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Lecture - 59 

Dissipative Mufflers (Lined Circular duct) - A Brief Discussion 
 

Welcome to lecture 59, the final lecture where the almost the final technical lecture of 

this course on Muffler Acoustics, NPTEL course on Muffler Acoustic. So, we have 

covered most of the topics that we intended to do. 

Obviously, muffler acoustics is a huge area, I will be talking about topics to be covered 

in an advanced course later on in lecture 60 and I will be summarizing all that we have 

done in the next lecture, final lecture, but the purpose of this lecture is to give you a very 

brief introduction on the dissipative or the lined muffler concept that is that will be 

covered later. 

Right now, we will just give a, what I will present is just a small introduction so for that I 

will kind of refer to the book on acoustic reduction mufflers by Munjal and here, what 

basically you know the different models to you, to analyze a lined muffler or a 

dissipative muffler. This is the first time we are just you know discussing about these 

thing. 

So, basically what happens is that you know if you go to your duct like this the different 

kind of mufflers lined muffler so, suppose you line the boundary of this thing by 

something like material. So, when you have such a thing then you realize that you know 

the waves as the as it traverse across this thing, across the duct you know they are 

attenuated as they propagate along the duct. 

So, what happens is that their amplitude decays and significant amount of acoustic power 

is dissipated in this duct. So, here you know the main action of this dissipative material is 

to absorb basically, absorb the energy acoustic energy where basically converted into 

heat as the waves propagate. 

So, that this is a simple line duct, but you can typically have sort of muffler 

configuration, lined muffler configuration something like this. You have perforated duct 
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and the inside of this is filled with your rock wool, glass wool, mineral wool or some 

kind of a, acoustic absorbent material. 

 

So, you have this kind of a thing or else another kind of muffler that dissipative muffler 

that usually is encountered is this sort of a thing which is called hybrid muffler really. 

So, you do not allow flow to completely expand feel like I have been sort of mentioning. 

So, you have this you have this kind of a configuration. 

 

So, this is you know what happens here this is a sudden, but the wave as it the wave front 

as it enters here, it see the sudden expansion here, at the same time the waves at 

propagate in the annular region they are also absorbed, they are also interacted upon by 

the by the lining here this is acoustic lining. So, this is called hybrid muffler, because it 

basically employees the principle of sudden expansion or contraction and you can also 

have extensions like I was talking about. 
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So, similar, but this is called a purely dissipative muffler and these are like lined ducts, 

other than that you also have parallel baffle mufflers something like you know we will 

we will soon see the figure. 

So, the main thing is that we just going to discuss different the different ways to calculate 

the transmission loss or develop mathematical models, but we can just give you a small 

introduction just about 10-15 minutes to you know to get your feel of this. 

So, basically they are two models local reaction and the bulk reaction. So, in the slide 

that I have presented here, what we do is that you know the acoustic all this while if the 

duct was rigid normal thing was that  

   
𝑝

𝑈௥
= 𝑍 ↑ஶ 

that can happen Z is tending to infinity, this can happen only when u were the radial 

velocity is going to 0. So, that is what we do. 

We basically put this condition the derivative, the radial derivative of the acoustic 

pressure or the derivative of the Bessel function is 0 at the boundary at the radius of the 

in a radius of the chamber at R0 to get the rigid wall mode, but if this is not the case if 

you have  

 𝑑𝐽௠𝑘௥𝑙

𝑑𝑙
ฬ

௟ୀோబ

= 0     

where Z can be complex quantity then you have a lined reaction ok. So, this is what a 

local reaction is. So, you evaluate this 
௣

௎
= 𝑍  the get you know evaluate get a dispersion 

relation solve for that and get back the analytical solution which will soon browse 

through that and you know develop a way, develop a transfer matrix which relates stuff 

from here to here far from here to here taking into account local reaction of p / u kind of 

a, compliance kind of a thing here or otherwise you can also consider you know wave 

propagation. 

You can also consider wave propagation within this area, within this region and that is 

called bulk reaction. So, there are two models local reaction, bulk reaction. Bulk reaction 

is sort of more accurate, because it considers wave propagation here, but local reaction is 
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also used quite a lot, because of its simplicity. So, what we will do is that we will just go 

through that in the next 10 minutes. 

