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Hello and welcome back. This is the 18th lecture of the series of lectures on Elements of Solar 
Energy Conversion. So, we have started looking at the most basic solar collector, which is a 
Flat Plate Collector. 

(Refer Slide Time: 00:40) 

 

So, we have started looking at its thermal analysis, and in the last class, we have. So, we are 
here at the 18th lecture, and we are looking at the flat plate collector. So, in the last class, 
what we have seen is the temperature distribution for a fixed y, which means, along the x-
direction.  

So, this is the temperature distribution in the mid-plane between two tube locations, and we 
have seen that the temperature distribution will be like this. So, what would be the form of 
this function that we require to find out what will be the effective heat gain or loss from the 
plate? 
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So, in the last class what we have seen that the governing equation governing differential 
equation and the boundary conditions give us a problem same as that for heat conduction 
equation through a fin which has constant base temperature and an insulated tip. 

And the form of a solution that we obtained is 

𝑇 − 𝑇𝑎 −
𝑆

𝑈𝐿

𝑇𝑏 − 𝑇𝑎 −
𝑆

𝑈𝐿
 

=  
𝑐𝑜𝑠ℎ (𝑚𝑥)

𝑐𝑜𝑠ℎ (
𝑚(𝑊 − 𝐷)

2 )
  

So, if you do not follow, please refer back to the last class and try to understand, and I would 
insist that you please derive this again as you have done for a fin problem. 
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Now, what we are interested in here the temperature distribution is fine, but that is an 
intermediate step to ultimately find out what would be the heat loss from the plate to the, I 
mean, what would be the heat transfer towards the fluid. So, here is the fluid level, and what 
would be the heat transfer of that? So, what can we do?  

The important quantity is the amount of heat conducted from the plate towards the tube, 
right whenever you have a temperature slope in this direction. So, heat will flow from high 
temperature to low temperature, and ultimately heat will come to the base of the fin, or that 
means, to the fluid here. So, what is that quantity? 

If we say that it is q fin is 

𝑞𝑓𝑖𝑛 = −𝑘𝛿
𝑑𝑇

𝑑𝑥
 

 So, this is the simple Fourier law we have used, and now we have this T as a function of x that 
we just derived from the fin equation. 

So, as we know that we can find this 
𝑑𝑇

𝑑𝑥
 and the form that we are going to get. I am not going 

to derive it, but I am writing it. So, you can please check it after deriving: 

𝑞𝑓𝑖𝑛 = −
𝑘𝛿𝑚

𝑈𝐿
∗ (𝑆 − 𝑈𝐿(𝑇𝑏 − 𝑇𝑎)) ∗ tanh (

𝑤 ∗ (𝑤 − 𝑑)

2
) 

 So, that is the amount of heat that is carried from the plate to the tube. 

And, here we can make some more simplification because we know this 
𝑘𝛿

𝑈𝐿
 is nothing, but 

1

𝑚2. 

So, this is by definition of m. So, that means that this 
𝑘𝛿𝑚

𝑈𝐿
 is nothing, but 

1

𝑚
. So, what we can 

write this qfin we can write to be. 

𝑞𝑓𝑖𝑛 = −
(𝑊 − 𝐷)

2 ∗ 𝑚 ∗
(𝑊 − 𝐷)

2

∗ (𝑆 − 𝑈𝐿(𝑇𝑏 − 𝑇𝑎)) ∗ tanh (
𝑤 ∗ (𝑤 − 𝑑)

2
) 

So, why we did that? We can now have we can now write this whole thing like this. So, please 
check by yourself whether this is true. 
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300



 

So, why did we change this by multiplying it with 
(𝑊−𝐷)

2
 and dividing it again by 

(𝑊−𝐷)

2
? Because 

now the expression of qfin is of familiar form from the fin equation because whenever you 
have the hyperbolic tan of something divided by the same thing, that is the familiar form of a 
heat fin equation. So, that is why we did this conversion. 

So, that is the first point; the second, this qfin is only from one side of the plate right. What do 
I mean by that? So, if you have a series of these tubes so, the profile of temperature will look 
something like this, right. So, now, if you consider what heat is coming, what heat is coming 
down to this region. So, you have to take heat coming from both directions.  

