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Hello everybody, welcome back to the series of lecture on Elements of Solar Energy 

Conversion. We are here at lecture number 29. So, in the last class we have started 

looking at one of the major and matured solar conversion technology which is based on 

photovoltaic. 

So, we have started looking at how the semiconductors can act as a photovoltaic 

material, how the carrier concentration of electron and hole can be altered by doping. 

And two major concepts came towards the end of the class— one is density of state and 

the other one is Fermi function, ok. We will continue working on them and we will look 

at how they affect the carrier concentration. 

So, we have looked at that the Fermi function for a particular energy level is of this form. 

So, first thing we can look at here is that it is a function of temperature. So, basically 

Fermi level is that energy for which Fermi function is half or the probability of finding 

an electron in that energy level is 50 percent, ok. 
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So, now, if we look at the effect of this in terms of the band structure. Let us look at that 

now. So, suppose we have this energy and Fermi function if we plot that, how will that 

change ok? So, for Fermi function you know, it is a probability. So, it can vary between 

0 and 1. So, these are two hard limits for probability. 

Let us say this is the band structure for a particular material and the Fermi level will be 

here, right (50 % occupancy probability). So, Fermi level will be just in between the 

conduction band and valence band, ok. So, if we draw the corresponding line here.  

So, at 0 Kelvin, the probability will change between 0 and 1 abruptly, ok. So, in between 

you will have equal probability and here what you can write when the Fermi function is 

half; that means, here it is half between 0 and 1 and this is the Fermi level. So, this 

particular curve, it is for 0 kelvin when there is no excitation available, ok. 

Now, we have seen that for the N type semiconductor or before I go to that let us first 

look at how the Fermi distribution will change with temperature. So, at 0 K, we see that 

these corners are sharp. So, it is kind of a step function. Now, with higher temperature 

what will happen, this thing will smear out but still it will remain cross the line at 

𝑓(𝐸) = 1/2, ok. So, this one is temperature 𝑇1 > 0 𝐾, ok.  

Now, at another level if temperature is even higher, then smearing will be higher. So, this 

one is 𝑇2 which is greater than 𝑇1. So, with temperature the smearing will be higher, but 

the crossing over will always happen at 𝑓(𝐸) = 1/2. Now, if we say that for N type 

semiconductor, we have this Fermi level itself is shifted towards the conduction band, 

ok. 

So, suppose the Fermi level itself is shifted to the conduction band for N type 

semiconductor. So, 𝐸𝐹(𝑁) is the modified Fermi level for N type semiconductor. Now, 

what will that mean? Let me increase that or extend that line and that will mean that for 

that particular material, which is a N type semiconductor, the crossover will happen at 

this point because that is the Fermi level it has to be 𝑓(𝐸) = 1/2.  

So, at that particular temperature what will happen your Fermi level of that material will 

be parallelly shifted and move upward. So, this is probability distribution which is also 

the Fermi function at temperature 𝑇2 and for N type semiconductor, ok. 
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So, what we see that Fermi level is shifted upwards in the energy scale and here on the 

other hand if we have for a P type semiconductor then the Fermi level will shift 

downwards to the valence band ok because now the hole concentration will be higher. 

So, the same thing now you will have parallelly shifted, ok. So, for this one I should use 

another colour yeah. So, I should be consistent with the colour. So, let us say the colour 

will be this, ok.  

So, this one basically is the Fermi function for N type semiconductor and this one the 

lower one is the Fermi function for P type semiconductor, ok. So, that is how the 

probability distribution or the Fermi function will change. You have seen that for 

temperature, it will be smeared more and more smeared as you go up from the from 

absolute zero and for the doping it will be shifted parallelly. 

The whole thing will be shifted parallelly, for N type semiconductor it will be shifted up 

and for P type semiconductor it will be shifted downwards, ok. 
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So, few observations we can write, one is that for intrinsic semiconductor that means no 

doping case. In that case, 𝐸𝐹 always at the middle of the conduction band and valence 

band or the in the middle of the band gap. Now, for N type it is close to conduction band 

and for P type it is close to valence band and we have talked about this close to, right. 

But how close, that will depend on the level of doping, ok.  
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So, you can say that if this is conduction band and this is valence band and 𝐸𝐹 (the Fermi 

level) is really close to the conduction band; that means, it is high level of doping and for 

low level of doping you will have closer to the conduction band, but not that close this is 

low level of doping, ok. 