1.7.1 Rectangular Duct with Locally Reacting Lining 

So, rectangular duct you know you have this momentum equation Euler, you know, 

anyway the particle velocities along the x and y direction and now, when you have this p 

so we employ this you know impedance condition  

𝜌଴

𝜕𝑢௫

𝜕𝑡
+ 

𝜕𝑝

𝜕𝑥
 =   0                          (1.122) 

or  

   𝑢௫ = − 
𝜕𝑝/𝜕𝑥

𝑗𝜔𝜌଴
                         (1.123) 

Similarly 

   𝑢௬ = − 
𝜕𝑝/𝜕𝑦

𝑗𝜔𝜌଴
                         (1.124) 

Thus, the boundary conditions for a duct with uniform normal wall impedance Zw would 

be 

𝑝(0, 𝑦, 𝑧, 𝑡)

−𝑢௫  (0, 𝑦, 𝑧, 𝑡)
=  

𝑝(𝑏, 𝑦, 𝑧, 𝑡)

−𝑢௫  (𝑏, 𝑦, 𝑧, 𝑡)
 = 𝑍௪௫,                  (1.125) 

𝑝(𝑥, 𝑦, 𝑧, 𝑡)

−𝑢௬ (𝑥, 𝑦, 𝑧, 𝑡)
=  

𝑝(𝑥, 𝑦, 𝑧, 𝑡)

−𝑢௬ (𝑥, 𝑦, 𝑧, 𝑡)
 = 𝑍௪௬,                  (1.126) 

Substituting solution (1.25) and Equations 1.123 and 1.124 in the four boundary 

conditions (1.125) and (1.126) yields 

𝜔𝜌଴(1 + 𝐶ଷ)

−𝑘௫(1 + 𝐶ଷ)
= 𝑍௪௫                                  (1.127) 

𝜔𝜌଴𝑒ି௝௞ೣ௕  + 𝐶ଷ 𝑒௝௞ೣ௕

𝑘௫  𝑒ି௝௞ೣ௕  + 𝐶ଷ 𝑒ା௝௞ೣ௕
= 𝑍௪௫                                  (1.128) 
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𝜔𝜌଴(1 + 𝐶ସ)

−𝑘௬(1 + 𝐶ସ)
= 𝑍௪௫                                  (1.129) 

𝜔𝜌଴𝑒ି௝௞೤௕  + 𝐶ଷ 𝑒௝௞೤௛

𝑘௫  𝑒ି௝௞೤௕  + 𝐶ଷ 𝑒ା௝௞೤௛ = 𝑍௪௬                                   (1.130) 

And now this impedance like I said it is not infinity, if it is infinity then u x has to be 0, u 

y has to be 0. Similarly, for the circular duct, you know for a circular duct we do not 

have, where is it; I guess bit down. 

ቈ
𝜕ଶ

𝜕𝑡ଶ
− 𝐶଴ ቆ

𝜕ଶ

𝜕𝑟ଶ
+

1

𝑟
 

𝜕

𝜕𝑟
+

1

𝑟ଶ
 

𝜕ଶ

𝜕𝜃ଶ
+

𝜕ଶ

𝜕𝑧ଶ
ቇ቉ 𝑝 = 0                        (1.142) 

𝑝(𝑟, 𝜃, 𝑧, 𝑡) = ෍  

ஶ

௠ୀ଴

෍  

ஶ

௡ୀ଴

𝐽௠ ൫𝑘௥,௡𝑟൯𝑒௝௠ఏ 𝑒௝ఠ௧  

× ൛𝐶ଵ,௠,௡ 𝑒ି௝௞೥,೘,೙௭ + 𝐶ଶ,௠,௡ 𝑒ା௝௞೥,೘,೙௭ൟ      (1.143) 

So, this is the model solution and this is the Euler equation that we get and  if  u r a 0 

then of course, your Z w tends to infinity, but that; that is not the case for lined duct or a 

complain duct. 