So, from one direction, you have this qfin, and from the other direction, you will also have the 
same qfin right because of symmetry. 
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So, what you need to do? You need to find the total heat coming from the plate to the tube 
for the tube region is if we say qfin total, that will be two multiplied by whatever we found, 
twice the quantity that we have found. 

𝑞𝑓𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 = −
tanh (

𝑤 ∗ (𝑤 − 𝑑)
2 )

𝑚 ∗
(𝑊 − 𝐷)

2

∗ (𝑆 − 𝑈𝐿(𝑇𝑏 − 𝑇𝑎)) ∗ (𝑊 − 𝐷) 

So, this one is a familiar form as we are saying this is called fin efficiency. Fin efficiency you 
are familiar with from your knowledge on fin heat transfer. 

So, that is why we can now write. So, that is q fin total. That is an important relationship that 
we have obtained from getting the temperature distribution along with the plate along the x-
axis for a fixed y, and then we are converting it, or we are making it simple in terms of the fin 
efficiency. 

(Refer Slide Time: 13:34) 

 

Now, so far, we did not account for the heat collected by the portion of the plate which is on 
top of the tube that is carrying the fluid. So, that means, what do I mean? We have this plate; 
we have these tubes; we have seen that the temperature profile will be somewhat like this 
and what we have accounted for is the heat collected by this portion. This we have accounted 
for. 

Now, what are we going to do? We are going to include this portion as well. So, if we do not 
take this account into account, that will be causing some error. So, the portion on top of the 
tube gives us another quantity which we call qtube. Now, this is because we do not have to 
worry about the temperature.  

For qtube temperature, distribution is known, right that causes all the problems, and that is 
why we had to solve the differential equation, along with its boundary conditions for the 
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portion here, but for the tube portion, we do not have to do that because temperature 
distribution is known and that is constant temperature Tb. 

So, what would be that? This q tube you can write simply 

𝑞𝑡𝑢𝑏𝑒 = 𝐷[𝑆 − 𝑈𝐿(𝑇𝑏 − 𝑇𝑎)] 

Here please note that this represents the D which is the diameter of the tube that represents 
the area for that region because we have considered a unit length along the y-axis, and that 
is why it represents the area, and it is because we have a single temperature Tb. 

(Refer Slide Time: 16:48) 

 

So, what can we write? Now, the total useful heat that is heating up the working fluid that is 

𝑞𝑢 = 𝑞𝑓𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 + 𝑞𝑡𝑢𝑏𝑒   

That means, from both the directions of the plate across the tube from both the directions, 
whatever heat is coming from the plate plus the heat accumulated by the portion of the plate 
which is just above the tube. 

So, if we put the values that we have found so far, this will be multiplied by [𝑆 − 𝑈𝐿(𝑇𝑏 − 𝑇𝑎)]. 
This is coming from the qfin total, and this is coming from the qtube ok. Now we can say that 
this is the total heat available for the working fluid to absorb. The working fluid is absorbing 
this heat, but again until it reaches the working fluid, it has to pass through a few resistances. 

So, the same thing we can write in terms of the difference between the base temperature or 
the tube temperature and the fluid temperature at that location. So, let me first write, and 
then I will explain each term. So, this is the thermal resistance and what we are assuming here 
is that the tube, of course, will have a certain thickness, and it will be bonded to the plate with 
some bonding material. 
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I am exaggerating it, but it will have some thickness, and if we say that, the average thickness 
of the bond is ϒ. So, ϒ is the average thickness of the bond, then the Cb, which is the bond 
resistance that will be equal to Kb multiplied by the base length b into ϒ. 

So, what is b? This is the base length that may or may not be equal to the outer diameter of 
the tube and ϒ is the average thickness, and Kb is nothing, but the thermal conductivity of the 

bonding material if that is the case, then Cb will be the bond resistance and 
1

𝐶𝑏
  will be the 

reciprocal of the resistance or conductivity. 

And, what would be the other part or rather this 
1

𝐶𝑏
. So, Cb is this; this is what I should say? 

This is bond conductance and this 
1

𝐶𝑏
  is the bond resistance. Now, let us look at the first term, 

what it contains this hfi this is nothing, but the heat transfer coefficient for the internal fluid 
flow. 

