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Welcome to the final week of this NPTEL course on Muffler Acoustics. 

So, we are into week 12 of this course. So, just to keep all of you guys updated what we 

will be doing in this final week on this course is basically do a couple of things, do 

couple of important things. First is your, analyze your extended inlet and outlet system 

using an analytical formulation.  

𝑙ଵ = 𝑙ଶ + 𝑙ଷ = 𝐿  

You know all this in the last week, we just had a glimpse of 3D analysis, where we 

presented your piston driven model for rectangular and circular chamber mufflers, where 

we did you know side inlet and side outlet; sorry end inlet and end outlet systems and 

talked about end inlet, side outlet, side inlet, side outlet systems presented some 

MATLAB simulations. 

So, well, what we intend to do really in this week is basically talk about the extended 

inlet and outlet system which is basically something like this you know things like this.  

Extended-Inlet and Extended-Outlet  

 

So, we will consider only a circular chamber muffler and what we do let us consider this 

region A, B, C, D and E and we will follow all the conventions that were that are 
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presented in Selamet’s paper which I am going to present to you shortly along with this 

derivation.  

So, this is an extended inlet and outlet system as we have been you know reading a lot 

about this thing, since week I guess 4 onwards. So, there is no perforated pipe. So, this 

kind of a thing is not there ok; this kind of a thing is not there, it is just extended inlet 

and outlet system. 

So, all this while you know in the last ever since we presented the system in week 4, we 

have considering only planar wave propagation and you know to accommodate for the 

high order mode effects, you know we use to incorporate some end correction things. 

Basically, you know having the notions that the geometric length, let us say the length is 

l1 here ok, the physical length, the actual length and this is your l 2, the physical length 

ok. These end plates are rigid. So, this annular plate is rigid ok, that is important. 

So, the point is that we were considering the physical length l 1, l 2 and to physical 

length these physical length, we were adding something called a end correction. So, the 

actual length for the acoustic length or the effective length that was slightly larger than 

the physical or geometric lengths by certain factor l. 

Let us,  

 𝑙ଵ௔ = 𝑙ଵ + 𝛿  

 𝑙ଶ௔ = 𝑙ଶ + 𝛿      

and fortunately, the end correction that is delta is the same even at the outlet. So, this was 

again delta. 

  𝐿 − 𝑙ଵ − 𝑙ଶ  − (2𝛿) 

The idea is that this small you know to account for the higher order modes effect, this 

delta term is added which basically increases the length or the increase the length and 

hence, it is called the acoustic length. 

And as a result, the peaks that occur in the transmission loss spectrum, they would occur 

slightly before then just by considering the length physical length l 1. So, you know in a 

very clever in a very subtle manner, we used to consider the higher order mode effect 
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that is generated at the extended inlet and outlet systems. So, all these things are 

happening.  

Now, however, if you want to now this the question is that how do you determine these 

deltas at the inlet and outlet? So, one can do a proper finite element full three-

dimensional finite element simulation, something that we have not covered in this course 

so far; possibly in the next advanced course on muffler acoustics that I might offer. 

All these topics numerical treatment of these mufflers might be considered, will be 

considered. Along with some experimental techniques, we will talk about that in the very 

last lecture of this course, lecture 5 of week 12, final lecture, we will talk more about 

that. But for now, you know what I just tell you these deltas were computed the once the 

expressions presented in the paper by Chaitanya and Munjal appearing in Applied 

Acoustics, that was done using three dimensional finite element analysis. 

But there are other techniques also like analytical techniques or you know things like 

mode matching techniques, numerical mode matching techniques which is also I have 

kind of reserved that topic exclusively in the next course. But basically, your analytical 

mode matching technique is something that will be used to determine the overall 

transmission loss spectrum for such a system.  

And in the process, we will find out we can evaluate these deltas in a from the analytical 

transmission loss spectrum by matching the peaks. And then, one can obtain you know 

the exact the corrected spectrum. What we will do is that we will keep the scope of the 

next 2 or 3 lectures of this week very sort of limited to analyze the simple system and not 

go too much into detail. 

So, in this particular week, sorry in this particular lecture, lecture 1 here, what we will do 

is that we will set up the system of equations required to do the mode matching and this 

might spill over this and this all these things might spill over to the lecture the lecture 2 

as well.  