So, you have this condition: 

𝜌଴

𝜕𝑢௥

𝜕𝑡
+ 

𝜕𝑝

𝜕𝑟
= 0                        (1.144) 

yields 

𝑢௥ =  − 
𝜕𝑝/𝜕𝑟

𝑗𝜔𝜌଴
                            (1.145) 

Therefore,      

𝑍௪ ≡  ൬
𝑝

𝑢௥
൰

௥ ୀ ௥೔

=  
−𝑗𝜔𝜌଴𝑝

𝜕𝑝
𝜕𝑟

                    (1.146)     

 =  
−𝑗𝜔𝜌଴ 𝐽௠ ൫𝑘௥,௠,௡

 𝑟௜൯

𝑘௥,௠,௡
  𝐽′௠ ൫𝑘௥,௠,௡

 𝑟௜൯
                       (1.147) 
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where 

𝐽′௠൫𝑘௥,௠,௡
 𝑟௜൯ = ቎

  𝑑𝐽௠ ൫𝑘௥,௠,௡
 𝑟൯ 

 
 𝑑 ൫𝑘௥,௠,௡

 𝑟൯
቏

௥ୀ௥೔

                 (1.148) 

Thus, kr,m,n,  n = 0,  1,  2 ... are the infinite roots of the transcendental eigen equation  

                        
𝐽௠൫𝑘௥,

 𝑟௜൯

൫𝑘௥,
 𝑟௜൯𝐽ଵ൫𝑘௥,

 𝑟௜൯
  = 𝑗

𝑍௪

𝜌଴𝐶଴

1

𝑘଴𝑟௜
                                                         (1.149) 

 Where,  m this m n is the mnth mode and Zw can be a complex quantity in general which 

depends on the properties of the absorbent material. 

So, you have a regular model solution which is solution of the Helmholtz equation from 

the moment[um] from the momentum equation derive the expression of the particle 

velocity, radial particle velocity and get the expression for impedance where this is the 

derivative and technically as usual it will give you infinite roots, just like we had infinite 

roots for the for the rigid wall case, you know for a given order m there the set of ordered 

roots you know ah, because it belongs to the properties of Sturm Liouville problem. 

But similarly here also, you have forgiven m we have a set of ordered roots and once you 

get Zw expression you can find out the these roots and substitute back in the expression 

for the particle velocity as well as the pressure to get the field acoustic pressure field in a 

line duct and once we and, this is the dispersion relation that is usually considered. 

𝑝(𝑟, 𝜃, 𝑧, 𝑡) = ෍  

ஶ

௡ୀ଴

𝐽଴ ൫𝑘௥,௡𝑟൯𝑒௝ఠ௧  × ൛𝐶ଵ,௠,௡ 𝑒ି௝௞೥,೘,೙௭ + 𝐶ଶ,௠,௡ 𝑒ି௝௞೥,೘,೙௭ൟ      (1.151) 

where kr,n is the (n + 1)th of the root of the eigen equation 

                        
𝐽଴൫𝑘௥,௡

 𝑟௜൯

൫𝑘௥,௡
 𝑟௜൯𝐽ଵ൫𝑘௥,௡

 𝑟௜൯
  = 𝑗

𝑍௪

𝜌଴𝐶଴

1

𝑘଴𝑟௜
                                                         (1.152) 

And one thing that is there is that you know for a line duct or a dissipative duct the plane 

wave mode does not really exist, because dissipative duct means that a pressure even for 

937



the lowest order mode, we talk about the least attenuated mode or the lowest order mode 

the pressure variation will be there across the cross section. So, the plane wave mode 

does not exist. 

So, next to happens is the duct is heavily damped. If there is a significant damping even 

the first few modes you can help us get a good you know estimation the transmission 

loss in the low frequencies at least and then there bulk reaction, rectangular duct with the 

bulk reaction model where you consider wave propagation within this thing also. 

𝑝(𝑧, 𝑟, 𝑡) =  𝐶ଵ 𝐽଴ ൫𝑘௥,଴𝑟൯𝑒ି௝௞೥௭𝑒௝ఠ௧                                             (1.170) 

𝑢௭,଴(𝑧, 𝑟, 𝑡) =
𝑘௭

𝜔𝜌଴
 𝐶ଵ 𝐽଴ ൫𝑘௥,଴𝑟൯𝑒ି௝௞೥௭𝑒௝ఠ௧                                  (1.171) 

𝑢௭,଴(𝑧, 𝑟, 𝑡) = 𝑗
𝑘௥,଴

𝜔𝜌଴
 𝐶ଵ 𝐽ଵ ൫𝑘௥,଴𝑟൯𝑒ି௝௞೥௭𝑒௝ఠ௧                                  (1.172) 

Inside the wall lining (subscript w): 

𝑝௪(𝑧, 𝑟, 𝑡) =  𝐶ଶ ൛𝐽଴ ൫𝑘௥,௪𝑟൯ + 𝐶ଷ𝑁଴  ൫𝑘௥,௪𝑟൯ൟ𝑒ି௝௞೥௭𝑒௝ఠ௧              (1.173) 