So, when fluid is passing through this tube, then there will be some internal heat transfer 
coefficient depending on the velocity of the fluid and other things, and there in the inside 
boundary, whatever heat transfer coefficient you will get that will be your hfi; i stands for 
internal, and f stands for fluid. 

And πDi is the internal area for the tube that is the area for the fluid for the heat transfer 
because Di is the inner diameter. So, that will be the convection resistance, you can say. The 

first term here will be the convection resistance, and we have this 
1

𝐶𝑏
  which is bond resistance. 

If we sum them up, then we have total resistance, and what we have written here is the delta 
T between the plate on top of the tube and the fluid between the plate and the fluid; this is 
the temperature difference. So, now we have two quantities. So, now, we see that we have 
two expressions for qu. So, one expression or we have two expressions for the usefully qu. 
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So, now we can write this qu is known in terms of this 𝑇𝑏  −  𝑇𝑎 that is one expression that we 
have obtained, and qu is also known in terms of 𝑇𝑏  −  𝑇𝑓. So, in terms of the temperature 

difference between the base and the ambient and temperature difference between the base 
and the fluid. 

So, now what we can do we use these expressions to eliminate Tb, and that is the common 
link Tb. So, we can completely remove it, and we can get a relation between that ambient 
temperature and the fluid temperature. So, the resulting expression will contain this 𝑇𝑓  −

 𝑇𝑎And that is what we require. 

We do not care about the base temperature because that is an intermediate temperature 
that is useful to know, but ultimately what we are interested in that what is the loss that is 
happening from the fluid to the ambient. So, if we do that, this elimination what we can write, 
so, again, I am not going to derive this elimination process from simple algebra; you can do it 
by yourself. What I am writing is the final expression. 

So, let me write it first. So, this is the expression, is it not cool? Because we have now this 
useful heat as a function of this 𝑇𝑓  −  𝑇𝑎 and that makes sense intuitive sense because that 

is what we are interested in, but in the meantime, what we have interested or what we have 
introduced is this Fי which we do not know right and that we have to explain. 

So, what is this value Fי? So, let me write that expression first; let me write that on the next 
page. 

(Refer Slide Time: 27:32) 

 

So, if we write that F prime expression, it is little involved. So, in the numerator, you have 
1

𝑈𝐿
 

and in the denominator, you have series of terms. So, F prime is what you can see that it is a 
ratio between two thermal resistances. What is UL? UL is your overall heat loss coefficient 
from the plate to the ambient. 
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So, 
1

𝑈𝐿
 is the resistance. So, it is a ratio that is the first observation; it is a ratio between two 

thermal resistances, and in the denominator also you can observe that all of these are actually 
thermal resistances, and we are summing them up. Now, here in one of the terms, you can 
see that we have this F. F we have seen earlier that is called fin efficiency.  

You remember that is nothing, but 
𝑡𝑎𝑛ℎ

𝑚(𝑊−𝐷)

2
𝑚(𝑊−𝐷)

2

. So, that fin efficiency is now included in this 

Fי. So, what is this Fי? The name we call it collector efficiency factor. So, this particular quantity 
collector efficiency factor includes the effect of fin efficiency and all other kinds of thermal 
efficiency or thermal resistances it involves.  

In terms of the bond, in terms of the internal free flow, in terms of the overall heat loss 
coefficient to the ambient. So, Fיis a quantity that gives you an overall effect on how the useful 
heat will be related to the fluid temperature and the ambient temperature. 

So, now we have completely seen if we fix a particular value of y and look at the temperature 
distribution along the x-axis, what would be the form and what would be the contribution of 
that in the useful heat. Now, we have we recall that we have taken an assumption that in the 
x-direction and in the y-direction, the temperature distributions we have taken to be 
independent of each other. 

So, what we can do now is that we take the information of the x-direction temperature 
distribution and use it and find out a temperature distribution along the y-direction. So, that 
is what we are going to do now. 

(Refer Slide Time: 31:36) 

 

Now, you remember that what was the y-direction. This was the plate, and we had tubes 
running along the y-direction right. So, this was our y-direction, and this was our x-direction. 
Now, we know T in the or rather variation of T in the x-direction. So, now, we will use it to get 
the variation along the y-direction, and that we can do only when we can consider them to 
be independent. 
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Now, let us say along the y-direction, let us see say that this is the fluid flow direction along 
the y and along the y-direction. Now, if we take our differential element here inside the fluid, 
this is the differential control volume where you can see say that fluid is coming from this 
direction with certain specific heat Cp and with certain temperature Tf, which is at y. So, let us 
say this is y, and this is 𝑦 + ∆𝑦, and this is the width ∆y. 