So, let us see how we proceed. So, these regions are symbolically denoted by A, B 

alphabets; you know A, B, C, D, E and all that they are circular in shape; the ports are 

circular; the chamber is circular and everything is considered rigid. So, there is no 

structural compliance as usual. Now, how about we start writing down the equations, the 
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modal summation solution in each of these regions A, B, C, D and E in terms of the 

unknown modal coefficients. So, let us begin with the port A; you know let us begin with 

the port A. 

So, what we get essentially is you know as usual we have Helmholtz equation in 

cylindrical polar coordinate system.  

(∇ଶ + k଴
ଶ) 𝑝෤ = 0    𝑝 =  ෍  

ஶ

௠ୀ଴,ଵ

෍   𝐼 ൬
𝛼௠௡௥

𝑘଴
൰

ஶ

௡ୀ଴,ଶ

 

We will not employ rigid wall boundary conditions here or here. I mean in the sense that 

we will express this in terms of forward and backward travelling waves.  

when you will have your and note another thing that I want to tell you here which I sort 

of forgot. Sorry for that is that you know this such a for such a configuration, only the 

axisymmetric mode will propagate. 

So, what it means that only you know m = 0 mode that is Bessel functions or for in this 

annular region Neumann functions, so only with such a thing will propagate ok.  

𝐽଴ ൬
∝଴௡

𝑘଴
𝑟൰     𝑛 = 0,1,2,3,4,5,6 

So, basically cos m theta sin m theta azimuthal mode or circumferential modes will not 

be there because such modes are not sort of excited ok. So, we will get this sort of a thing 

ok and then now, what we can do is that write down the solution. 

(∇ଶ + k଴
ଶ) 𝑝෤ = 0 

So, let me just write down the modal solution for region A which is  

𝑝෤஺ (𝑟,   𝑧) =  ෍   

ஶ

௡ୀ଴

൫𝐴௡
ା 𝑒ି௝௞೙௭ + 𝐴௡

ି𝑒ି௝௞೙௭൯𝜓௡(𝑟)  

So, this will become n is equal to 0 to infinity and A n plus; so, A n plus means the 

waves that goes in the along the positive propagates along the positive direction and A 

minus, you will see will be the wave that propagates in the negative z direction and we 

will follow that convention for all the region. 
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So, k n, I will tell you what k n is and A n again, this is the negative propagating wave 

coefficient and this is your 𝜓n (r) ok. So, as usual  𝑗 = √−1. So, keep that aside and 𝐴௡
ା 

and 𝐴௡
ି are the modal amplitudes ok and for the region A, 𝜓 n is just the Bessel function.  

So, let us write it down. Let me just make some small correction here. Let me call this 

psi n A; n is the nth modal this thing and psi A means for the Ath region A here the port 

A here; and this is  

𝜓௡
஺ = 𝐽଴ ൬

𝛼௠௡

𝑅଴
𝑟൰   

 So, I will just drop m. So, initially it was m n.  

So, mn by let us say the radius of this thing is let us have equal radiuses let us say A and 

A of these ducts as is usually the case and the diameter or the radius of this is you know 

that the radius of this can be you can think of this as 𝑅଴ and actually this can be thought 

of as small  𝑟଴, small 𝑟଴ ok; a small change. Now, the thing is this is 𝑅଴, 𝑟଴ and well. 

Now, the thing is that we will put directly m is equal to 0 and n. So, we will just drop m, 

we just call it alpha mn in with the understanding that alpha mn for alpha 0 is this thing 

is 0n. So, n can be 1, we can have 01, actually 00 that is the planar wave which is 0, 

alpha 01, 02, 03. 

nm,  m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 

n = 0 0 1.8412 3.0542 4.2012 5.3176 6.4156 7.5013 8.5778 9.6474 

n = 1 3.8317 5.3314 6.7061 8.0152 9.2824 10.5199 11.7349 12.9324 14.1155 

n = 2 7.0156 8.5363 9.9695 11.3459 12.6819 13.9872 15.2682 16.5294 17.7740 

n = 3 10.1735 11.7060 13.1704 14.5858 15.9641 17.3128 18.6374 19.9419 21.2291 

n = 4 13.3237 14.8636 16.3475 17.7887 19.1960 20.5755 21.9317 23.2681 24.5872 

n = 5 16.4706 18.0155 19.5129 20.9725 22.4010 23.8036 25.1839 26.5450 27.8893 

n =6 19.6159 21.1644 22.6716 24.1449 25.5898 27.0103 28.4098 29.7907 31.1553 

n =7  22.7601 24.3113 25.8260 27.3101 28.7678 30.2028 31.6179 33.0152 34.3966 

n =8 25.9037 27.4571 28.9777 30.4703 31.9385 33.3854 34.8134 36.2244 37.6201 

Table 26.  The Roots of the derivative of Bessel function of the first kind: non-

dimensional cut-on frequency in a circular cylindrical waveguide D2 = D1 = D0 (e = 0, ξ 