𝑢௭,௪(𝑧, 𝑟, 𝑡) =  
𝑘௭

𝜔𝜌଴
𝐶ଶ ൛𝐽଴ ൫𝑘௥,௪𝑟൯ + 𝐶ଷ𝑁଴  ൫𝑘௥,௪𝑟൯ൟ𝑒ି௝௞೥௭𝑒௝ఠ௧         (1.174) 

𝑢௭,௪(𝑧, 𝑟, 𝑡) =  
−𝑗𝑘௥,௪

𝜔𝜌଴
𝐶ଶ ൛𝐽ଵ ൫𝑘௥,௪𝑟൯ + 𝐶ଷ𝑁ଵ  ൫𝑘௥,௪𝑟൯ൟ𝑒ି௝௞೥௭𝑒௝ఠ௧         (1.175) 

Similarly, bulk reaction model will also given an for a circular duct, where you have 

this expressions for the pressure in the airway and that in the in annular cavity and then 

you get this you get this basically, you are compatibility sort of conditions and once and 

then we get the dispersion relation for this kind of a thing. 

The overriding compatibility conditions: 

𝑘௭,଴ = 𝑘௭,௪ = 𝑘௭ (𝑠𝑎𝑦)                                                             (1.176)    

𝑘௭
ଶ +  𝑘௥,଴

ଶ = 𝑘଴
ଶ   ⟹   𝑘௥,଴ = {𝑘଴

ଶ − 𝑘௭
ଶ}ଵ/ଶ                             (1.177) 

𝑘௭
ଶ +  𝑘௥,௪

ଶ = 𝑘௪
ଶ   ⟹   𝑘௥,௪ = {𝑘௪

ଶ − 𝑘௭
ଶ}ଵ/ଶ                             (1.178) 
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Which, yield the impedance relationship 

𝑍௥,଴(𝑟௜, 𝜔) = 𝑍௥,௪(𝑟௜, 𝜔), 𝑍௥ =
𝑝

𝑢௥
                                      (1.182) 

𝐽 
𝜔𝜌଴𝐽଴(𝑘௥଴𝑟௜)

𝑘௥,଴𝐽ଵ ൫𝑘௥,଴𝑟௜൯
= 𝑗

𝜔𝜌௪𝐽଴൫𝑘௥,௪𝑟௜൯ + 𝐶ଷ𝑁଴൫𝑘௥,௪𝑟௜൯

𝑘௥,଴𝐽ଵ ൫𝑘௥,௪𝑟௜൯ + 𝐶ଷ𝑁ଵ൫𝑘௥,௪𝑟௜൯
                           (1.183) 

And finally, you know the whole idea of doing a bulk reaction is to simultaneously, 

consider you know wave propagation in this domain as well as this domain are coupled 

kind of analysis. So, that is naturally expected to be more accurate and one can find out 

the transfer matrix. 

Let me go to the chapter 6, I reckon or the muffler acoustics book duct and muffler duct 

acoustics of ducts and mufflers by Munjal, where a practical expressions are sort of 

presented for measuring the transmission or obtaining the transmission loss. 

So, where I will go for the case of a circular duct only for the lack of time you know. 

ቈ
𝐷ଶ

𝐷𝑡ଶ
− 𝐶଴

ଶ  ቆ
𝜕ଶ

𝜕𝑟ଶ
+

1

𝑟
 

𝜕

𝜕𝑟
+

1

𝑟ଶ
+

𝜕ଶ

𝜕𝜃ଶ
+

𝜕ଶ

𝜕𝑧ଶ
ቇ቉ 𝑝 = 0                      (6.28) 

𝑝(𝑟, 𝜃, 𝑧, 𝑡) = ෍  

ஶ

௠ୀ଴

෍  

ஶ

௡ୀ଴

൛𝐶ଵ,௠,௡,𝐽௠൫𝑘௥,௠,௡
ା 𝑟൯𝑒ି௝௞೥,೘,೙

శ ௭

+ 𝐶ଶ,௠,௡,𝐽௠൫𝑘௥,௠,௡
ି 𝑟൯ ൫𝑘௥,௠,௡

ିା 𝑟൯𝑒ା௝௞೥,೘,೙
శ ௭ൟ𝑒௜௠ఏ𝑒௜ఠ௧         (6.29) 

So, I will and that to with the moving medium. So, in moving medium you have k z plus 

k z minus like we have been discussing and you have this model. 