So, that will give you the qualitative understanding how the Fermi function is affected by 

doping as well as with temperature, ok. 
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So, similarly for P type, how close the Fermi level will be to the valence band will 

depend on doping, higher the doping closer the Fermi level, ok. And by doping I mean 

introducing impurity element in the bulk lattice of the pure intrinsic semiconductor, ok. 

Now, when we have both the density of state and Fermi function, we can evaluate the 

concentration of each charge carrier—electron and hole. We can we evaluate them, but 

before that it is important to grasp the qualitative concept first and then you can always 

use quantitative formula to evaluate it exactly, ok. 

So, for electron you can find it by multiplying the probability of finding an electron 

which is given by the Fermi function and the number of available states. And you can 

integrate it to get the complete number, ok. So, let me first write it and then I will 

explain, why I have written it, ok. 
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So, first thing is that this is concentration of free electrons because it is not just the 

electrons; electrons in the conduction band which are able to carry electricity or charge, 

ok. And this 0 or o these stands for the equilibrium case, ok. So, 𝑛𝑜 means the 

equilibrium electron density or electron concentration; equilibrium means no applied 

voltage or no light or any energy. 

Now, we see that what we are doing? This is the probability of finding an electron at 

energy level E and this one is the density of state at energy level E. So, if you multiply 

them that will give you at that particular energy level what is the concentration, 

probability of finding an electron and how many states are there that will give you the 

concentration. 

And you are integrating it throughout the conduction band or throughout the energies 

which are corresponding to the conduction band; that means, conduction band edge 

energy is 𝐸𝑐 and from there all the way upward to infinity ok. So, that is how the total 

number of electrons that are available in the conduction band at equilibrium is expressed 

in this form, ok. 
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And similarly for holes you can write 𝑝𝑜; p stands for hole every time and n stands for 

electron. Now, 𝑝𝑜 again— o is for the equilibrium case what you will have. Now you 

will have to integrate it over the lowest level which is minus infinity to the top of the 

valence band edge, ok. So, that is the integration limit. 
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𝑝𝑜 = ∫ [1 − 𝑓(𝐸)]𝑔𝑣(𝐸) 𝑑𝐸
𝐸𝑣

−∞

 

Now, for the probability of finding a hole will be 1 minus the probability of finding an 

electron right, either it will be a hole or will be an electron. So, probability of finding an 

electron will be 1 minus the Fermi function, ok. So, that is the tricky difference that you 

have to note. It is not the Fermi function itself, but 1 minus that into the density of state 

in the valence band, ok. So, by similar logic you will be able to find it. 

Now, qualitatively if you look at how these integrations will give you the quantity. 

Qualitatively, what you can draw that if you have the conduction band, valence band and 

this is intrinsic semiconductor ok, so that means, this will be the Fermi level and let me 

continue this one as well, ok. 

Now, here we can plot three things: one is the density of state which we have seen that it 

will be somewhat like this. In the band gap, there will be no density of state and as you 

go up in the conduction band density of state will be increased and as you go down in the 

valence band the density of state will increase and it will follow a square root law, right. 

So, this we have seen this is the density of state. 

Now, other thing that is important here is the Fermi function, ok. So, we have seen that 

for a particular temperature if this is one, it will be somewhat like this, right. So this is 

the Fermi function. Now what we are doing by integrating? We are multiplying these 

two and then summing up (integration means summing up), right. 

So, ultimately for the electron density or electron concentration in the conduction band 

and the hole concentration in the valence band will be somewhat like this, ok. So, this is 

𝑛𝑜 which is for the conduction band and this is 𝑝𝑜 for the valence band. So, 𝑛𝑜 how we 

are getting it, we are getting it by this ∫ 𝑔𝑐(𝐸)𝑓(𝐸). So, this 𝑛𝑜 will be basically the area 

under this curve and 𝑝𝑜 will be area under this curve, ok. 

So, any value will be 𝑔𝑐(𝐸)𝑓(𝐸) for the conduction band and for the valence band what 

we have is 𝑔𝑣(𝐸)[1 − 𝑓(𝐸)], ok. And for intrinsic semiconductor, you can see both of 

them will be same. So, this is the carrier concentration in conduction band and in valence 

band, ok. Now, how these things will change if you dope? That becomes very 

interesting. 

484



(Refer Slide Time: 22:18) 

 

Now, let us look at doped semiconductor. First we will look at N type. N type means 

there are more number of electrons than holes, ok. Now, N type also means that the 

Fermi level has shifted towards the conduction band, ok. So, let us do the same exercise 

here. So, if we have 𝐸𝑐, 𝐸𝑣  and now we have Fermi level which is closer to the 

conduction band edge, ok.  