→ ∞)  

So, based on the based on the monograph that I have shown, let me just show to you my 

the springer monograph the table. So, you know in this thing as we see from this 
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particular the highlighted; I am not able to highlight, but basically where I am pointing 

my mouse at, the values shown in red these are all axisymmetric modes.  

Other one, these are all the ones shown here these are the resonance frequency or the 

circumferential mode and from here onwards all these modes, you know for m not equal 

to 0, m = 1 onwards and n = 1 onwards, you have your cross modes.  

For m = 1, 2, 3, 4 and n being 0, these are circumferential modes; but we will be 

considering only m = 0, n = 0 that is the planar wave mode for which j is 0 j 0 of 0 that is 

argument in the argument of the Bessel function of order 0 is 0, then we just have unity.  

So, basically this is the plane wave mode and it comes out nicely mathematically. This is 

the first radial mode, second radial mode, third radial mode and so on. So, these are the 

radial modes and that is what we will be dealing with. So, I straight away write this as 

alpha n. So, instead of all these, we will just replace this by 

𝛼௠௡   𝑓𝑜𝑟 𝛼଴𝑛    

⎣
⎢
⎢
⎢
⎡

𝛼଴𝑛   𝛼଴଴ = 0
   𝛼଴ଵ

  𝛼଴ଶ

             𝛼଴ଷ     𝛼௡

            𝑛 = 0,1,2,3,4  ∞

  

And till ∞, we will consider only the first few modes.  

So, 
ఈ೙

ோబ
𝑟, this is your modal summation ok. This is what we get. Now, 𝐽଴ ቀ

ఈ೘೙

ோబ
𝑟ቁ ok and 

now, what we need to do is that we have figured out or expanded the solution for this 

region and kn is something that we need to worry about. So, k n, there is no mean flow. 

Mean flow, of course, is absent here; I just forgot to mention here, mean flow is absent 

or we just ignore stationary medium is considered; stationary medium and now you 

have your kn. So, what is  

𝑘௡ = ඨ𝑘଴
ଶ − ൬

𝛼௡

𝑙଴
൰

ଶ

 

So, clearly when now this is something important, when k under what conditions do 

higher order modes propagate? Now, when n = 0, like I was mentioning you know alpha 

0 is 0. So, kn always propagates and this is the argument is 1 here.  
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𝜓଴
஺ = 𝐽଴(0) = 1   

So, it is a planar wave mode and 𝑘௡ = 𝑘଴ . It is very simple to see because 𝛼଴ = 0, that 

that we have seen from the monograph.  

Now, when alpha when n is not 0; n is 1, 2, 3 whatever it is, then the real business starts 

and we are into your proper three-dimensional considerations. At least the first few 

modes should be considered because it is not possible to consider you know infinite set 

of the such modes, we will consider only the finite sets that set of mode say 5 modes in 

the inlet pipe and maybe 10 modes in the chamber and so on or in the annular cavity. 

Let us have some representation n here and when  

𝑘଴ >  
𝛼௡

𝑟଴
       

𝑘଴𝑟଴ > 𝛼௡ 

𝑘଴𝑟଴ < 𝛼௡ 

that is excitation frequency is greater than this or k naught r once you know once you 

know f naught, we can know k naught. So, if the excitation non dimensional excitation 

frequency is greater than the non-dimensional resonance frequency of that particular 

mode say the first radial mode, then, the first radial mode will propagate.  

If not, then the if you have such a thing you know, then the mode will not propagate. If 

this is less than n, then it is evanescent; if it is greater than equal to this thing, then these 

modes will propagate, it is just about to propagate when this is the equality occurs. So, 

basically what happens is that if you have greater than k naught is greater than this thing, 

then there is no problem.  

It is a this is a complex exponential what we have is a real number ok. There is no 

problem in that. But now, when k naught is such that this is less than alpha n, then the 

trick happens that you know root over k naught r square, this becomes a purely 

imaginary number. 

