = = 

− −
 

From here, the value of Fs would be 274.09 N. Depth of cut, d is given as 0.5 mm; 
p  is 

( )90 s− . s  is the side cutting edge angle; 
p  is principle cutting edge angle. 

Now, we can find out the resultant force, R through the Fs in the following way.  

( ) ( )
274.09

469.5
cos cos 35.715 26.57 8

sF
R N

  
= = =

+ − + −  

Knowing the value of R, we can determine the values of cutting force component, Fc and 

thrust component, FT using the formula derived in merchant’s equation. This will be equal to 

( ) ( )cos 469.5cos 26.57 8 445.06cF R N = − = − =
  

( ) ( )sin 469.5sin 26.57 8 149.52TF R N = − = − =
 

 

So, you can see that this is a practical implementation of the Merchant’s equation. This could 

be a practical problem that you have the tool you have these values. Thenhow to find out this 

shear plane angle analytically or how to find out the cutting and the thrust force components. 

Another advantage of this is that you may not have the cutting process, but you can 

analytically find out the values of Fc and FT.  

(Refer Slide Time: 40:42) 

 
Second problem is the following: during orthogonal turning of a mild steel workpiece of 20 

mm diameter with 150 rpm with a 00 rake tool the forces normal to the shear plane and thrust 

are found to be this. If the chip thickness is twice the uncut thickness estimate the power 

consumption in watt. Here also you can find out the Vc because Vc is DN  all other things 

are given, Fc we also found out from the Merchant’s relationships sin cosN c TF F F = + .  

 



From here Fc can be found out as the chip thickness ratio is is given as 0.5, here twice the 

uncut thickness.  

 

Therefore,   

 

From here we can find out the value of the shear plane angle as, 1tan (0.5)− which is 26.560. 

Then we can find out Fc as well, because all other parameters now are known, as shown in 

the slide.  

 

If we know the Fc and the power is c cF V  Vc you calculated, and you multiply them to find out 

the power which will be 19.07 second-m/sec which is equivalent to watt. So, this is 19.07 

watt. This is an alternative solution given in the slide which is self-explanatory. So, you can 

see that the problem can be solved in many ways.  

(Refer Slide Time: 42:59) 

 
Next, we will discuss another model. This is also a thin zone model and I already said that the 

thin zone we assume. Normally the deformation takes place within an area. So, it is not really 

a plane in practice. It is a zone. The zone is thin and we are assuming that to be so thin that it 

becomes a plane. Here also this is a thin zone model and this model is called the Lee and 

Shaffer relationship.  

 

This is another treatment given to the metal cutting and metal removal process. But the 

principle used here is different. Let me remind you that Merchant’s principle is the minimum 

1

2

cos
0.5; tan ( 0) 0.5

1 sin

t r
r for r

t r


 


= = = = = =

−



power consumption. During the machining process, the shear plane angle changes itself in 

such a way that power consumption remains minimum.  

 

In the Lee and Shaffer model, the principle is very different. The principle that they are using 

is a slip line field theory. We are not going to discuss the slip line field theory in details, but 

we will be using the concepts only. Let us see in this slide. This is the workpiece; here is the 

tool and the chip is flowing along the rake face of the tool which is shown here.  

 

Now the cutting forces are transmitted through the triangular plastic zone ABC where no 

deformation occurs. The cutting forces will be transmitted only when they will go through a 

plastic zone where no deformation occurs because of this force because if the force while 

transmitted from the shear plane to the rake face if it further deforms the material then it will 

not be transmitted.  

 

Therefore, for the forces to be transmitted from here to here, it will go through this plastic 

deformation where no deformation occurs, it is already deformed. In that plastic zone the 

entire material is plastically deformed maximally and there will be no deformation. So, we 

are saying that force is going through this plastic zone where the deformation has already 

taken place. 

 

This is the assumption that Lee and Shaffer have made because they consider that there must 

be a stress field within the chip to transmit the cutting forces from the shear plane to the tool 

face. I already explained to you that the force cannot be deteriorated, it cannot be reduced or 

lost. Therefore, it has to go through a plastic zone where already deformation has taken place. 

In the ABC the entire material is in the plastic state this is stressed up to the yield point.  

 

Shear plane AB, AB is the shear plane here, the maximum shear stress occurs. Other slip 

lines are perpendicular to this line. Let us say this line, this line, this line and so on - they are 

perpendicular to AB and we have also drawn some parallel lines which are parallel the AB. 

BC is the surface which is called a free surface because no force is transmitted to the chip 

beyond this line.  