𝐽௠൫𝑘௥,௠,௡
ା 𝑟଴൯

൫𝑘௥,௠,௡
ା 𝑟଴൯𝐽ᇱ

௠൫𝑘௥,௠,௡
ା 𝑟଴൯

  ቆ1
𝑀𝑘௭,௠,௡

ା

𝑘଴
ቇ = 𝑗

𝑍௪(𝑀)

𝜌଴𝐶଴

1

𝑘଴𝑟଴
                          (6.36) 

So, we get this constants and then from the dispersion relation we can find out k z m n 

plus minus for a given k r can be found out using solving the dispersion relation as we 

obtained previously also for given   

𝑘௥,௠,௡
ା =

∓𝑀𝑘଴ + ൣ𝑘଴
ଶ − (1 − 𝑀)𝑘௥,௠,௡

±ଶ ൧

1 − 𝑀

ଵ/ଶ

                                (6.37) 
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For a perforate impedance expression has to be known as of now sorry, the impedance 

expression for a line duct which is backed by a perforated sheet has to be obtained which 

when we will soon see the expressions for that and once you obtain p and u we can find 

out the transfer matrix for a dissipated duct. 

𝑢௭ (𝑟, 𝜃, 𝑧, 𝑡) = ෍  

ஶ

௠ୀ଴

෍  

ஶ

௡ୀ଴

 
1

𝜌଴𝐶଴
 ቈ

𝑘௭,௠,௡
ା

𝑘଴ − 𝑀𝑘௭,௠,௡
ା  𝐶ଵ,௠,௡𝐽௠൫𝑘௥,௠,௡

ା 𝑟൯ 𝑒ି௝௞೥,೘,೙
శ ௭   

 −
𝑘௭,௠,௡

ି

𝑘଴ + 𝑀𝑘௭,௠,௡
ି

 𝐶ଶ,௠,௡𝐽௠൫𝑘௥,௠,௡
ା 𝑟൯ 𝑒ା௝௞೥,೘,೙

ష ௭቉ 𝑒௜௠ఏ𝑒௜ఠ௧          (6.39) 

So, we will talk about only the least attenuated mode m is equal to 0, n is equal to 0 and 

drop the high order modes and let us worry about the circular duct only. 

  𝑣(𝑍) =
𝐴

𝑌ା
 𝑒ି௝௞೥

శ௭ −
𝐵

𝑌ି
 𝑒ି௝௞೥

ష௭                        (6.45) 

So, over a circular duct, it will it will be like this. Z w is related to the least attenuated 

mode is given by is obtained or the roots are obtained k r is obtained by solving this 

equation numerically, say using some Newton Raphson scheme or things like that. 

𝑝(0) = 𝐴 + 𝐵                                (6.48)  

  𝑣௭(0) =
𝐴

𝑌ା
−

𝐵

𝑌ି
                        (6.49)  

𝐴 =  
𝑝(0)/𝑌ି + 𝑣௭(0)

1/𝑌ି + 1/𝑌ା
  =

𝑌ା{𝑝(0) +  𝑌ି𝑣௭(0)}

𝑌ି + 𝑌ା
                       (6.50) 

And 

𝐵 =  
𝑝(0)/𝑌ା − 𝑣௭(0)

1/𝑌ି + 1/𝑌ା
  =

𝑌ି{𝑝(0) −  𝑌ି𝑣௭(0)}

𝑌ି + 𝑌ା
                       (6.51) 

Particle velocity is obtained and then the mass volume, mass velocity is obtained and 

from these relation 6.45 you know velocity and actually 6.48 and 6.49 once we get that 

we can obtain the transfer we can obtain the transfer matrix parameters, where we relate 

the upstream variable to the downstream variable and cooperating only the and 

cooperating only the least order mode. 
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So, the effect of all the information pertaining to the dissipative or the line duct is stored 

already in k z’s which is you know k z is related to k r using the you know the dispersion 

relation k k z square plus k r square is equal to k naught square ok. 

𝑘௭
± =  

∓𝑀𝑘଴ + [𝑘଴
ଶ − (1 − 𝑀)(𝑘௥

±)ଶ]ଵ/ଶ

1 − 𝑀ଶ
          (6.42𝑏) 

So, and k r itself is found out using your this equation ok. 