𝑘௡ = √−1  ඨ൬
𝛼௡

𝑘ଵ
൰

ଶ

− 𝑘଴
ଶ  = 𝑗ඥ(−) 
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So, this is now this is greater ok. So, here you will have j times the entire argument 

which is of some positive number. So, why am I telling you this? Because j times, so 

here you will have a purely real part of your purely real part which is actually 

exponentially decaying or exponentially growing.  

So, depending upon the convention that we you know follow, if we consider this as you 

know root over minus 1 as you know this is j; you know if we consider this as j square 

root, we can also consider - j depending upon what we want. So, however, if we consider 

this as j, then j times j. 

So, you know the. So, basically A n, coefficient associated with A n will become 

𝐴௡
ା 𝑒ି௝𝑗ඨ൬

𝛼௡

𝑘ଵ
൰

ଶ

− 𝑘଴
ଶ  𝑧 = 𝐴௡

ା 𝑒(ି)௭ 

So, something positive you know. So, this is something positive and this of course, is 

multiplied by z right.  

So, this will grow; this will grow in if over space and hence, this will this can cause 

numerical problems. On the other hand, if you have things like this is plus this is minus 

as I was mentioning. If you have things like well, 

𝐴௡
ା 𝑒ି௝𝑗ඥ(−)  𝑧 = 𝐴௡

ି 𝑒(ି)௭ 

So, this is decaying exponentially alright; 𝐴௡
ି this thing. 

So, there is no problem. There should not be any numerical problems with this term, 

there should be, there would be a problem. So, a simple a clever take which is trick 

which is not quite given in books, but I am trying to present that in a very simple manner 

is that let us have a change of variable.  

We will when we set up the equations, we will have that. So, such a thing you know 

wherever such a thing would occur, we will and not at the inlet pipe when you have z = l. 

At z = l, in the other section because you know you see we are fixing the coordinate 

system z  =  0 here for this C part and z is equal to you know let us let me call this z = l3. 
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Now, l 1 physical length; l 1 + l 2 + l 3 = L. This thing will not change even when you put 

this. So, the effective length will become L – l1 - l2 – (2δ); the clear length or the length 

between from tip to tip. So, the effective length effective clear length will be slightly 

different; but that is a later part of the story.  

Main thing is that we are fixing z = 0 for the region here and z = l3 for this region and 

then other things will follow. But what I am saying is that at some stage, we will have to 

make a change of variable. When z  = 0, then there is of course, no problem this is unity 

and things will be relatively simple; but for the chamber C, we might have to do 

something different. So, we will come to it. 

So, this is this was the story for the duct A ok and for duct and annular region, now 

similar actually similar thing would be there for duct E, the solution for you know the 

port E, let me deal with that thing in a I mean since I am dealing with the inlet and outlet 

ports; how about I just write down the solution for that as well.  

Now,   𝑝෤ா  (𝑟, 𝑧) =  ∑ ൫𝐸ା𝑒ି௝௞೙௭ + 𝐸ି𝑒ି௝௞೙௭൯ 𝜓௡
ா  (𝑟)ஶ

௡ୀ଴    

A are pretty much the same. So, we get this sort of a thing and we have this guy ok. 

Now, the same things would  

𝜓௡
ா  (𝑙) =  𝐽௡  ൬

𝛼௡

𝑟଴
𝑟൰ 

And actually I guess, I made a small mistake here. This is sorry; this is r0 here. I am sorry 

and yeah, everything else seems to be alright. 

  𝑘௡ = ඨ𝑘଴
ଶ  ൬

𝛼௡

𝑟଴
൰

ଶ

  

And this is 𝑟଴. We get this sort of a thing and k n is the same; k naught square minus 

alpha n by r naught square, we get the same thing. Now, we have this. Now, how about 

the chamber region? Let us worry about the chamber region now that is basically C 

region and here also, you know like I was mentioning in the last lecture of week 11 that 

you know annular region is included for A, E as well as C. So, the Neumann function 

will not be there; there will only be Bessel functions. 
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So, under such a situation, the analytical solution for the chamber region that is C is 

given by  

𝑝෤஼  (𝑟, 𝑧) =  ෍ ൫𝐶௡
ା𝑒ି௝௞೙

మ௭ +  𝐶௡
ି𝑒ି௝௞మ

೙ ௭൯ 𝜓௡
ா  (𝑟)

ஶ

௡ୀ଴,ଵ,ଶ

   

Now, 

𝜓௡
஼  (𝑟) =  𝐽଴  ൬

𝛼௡

𝑅଴
𝑟൰   

𝑘௡
஼ = ඨ𝑘଴

ଶ − ൬
𝛼௡

𝑙଴
൰

ଶ

 

So, well, instead notice the difference. Here actually this can you can think of this as kn E 

and kn A; kn E and kn A are pretty much the same. They are the same because the radius 

of the inlet and outlet pipe are same; but in this thing, this is R0. So, R0 is different ok 

So, typically, we consider in for automotive muffler expansion chambers of expansion, 

this ratio can be something like or the radius ratio expansion ratio can be really varies 

from 3 to something like 6 typically and so, the area ratio can be something like 9 to 36 

or something like that.  