Now, one thing that is missing here is the mass flow rate. So, we need to multiply that mass 

flow rate which we write as 
𝑚

𝑛

̇ . Why we write that write it? Because if we have a total mass 

flow rate of fluid to be 𝑚̇ and we have n tubes. We have multiple tubes that are carrying 𝑚̇ 
mass and each of them are of equal dimension and everything. 

So, we can write for each individual tube the mass flow rate will be 
𝑚̇

𝑛
 and that is why we have 

written it. So, this particular term is giving you the flux of heat entering into the differential 
control volume.  

Similarly, what can we do? We can write the flux that is going out again; the mass flow rate 
will be the same, Cp will be the same if it is not changing for a minuscule amount of heat 
addition, and this Tf will now we have to calculate it at 𝑦 + ∆𝑦. 

So, this is the heat flux leaving the control volume. Now, what else is happening here, we have 
this useful heat that is coming into the fluid, right, and that is coming from the x-direction 
distribution. So, what is coming here is this qu which is the useful heat multiplied by this ∆y 
because that is the length of the tube. 

So, let me write it here that qu we found per unit length in the y-direction, you remember 
that? So, all that this all the analysis that we have done so, where is that? Let me see. Yeah, 
so here we have written that we have done everything per unit depth in the y-direction. So, 
here we have that qu will be per unit depth in the y-direction. So, the total heat that is coming 
in will be 𝑞𝑢 ∗ ∆𝑦. 
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Now, if we want to do the heat balance for this differential control volume, then what can we 
write? 

 
𝑚̇

𝑛
∗ 𝐶𝑝 ∗ 𝑇𝑓𝑦

−
𝑚̇

𝑛
∗ 𝐶𝑝 ∗ 𝑇𝑓𝑦+∆𝑦

+ 𝑞𝑢 ∗ ∆𝑦 = 0  

Why 0? Because we have a steady-state, if it was not a steady-state problem, then this will 
not be 0, but the temperature will be a function of time as well. 

So, if for a steady-state we can assume that, then this differential control volume equation 
can be simplified in a differential equation 

𝑚̇

𝑛
∗ 𝐶𝑝 ∗

𝑑𝑇𝑓

𝑑𝑦
− 𝑞𝑢 = 0 

Or, now, we will put the expression we obtained from x-direction heat analysis. 

So, what expression did we get? Let me write that 𝑚̇, we can take this n along with the qu and 
write n *W * F,י which is the collector efficiency factor which we saw a couple of minutes ago 

and (𝑆 − 𝑈𝐿(𝑇𝑏 − 𝑇𝑎)) and that is equal to 0. 

So, now you will appreciate why we introduce this Tf in the first place in the end at the end of 
the x-direction temperature distribution or heat balance; what we did? We have converted 
the expression in terms of 𝑇𝑓 − 𝑇𝑎 because then only you will be able to solve as a differential 

equation. So, both these Tfs will be giving you the differential equation dependent variable. 
That is why we are obsessed with taking it in terms of fluid temperature rather than plate 
temperature. 

𝑚̇

𝑛
∗ 𝐶𝑝 ∗

𝑑𝑇𝑓

𝑑𝑦
= 𝑛 ∗ 𝑊 ∗ 𝐹י*(𝑆 − 𝑈𝐿(𝑇𝑏 − 𝑇𝑎)) 

That is our governing equation that is a first-order ordinary differential equation. So, how 
many boundary conditions will it need? It will need, so, first order so, it will need just a single 
boundary condition. 

(Refer Slide Time: 42:48) 
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So, boundary condition will be a single one will be required single boundary condition will be 
required, and what is the most optimum or most easily obtainable boundary condition, that 
is the inlet condition. Now, the inlet condition, we can give that Tf =Tfi, which is nothing, but 
the inlet temperature of the fluid.  

And, here we also assume that this Fי and UL if you see this governing equation we have two 
quantities here Fי and UL. For these two, we also need to assume that they are independent 
of y. So, Fי and UL are independent of y then only we can make it; otherwise it is a non-linear 
problem; let me write that as well.  