 



That is, no force is transmitted to the chip after it has crossed the line BC. Once the force is 

transmitted then the chip is formed and the chip is being removed along the rake face. The 

chip is formed here. Slip line must meet the surface at 450. This is the theory.  

 

We are not deriving or describing but according to the theory the maximum stress where it 

occurs that is the shear plane that makes an angle of 450 with the free surface. BC is the free 

surface because no forces are transmitted beyond this line. We are designating the parallel 

lines as k; then here this line is designated as d and similarly, this line is designated by a 

certain letter, it is not given here.  

And this line which is parallel to the AB is designated as c and this line is parallel to the AB 

is given us let us say some value. This is d; this we have designated as e. This surface is d and 

so on. This surface is a and this surface is d the surface is c and this there are parallel. 

altogether what I am saying is that there are parallel lines of the AB and there are 

perpendicular to that. all perpendicular lines are also the slip lines.  

(Refer Slide Time: 49:30) 

 
 

Mohr circle construction is convenient means of relating the stresses on any plane on the 

principal stress. If you remember I mentioned during our discussion on the stress and strain 

that a body which is already stressed has 9 stresses, 3 normal stresses and 6 shear stresses. 

For some reason the system of axis can be selected in such a way that shear stresses are 0.  

 

Then all the normal stresses which are acting are called principal stresses. Mohr circle 

diagram, is a convenient means to relate the stresses on any plane to the principal stress. Let 

us say this is the plane BC, designated as b meaning that this is the plane and the stresses on 



the plane can be designated by point b. This is B point will be located on the periphery of the 

Mohr circle.  

 

Since BC is stress-free, Mohr circle must pass through the origin b where the stresses would 

be 0.  Points a, c, d and f are displaced from b by 900. These points are nothing but a 

designation of parallel and vertical planes.  

 

These are the parallel planes, and these are the vertical planes. a and d should be the parallel 

ones and a and d are parallel to each other. c and f should be the horizontal ones. This is c and 

this is f this is d this is d and this is a. a, d and c and f which will be at a 900 displaced from 

the point b because the b and these lines you can see that they are at a 450 angle. So, when it 

is in the Mohr circle, it will be twice the angle of the physical plane.  

 

Physical plane angle is 450 and in the Mohr circle it will be 900, i.e. twice. This is displaced 

by 900 from the point b. Point b is the BC plane. Face e is inclined to the face d by an angle of 

( ) − . This angle we already found out earlier because this angle is   and this angle is  . 

So, you can find out that this angle is ( ) − .  

 

Face e is a rake face inclined from the d; d is perpendicular to AB and that angle ( ) − we 

denote as  . Therefore, in the stress plane the angle subtended by the arc ae, will be 2  as 

shown in the slide.  

(Refer Slide Time: 53:59) 

 



Assuming uniform shear stress   and the normal stress   on the rake face, the friction angle 

can be given as 1tan




−  
 
 

. This is shown here in the slide. This is the Mohr circle; here the 

vertical axis is the shear stress, horizontal axis is normal stress. Therefore, this is the   and 

sb is the normal stress with respect to this e. e is the rake face of the tool. From here to this 

would be the es. The   is equal to 1tan




−  
 
 

.  

 

This is 1tan
es

sb

−  
 
 

and this is the angle ebs. You understand that   which is the friction 

angle, is expressed as 1tan
F

N

−  
 
 

. F is the friction force, which is equivalent to shear stress  

and the normal force N is equivalent to normal stress  . So, the   which is the 1tan
F

N

−  
 
 

is 

equal to 1tan




−  
 
 

.   here is the es and   is the sb.  

 

Therefore, it can be expressed as 1tan
es

sb

−  
 
 

and this means that the angle ebs would be   

which is the friction angle. if this is the friction angle   in that case this angle eos will be 

twice that because it is at the center.  

 

Therefore, the eos and the eoa or eod these 2 angles together will give you the 900 angle. This 

angle is a 900 angle then this angle eos would be twice the friction angle  and eod would be 

twice the   because   here is this angle and at the center it will be twice of that.  

 

 is the angle at which this face is inclined with respect to the d. Therefore, you can find out 

that these 2 angles together will be ( )2 2 2
2


    + = + − = . Ultimately, what we are 

getting is that 
4


  + − = . So, you can see that this is very similar to the Merchant’s 

equation, but the principle at how they arrive to that is different. Rest of the material we will 

discuss in our next session of discussion. Thank you for your attention.  