𝑍௪,௫𝑘௫
±

𝜌଴𝐶଴𝑘଴
= 𝑗𝑐𝑜𝑡 ቆ

𝑘௫
±𝑏

2
ቇ ቆ1 ∓

𝑀𝑘௭
±

𝑘଴
ቇ

ଶ

         (6.43𝑎) 

𝑍௪,௬𝑘௬
±

𝜌଴𝐶଴𝑘଴
= 𝑗𝑐𝑜𝑡 ቆ

𝑘௬
±ℎ

2
ቇ ቆ1 ∓

𝑀𝑘௭
±

𝑘଴
ቇ

ଶ

         (6.43𝑎) 

and 

𝑍௪,

𝜌଴𝐶଴

1

𝑘଴𝑟଴
= −𝑗

𝑗଴𝑘௥
±𝑟଴

൫𝑘௥
±𝑟଴൯𝑗଴൫𝑘௥

±𝑟଴൯
ቆ1 ∓

𝑀𝑘௭
±

𝑘଴
ቇ

ଶ

         (6.43𝑐) 

𝑢௭(𝑍) =
1

𝜌଴𝐶଴
ቊ

𝑘௭
ା

𝑘଴ − 𝑀𝑘௭
ା

 𝐴𝑒ି௝௞೥
శ௭ −

𝑘௭
ି

𝑘଴ + 𝑀𝑘௭
ି

 𝐴𝑒ା௝௞೥
ష௭ቋ      (6.44) 

So, you can just M is equal to 0 and find out things you can solve for k r and then you 

can find out k z is root over k naught square minus k r square to get the transfer matrix 

for infinite length duct or not assuming any reflections. 

= [1/(𝑌ା + 𝑌ି)] ൣ൛𝑌ା𝑒ି௝௞೥
శ௟ + 𝑌ି𝑒ା௝௞೥

ష௟ൟ 𝑝(0)

+ 𝑌ା𝑌ି൫𝑒ି௝௞೥
శ௟ − 𝑒ା௝௞೥

ష௟൯ 𝑉௭(0)൧  (6.53) 

Similarly, 

𝑉(𝑙) = [1/(𝑌ା + 𝑌ି)] ൣ൛𝑒ି௝௞೥
శ௟ − 𝑒ା௝௞೥

ష௟ൟ 𝑝(0)

+  ൛𝑌ି𝑒ି௝௞೥
శ௟ + 𝑌ା𝑒ା௝௞೥

ష௟ൟ 𝑉௭(0)൧  (6.54) 
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൥
𝑝(𝑙)

 
𝑉௭(𝑙)

൩ =   

⎣
⎢
⎢
⎢
⎡ 𝑌ା 𝑒ି௝௞೥

శ௟  + 𝑌ି 𝑒ି௝௞೥
ష௟

𝑌ା + 𝑌ି
     

𝑌ା𝑌ି (𝑒ି௝௞೥
శ௟ − 𝑒ା௝௞೥

ష௟)

𝑌ା + 𝑌ି
 

𝑒ି௝௞೥
ష௟ − 𝑒ି௝௞೥

శ௟

𝑌ା + 𝑌ି
                      

𝑌ି 𝑒ି௝௞೥
శ௟  + 𝑌ା 𝑒ି௝௞೥

ష௟

𝑌ା + 𝑌ି
 ⎦
⎥
⎥
⎥
⎤

൥
𝑝(0)

 
𝑉௭(0)

൩     (6.55) 

which can be inverted to yield the desired transfer matrix relation 

൥
𝑝(0)

 
𝑉௭(0)

൩ =  
𝑒௝൫௞೥

శି௞೥
ష൯

𝑌ା + 𝑌ି
 ቎

𝑌ି 𝑒ି௝௞೥
శ௟  + 𝑌ା 𝑒ି௝௞೥

ష௟     𝑌ା + 𝑌ି ൫𝑒ି௝௞೥
ష௟ − 𝑒ି௝௞೥

శ௟൯
 

𝑒ି௝௞೥
ష௟ − 𝑒ି௝௞೥

శ௟                      𝑌ା 𝑒ି௝௞೥
శ௟  + 𝑌ି 𝑒ି௝௞೥

ష௟  

቏ ൥
𝑝(𝑙)

 
𝑉௭(𝑙)

൩  

                                                                                                                                (6.56)   

Normal Impedance of the Lining 

For the idealized case of plane wave incident on a locally reacting lining of uniform 

thickness d backed by a rigid wall, the impedance encountered by the plane wave, Zw, is 

given by Equation 2.26 that is 

So, this can be related to that and the their expressions for the Z Z omega which is 

basically you know given by Y in terms of  Z୵ = −jY୵ cot (k୵d)   that is a characteristic 

impedance of the material and the wave number and they are well established formulas 

for obtaining that and they given in Ver’s paper, Berenice and Ver. 