Let me extend these lines then do the same exercise here. Here we will have the density 

of state and it will be the same. Density of state is unaffected by the shifting of the Fermi 

level. Only the Fermi function is getting affected not the density of state. So, density of 

state just stays the same as we have seen for the intrinsic semiconductor ok, but the 

Fermi level will not stay the same. What will happen? So, it will cross over the whole 

thing in the Fermi level, ok.  

So, of course, the whole thing will be shifted; that means be there will be lot of 

intersection in the valence band and there will be little intersection in the conduction 

band, ok. So, this one is Fermi function for doped semiconductor which is shifted 

upwards, ok. Now, what will be the effect? So, here you see that in the conduction band 

the overlap increases because it is shifted upwards, right.  

So, this is valence band. In the valence band the overlap is less. Now, what will be the 

effect of both of these changes into the carrier concentration, because the overlap 

increased here you will have a thicker bulb at the conduction band and a very tiny bulb 
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here at the valence band. So, this thing is the 𝑛𝑜 for equilibrium condition what is the 

electron concentration in the conduction band and this is the 𝑝𝑜 which is the hole 

concentration, ok. 

So, because of the shift of the Fermi level upwards what you are getting, you are getting 

more overlap in the conduction band and that is why the electron concentration will be 

higher there at the cost of the hole concentration because the Fermi level has shifted 

upwards you have less amount of overlap in the valence band and that is why the hole 

concentration is lower. 

So, what we see here that 𝑛𝑜 is significantly higher than 𝑝𝑜, which means electrons are 

the major charge carrier for N type semiconductors is not it. 
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Now, what happens for the P type? Just the opposite of course, for P type semiconductor 

what we have, we have again conduction band, valence band and now the Fermi level is 

shifted towards valence band. It is close to the valence band, right. 

So, first thing the density of state and again it will stay unaffected then the Fermi 

function. Now the overlap will be very thin here while the valence band overlap will be 

much thicker, ok. So, thicker overlap here in the valence band and thinner overlap in 

conduction band, ok. 
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Now, if you find out the carrier concentration it will be just the opposite. You will have a 

small bulb here at the cost of a larger or thicker bulb here, ok. So, here 𝑝𝑜 will be much 

more than 𝑛𝑜. You see that this is happening only because the Fermi function is getting 

shifted downwards for the P type semiconductor and the density of state stays exactly the 

same. 

So, here 𝑝𝑜 is higher than 𝑛𝑜 and that is how the P type semiconductor has holes as the 

dominant or the term that we use is major charge carrier, ok. So, that is how the Fermi 

energy and density of state are playing roles in this carrier concentration. 
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This is well and good in terms of qualitative concept, how it is affect getting affected we 

know. But now we need to have some quantitative estimate of this 𝑛𝑜 , 𝑝𝑜 everything, 

right. So, for quantitative estimate, we need to have more useful terms such as the band 

edge density of state, ok.  

So, the density of state is often reduced to an effective density of state at the band edge. 

Edge is the most important thing as you can see, everything is happening at the edge that 

is the interesting part of the whole semiconductor structure, right. 

So, for the electrons, the conduction band edge which is 𝐸𝑐 is important, ok. So, 𝑔(𝐸) 

can often reduce to an effective density of state at the band edge 𝐸𝑐 and we name it 𝑁𝑐, 
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that effective value we name it 𝑁𝑐 and same at band edge 𝐸𝑣 that means, that is relevant 

for the holes and we name it 𝑁𝑣, ok.  

So, it can be shown again this derivation is beyond the scope of this syllabus. So, this 

effective value you can write, 

𝑁𝑐 =
2

ℎ2
(2𝜋𝑚𝑛

∗ 𝑘𝑇)3/2 

The meaning of every term you know h is the Planck’s constant, 𝑚𝑛
∗  is the effective mass 

of electron and T is the temperature and k is the Stefan constant, ok. 