So, that you can appreciate the importance of the assumption; otherwise, the problem will 
be non-linear, where the coefficients of the differential equation are also a function of the 
variable they are not constant. So, that is why the problem becomes non-linear. 

So, if you find the solution again, I am not going to solve this. This is a very straightforward 
ODE with a first-order ODE with a known solution. So, I am just writing it here  

𝑒𝑥𝑝(
𝑈𝐿 ∗ 𝑛 ∗ 𝑊 ∗ 𝐹י

𝑦

𝑚̇ ∗ 𝑐𝑝
) 

So, let me just put a box around it because this is again an important solution that will give 
you the temperature distribution along the y-direction for a fixed x. This is the temperature 
distribution of fluid along the y-direction. So, here you note that what important things you 
want to know, that this thing is the inlet condition which is the inlet temperature of the fluid.  

And another thing you require is the boundary condition, or this is also a condition that is 
coming from the ambient, which is ambient temperature.  

And, here from the x-direction, you have this quantity Fי which is the collector efficiency 
factor, and you want to know that this is the variable that you want to know Tf, and this is the 
dependent variable, or this is the independent variable y, and this is the dependent variable 
that you want to know, you wish to find. 
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So, I again insist that you please go and do the actual derivation or actual solution of this 
differential equation, which will give you exposure to the methods, and also, you will recall 
all the techniques that you require to find the solution. 

(Refer Slide Time: 48:10) 

 

Now, we are interested in knowing the outlet temperature we are not really interested to 
know what is happening in between; rather we want to know I am giving you the fluid to get 
in getting entry to the flat plate collector at maybe ambient temperature, which is 30˚C and I 
want it out at 60 or 70˚C. 

So, the outlet temperature is our target, and we need to know in terms of all the other 
quantities. So, this outlet temperature let us say it is Tfo; Tfi stands for the inlet temperature, 
and Tfo stands for the outlet temperature and also, notice that this 𝑛 ∗ 𝑊 ∗ 𝐿 that quantity 
we have it here in the expression itself. 

So, at the outlet, our y will be equal to l, which is the length of the collector or length of the 
tube. So, if that is the case, then you will have here if you note here you will have this 𝑛 ∗ 𝑊 ∗
𝐿, and what is that quantity 𝑛 ∗ 𝑊 ∗ 𝐿? That is nothing but your area of the collector. 

So, suppose we have there are whatever four tubes. So, n is four, and this W is the width 
between them. So, W is the width between consecutive tubes and L is the length, L is the 
length. So, when you multiply 𝑛 ∗ 𝑊 ∗ 𝐿 that will give us the area of the collector, right. So, 
that gives quite a simplification here. 

So, what can we write?  

𝑇𝑓,0 − 𝑇𝑎 −
𝑆

𝑈𝐿

𝑇𝑓,𝑖 − 𝑇𝑎 −
𝑆

𝑈𝐿

= 𝑒𝑥𝑝(−
𝑈𝐿 ∗ 𝐴𝑐 ∗ 𝐹י

𝑚̇ ∗ 𝑐𝑝
) 
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So, that is the expression we are after. So, here we have what we require, that is Tf0 in terms 
of what is given Tfi, Ta, and all the right-hand side you have; those are parameters for that 
particular collector ok parameters for the collector or rather a flat plate collector design.  

This is the overall loss coefficient, the area, mass flow rate, the specific volume, the specific 
heat of the fluid that you have chosen as the working fluid, and the collector efficiency factor 
Fי. 

So, in today’s class, what we saw is we have completed the x-direction temperature 
distribution and connected it to the fluid temperature, and then we have taken a step to find 
out the y-direction or along the tube how the temperature will vary. And, by that, we have 
reached a point where we are in a position to find out the total temperature rise from the 
inlet to the outlet of the working fluid as a function of different parameters of the design of 
the flat plate collector. 

So, this is an important juncture we will stop here for today, and in the next class, we will see 
that one more characteristic quantity like this fin efficiency f and this Fי which is collector 
efficiency factor, we will introduce another quantity which is called collector heat removal 
factor and then we will go to this testing of these flat plate collectors. 

So, I hope you enjoyed these connections between different parameters, and we will stop 
here and start in the next class. 

Thank you. 

 

311