𝑘଴ = 𝜔/𝐶଴  𝑎𝑛𝑑 𝑌଴𝜌଴𝐶଴  

𝑌௪

𝜌଴𝐶଴
= ቎

1 + 0.00485(𝐴)଴.଻ହସ − 𝐽0.087(𝐴)଴.଻ଷ                  𝑓𝑜𝑟 𝐴 < 60
0.5𝐴/𝜋 + 𝐽1.4

{−1.466 − 𝐽0.212𝐴}ଵ/ଶ
                                       𝑓𝑜𝑟 𝐴 > 60

          (6.76)  

𝑌௪

𝜌଴𝐶଴
= ቈ

−𝑗0.189(𝐴)଴.଺ଵ଼ହ + 1 + 0.0978(𝐴)଴.଺ଽଶଽ      𝑓𝑜𝑟 𝐴 < 60

{1.466 − 𝐽0.212𝐴}ଵ/ଶ                                      𝑓𝑜𝑟 𝐴 > 60
           (6.77) 

So, it is given in the these non dimensional expressions which are obtained 

experimentally or through lot of simulations then they are two expressions given in 

Selamet’s paper also. So, once we know it for a given material we can find out the Z w 

value and solve for that. 
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Figure 6.6 Measurement of the transmission loss of an acoustically absorptive duct 

So, transmission loss for such a thing for a for a you know this kind of a muffler is 

basically you know it can be it can be thought or something like 8.68 that is simple 

algebraic simplification time alpha naught where alpha naught is the pressure attenuation 

constant for a low least order mode and for the muffler that I showed here this one the 

transmission loss would actually sort of you know look like it is given here. 

TLent is TL due to the area change at the entrance, 

Tll is TL due to the absorptive section of length l, and 

TLex is TL due to the area change at the exit of the absorptive section. 

𝑇𝐿 ≃  𝑇𝐿௟              (6.82)   

𝑇𝐿௟   = 20 log ฬ
𝑝(0)

𝑝(𝑙)
ฬ  ≃ 20 log  (𝑒ఈ଴௟) = 8.68𝛼0𝑙             (6.83) 
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Figure 6.9: Effect of model on transmission loss of a 1-m lined circular duct with d = h 

= 50mm, protected by a steel plate with porosity of 0.39. 

You know low frequencies are you know that dissipative mufflers are sort of less 

effective at low frequencies and more effective towards higher frequency. So, you 

typically combine reactive muffler with hybrid muffler a hybrid sorry, reactive muffler 

with your dissipative thing. You typically put that dissipative element in the downstream 

of the reactive elements and control the attenuation, after the first cut on frequency where 

high order mode start and that there is a difference between local reaction and bulk 

reaction. 

 

Figure 6.10: Effect of model on transmission loss of a 1-m lined circular duct with d = h 

= 50 mm, protected by 0.04mm thick Mylar layer. 

So, these are the things for a circular duct with different values of d and h, certain 

parametric values. 

And then they are things like; I will quickly go to parallel baffle mufflers where what 

happens here that in the flow passage, the flow you know this split into number of parts, 

number of segments, depending upon baffles or which are lined baffles and as the waves 

goes through these baffles they are attenuated and typically an engineering from an, 

944



purely from an engineering perspective what happens is that you know have a look at 

this graph. 

𝑆

𝑃
=  

𝑊 × 2ℎ

2𝑊
= ℎ 

Now acoustic attenuation is known to be proportional to P=S, the ratio of the lined 

perimeter and flow area, and, of course, length l. Thus one could write 

𝑇𝐿௟ = 𝑇𝐿௛ ∙ 𝑙/ℎ 

 

Figure 6.14: Normalized attenuation versus frequency curves for parallel-baffle 

mufflers, illustrating the effect of percentage open area on attenuation bandwidth for 

𝑅 =
ாௗ

ఘబ஼బ
= 5  (adapted from [7])  

So, this is the graph where we can probably do some engineering based calculation.  