And similarly 𝑁𝑣 we can write of course, the expression will be same only thing we have 

to use the effective mass of hole. So, this gives us what would be the effective value at 

the band edge, ok. So, instead of doing the integration what we can do we can just 

multiply that effective value with this effective density of state at the band edge. 
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So, now if we find the equilibrium concentration of electrons that will be 𝑁𝑐 which 

represents the effective density of state multiplied by the Fermi function and again the 

Fermi function will be at the edge, ok. So, here you can write 𝑁𝑐, 

𝑛𝑜 = 𝑁𝑐𝑓(𝐸𝑐) = 𝑁𝑐

1

1 + 𝑒(𝐸𝑐− 𝐸𝐹)/𝑘𝑇
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So, you have just used the definition of Fermi function and this you can simplify with 

this expression, 

𝑛𝑜 = 𝑁𝑐𝑓(𝐸𝑐) ≈ 𝑁𝑐. 𝑒−(𝐸𝑐− 𝐸𝐹)/𝑘𝑇 

So, this is an approximation, and it is valid when, 

(𝐸𝑐 −  𝐸𝐹) ≫ 𝑘𝑇 

which is often true for moderate temperature. If you go for really high temperature then 

of course, this approximation is not valid. 

So, if big number when the (𝐸𝑐 −  𝐸𝐹) ≫ 𝑘𝑇, then you have a valid approximation, ok. 

So, basically from this what we get is, 

𝑛𝑜 = 𝑁𝑐. 𝑒−(𝐸𝑐− 𝐸𝐹)/𝑘𝑇 

Now, we have some quantitative estimate of the carrier concentration in the conduction 

band for electron. And similarly, we have the hole concentration which will be, 

𝑝𝑜 = 𝑁𝑣. 𝑒−(𝐸𝐹− 𝐸𝑣)/𝑘𝑇 

Now, it is other way round because the energy is increasing or rather decreasing as you 

go deeper into the valence band, ok. So, please pay attention to that, ok. So, what it 

shows both the expressions of 𝑛𝑜 and 𝑝𝑜 shows that closer the Fermi level to 𝐸𝑐  or 𝐸𝑣 the 

higher the carrier concentration. 

So, the exponent if it goes bigger, the value becomes lower. So, the 𝐸𝐹 closer it is to the 

conduction band you have 𝑛𝑜 maximum and 𝐸𝐹 closer it to the valence band you have 𝑝𝑜 

maximum, ok, that is how it goes. And this is the same observation we have seen when 

we have looked at qualitatively.  

So, the schematic concept should be clear in your head as well as you should know what 

is the quantitative estimate of that, both quality and quantity are important, ok. 
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Now, we need to relate the extrinsic semiconductor carrier concentrations to that of the 

intrinsic counterpart, ok. So, how far we moved by doping, by making it extrinsic 

semiconductor, how much carrier concentration we could tweak? So, that is important to 

quantify. 

So, 𝐸𝐹 for undoped or intrinsic semiconductor is designated. Let us designate it by 𝐸𝑖, i 

stands for intrinsic and corresponding carrier concentrations are 𝑛𝑖 and 𝑝𝑖, ok. If that is 

the case then we can write that 𝑛𝑖 is, 

𝑛𝑖 = 𝑁𝑐. 𝑒−(𝐸𝑐− 𝐸𝑖)/𝑘𝑇 

So, we have done nothing, in case of 𝐸𝐹 we have written 𝐸𝑖 and in case of 𝑛𝑜 we have 

written 𝑛𝑖, ok. 

So, basically from the extrinsic part we have used the same expression just for intrinsic 

we have named that 𝐸𝐹 to be 𝐸𝑖, ok. So, this is true as 𝑛𝑜 tends to 𝑛𝑖 as 𝐸𝐹 tends to 𝐸𝑖, 

right. So, this expression we can write for intrinsic semiconductor and for 𝑝𝑖 what we can 

write, 

𝑝𝑖 = 𝑁𝑣. 𝑒−(𝐸𝑖− 𝐸𝑣)/𝑘𝑇 

The same thing again we have done 𝐸𝐹 we have replaced by 𝐸𝑖 and 𝑝𝑜 we have replaced 

by 𝑝𝑖, ok. 
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Now, by simple algebra you can show that this 𝑛𝑜 you can write as, 

𝑛𝑜 = 𝑛𝑖. 𝑒(𝐸𝐹− 𝐸𝑖)/𝑘𝑇 

So, what we have done from 𝑛𝑜 and 𝑛𝑖 expression, we have eliminated 𝐸𝑐. So, we have 

eliminated 𝐸𝑐. So, we are left with 𝐸𝐹 and 𝐸𝑖, 𝐸𝐹 is the doped semiconductor Fermi level 

and 𝐸𝑖 is the undoped semiconductor Fermi level. And similarly, 𝑝𝑜 will be, 

𝑝𝑜 = 𝑝𝑖. 𝑒(𝐸𝑖− 𝐸𝐹)/𝑘𝑇 

So, here what we have done, we have eliminated 𝐸𝑣, right. So, that is giving us how the 

carrier concentration is changed as you dope compared to its intrinsic value. 
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So, note that the equilibrium carrier concentrations are function of temperature, right. 

Everywhere we have this kT thing, so that means, it is a function of temperature. So, it is 

not only because of this kT (because of the exponential part), but also for the pre-

exponential factor that means, 𝑁𝑐, 𝑁𝑣, 𝑛𝑖, 𝑝𝑖, everything they are functions of 

temperature, ok.  

So, that means, it is a strong function of temperature. Exponential parts are anyway 

changing largely by a small change in temperature, they are more sensitive functions and 

the pre exponential thing also it has this temperature dependence, ok. 
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Now, another very very important observation that you can see is if you multiply these 

two carrier concentrations, one is electron carrier concentration and the hole 

concentration. If you multiply that you will see that it will be same as the multiplication 

what you get for the intrinsic value. If we go back to the expression here you can see that 

if you multiply 𝑛𝑜 and 𝑝𝑜 then the exponential parts they are reciprocal to each other.  

So, they get cancelled out, ok. So, what you are left with is 𝑛𝑜 𝑝𝑜 = 𝑛𝑖 𝑝𝑖, ok. So, as the 

exponential parts cancel each other, ok. And for 𝑛𝑖 𝑝𝑖 we know that is 𝑛𝑖
2, right. Because 

for intrinsic semiconductor the number of electron and number of holes will be the same, 

right. 

So, 𝑛𝑖 = 𝑝𝑖 that means, 𝑛𝑖𝑝𝑖 gives you 𝑛𝑖
2. So, that is a very important very very 

important observation you should make. Physically what it means is that the doping 

allows us to tweak the number of a particular carrier at the cost of the other carrier. So, it 

is very important to note this at the cost of. 

So, if you want to increase the number of electrons in the conduction band, the cost is 

coming at the reduced number of holes in the valence band. So, their multiplication does 

not change. 𝑛𝑖 is a material property, right. So, 𝑛𝑖 you cannot change, even by doping 

you cannot change it. So, if you cannot change 𝑛𝑖 that means, the product of 𝑛𝑜 and 𝑝𝑜 

you cannot change. So, if you increase 𝑛𝑜 ,  𝑝𝑜 will has to decrease.  

So, one carrier is increased, or the number is modified at the cost of the other carrier, ok. 

So, when in N type semiconductor the 𝑛𝑜 is increased 𝑝𝑜 automatically decreases to keep 

the product constant as 𝑛𝑖
2 is invariant for the substrate semiconductor. Of course, here I 

should mention that if you do heavy doping, then you cannot call it a substrate 

semiconductor anymore because it will form a kind of an alloy.  

So, if you put lot of aluminium in silicon substrate then it will form a silicon aluminium 

alloy or some inter metallic. So, you cannot just tell it to be a doped semiconductor, in 

that case the material itself got changed, so, 𝑛𝑖 will also change then you can have this 

𝑛𝑜 𝑝𝑜 to be some other value, but that is never happens. In reality you dope much much 

smaller quantity than the substrate. So, now we are going to start or going to look at the 

motion of this carrier. 
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So, ultimately when the carriers are in motion then only you will get this photovoltaic 

effect, right. 
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So, photovoltaic effect is the result of this carrier motion if they do not move then you do 

not have any current. So, not the concentration but the motion is important, ok. So, I will 

just start it today and in the next class we are going to elaborate on this, but let us just 

start what do we mean by carrier motion. 

So, one thing is that we have seen the quantity of carriers that means n and p under 

equilibrium condition and that is why we call them 𝑛𝑜 and 𝑝𝑜; naught means 

equilibrium. Now, when equilibrium is perturbed then they will be set in motion, then 

they will move. Under equilibrium nothing can move there is no driving force for any 

carrier to move. 

But when you perturb the equilibrium then the carrier motion will change, I mean the 

carrier will start to move. So, some force is needed for them to move, ok. So, that can be 

either the sunlight which is causing increase in energy of individual carriers and it can be 

the voltage if you apply from outside that will also perturb the equilibrium and that will 

set the carriers in motion, ok.  

So, we will look at these different kinds of carrier motions in the next class. 

Thank you for your attention. 
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