945



 

Figure 6.13 Parallel-baffle ducts or mufflers 

 

So, h is the; h is the h is nothing, but the passage two times 2 h the passage length 

between the two successive baffles. w you know, w is the overall width and is much 

greater than the thickness of the and it is much greater than the passage length and d is a 

is the thickness of the baffle ok. 

So, and the h the and another parameter one very important parameter in such a context 

is basically the attenuation produced per unit length h, per unit length per unit length h of 

the of the baffle, it is called the specific attenuation and so once we know the length, 

overall length or attenuation produced per unit thickness of the of the baffle. 

𝑆

𝑃
=  

𝑊 × 2ℎ

2𝑊
                       (6.97) 

Now acoustic attenuation is known to be proportional to P /S, the ratio of the lined 

perimeter and flow area, and, of course, length l. Thus one could write 

   𝑇𝐿ଵ = 𝑇𝐿௛ . 𝑙/ℎ                 (6.98) 
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So, once we know it, we can multiply this by the overall length and find out the total 

attenuation produced over a length l, once we know the specific attenuation for a 

thickness equal to h, where h is the half the transverse dimension of the flow passage as I 

was mentioning. So, once we know T L h , we can find out for any length T L. So, how 

do you find out once we are given different h values and different d value? So, from 

these charts. 

So, once you know what is d value for a perforated sorry, parallel baffle muffler so, 

parallel baffle muffler as it looks like here, you know this is the thickness of the 

perforated sorry, the thick baffles and 2 h is the twice is the thickness of the air passages 

through, air goes through the passage is where I am pointing my mouse cursor here, here, 

and this is the absorbent material of each of thickness d ok. 

So, we look at a specific transmission loss for given d by h say for a d by h 5 is the ratio 

of the thickness of the thickness of the baffle, dissipative baffle sheet to the passage 

distance is 5 so that is you know that is basically this curve and it is plotted versus non 

dimensional frequencies. 2 h passage length f / C0 sound speed ok. So, f / C0 is the 

frequency by sound speed. 

So, basically by second and this is meter by this is meter by second and this is c naught. 

So, this is also meter by second so, a eta is the non-dimensional frequency is apologies 

for the small confusion. So, if we consider d / h 5 and if you take a particular non 

dimensional frequency say 0.1 and we know the value of; if we know the value of h and 

d. So and d / h we know that the dimensions are in the d/ h is equal to 5 or something like 

that. 

So, we consider that curve and for a given non dimensional value, we find out the 

specific attenuation, then multiplied that with the length, overall length that is required or 

the muffler to get the attenuation at that frequency ok, from these non-dimensional curve. 

So, suppose if it is between 5 and 1 so the 5 of 5 or 2 or something like that. So, we 

interpolate between for a given frequency we can interpolate between this value and this 

value to get a specific d l h and multiply with the length. Figure 6.14 as a function of the 

normalized frequency, 

𝜂 ≡ 2ℎ𝑓/𝐶଴ 
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for parallel-baffle mufflers, with baffles of a normalized flow resistance, 

𝑅 ≡ 𝐸𝑑/𝜌଴𝐶଴ = 5 

So, using such a thing you can find out the from an engineering perspective what will be 

the attenuation for a parallel baffle muffler. So, these are the normal attenuation curves 

for this thing. 

Now, all this parallel baffle muffler concept and line chambers, plenum chambers, line 

ducts, all these things have to be you know considered in the much greater detail more 

formally, this is called this is not really something that I was justice to, because of lack of 

time. 

What we really need to do in a next course is that consider at length, dissipative mufflers, 

hybrid mufflers and combination of this dissipative mufflers with this reactive mufflers 

to control specially high frequency noise. So, and; obviously, one challenge is always 

there to design or get an absorbent material which can control low frequencies as well, 

you know ah. 

So, basically the idea is that we will cover a lot of topics in the next advanced course, but 

for now, I will just sort of stop here and in the next class we will summarize all that has 

been done and the course so far. So, I hope you really like the course and with this thing 

it brings and to the technical and to the technical presentation of the course. 

So, hope to see you very soon in the future and please send your feedbacks. So, thanks a 

lot who attending, I am very grateful for all of you guys who have taken the course and 

do send your feedback and do complete the assignments and hopefully people who are 

registered for the exam should do well in the exam and thanks a lot. 
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