൬
𝑘଴

𝑟଴
൰ =    

3 𝑡𝑜 6
 

9 𝑡𝑜 36
  

But the main trick now is what do you do for this thing. Now, there is one thing that I 

want to make it very clear that this analytical business of analytically finding or 

analyzing these things will work only for such a configuration, when you have a 

concentric pipe. You know you see you have a you have a concentric pipe. So, because it 

is very simple to apply this boundary condition, at r is equal to for the annular region B, 

at r is equal to r0, we are assuming mind you the thickness of the wall is 0 that is a it is a 

infinitesimal wall, there is no wall thickness for this one ok.  

But in actuality, in actual application, you will have certain thickness. So, those effects 

can be considered sort of you know in advanced courses or you know in as more 

advanced topics. So right now, just for mathematical simplicity, we are ignoring tw 
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although some authors like Chaitanya and Munjal, they have considered; they have 

employed finite element formulation taking into account the finite thickness of the wall 

to get the end correction ok. So, that they have done. 

So, what we will do is that we will have to worry about the analytical solution for the 

region B and D. Analytical cavities, they will be the same; the modal summation at least 

based on the length l 1, l 2; there the net pressure field will be different. But again, like I 

said this analytical thing is only available only sort of suitable or amenable to analytical 

solution, if the ports are concentric.  

Because at r is equal to r0, the you have the condition  
డ௣

డ௥
= 0  and this is also true for r is 

equal to capital R0; then, the radial velocity is also 0. So, the idea is that we can find out 

a set of orthogonal function for such a thing you know this will. So, this particular form 

will remain same. So, for region B and D;  

For region say B, we, 

𝑝෤஻ (𝑟, 𝑧) =  ෍ ൫𝐵௡
ା𝑒ି௝௞೙

ಳ௭ + 𝐵௡
ି𝑒ି௝௞ಳ

೙ ௭൯ 𝜓௡
஻ (𝑟)

ஶ

௡ୀ଴,ଵ,ଶ

   

𝑘௡
஻ඨ𝑘଴

ଶ − ൬
𝐵௡

𝑘଴
൰

ଶ

,        𝑤ℎ𝑒𝑟𝑒 

We have only axisymmetric mode in the annular cavity as well and your psi n B 

function, let me write down this guy first. So, this is nothing but your Bessel function, 

this thing where, 

𝜓௡
ఉ

= 𝐽଴ ൬
𝛽௡𝑟

𝑘଴
൰ −

𝐽ଵ (𝛽௡)

𝑁ଵ (𝛽଴)
 𝑁଴  ൬

𝛽௡𝑙

𝑘଴
൰   

and here, you will have  

𝐽ଵ ൬𝛽଴

𝑙଴

𝑘଴
൰ −

𝐽ଵ (𝛽௡)

𝑁ଵ (𝛽௡)
 𝑁ଵ  ൬

𝛽௡𝑙଴

𝑘଴
൰  = 0 

Now, these are all obtained by some identities for Bessel function, and here you will 

have the Neumann function for the first time because we have the origin is not sort of 

845



included here. So, this is this and Neumann function βn / R0 ok. We will get this sort of a 

thing. And what about the other things? You know you have this. So, beta you know is 

obtained by solving this set of equation and in my previous papers, I have listed down for 

typical values you know this is βn r0  and this is R0  here and here, we have J1 βn / N1 and 

beta n into N1. So, this equation has to be solved numerically only ok. 

For a circular cylindrical chamber with a rigid concentric pass tube,  

𝑍ா௞ா௜ =
𝑗𝑘଴𝐶଴

𝑆ா௞𝑆ா௜

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ෍  

ஶ

௟ୀ଴,ଵ,ଶ⋯

෍  ෍  

ஶ

௡ୀ଴,ଵ,ଶ⋯

ஶ

௠ୀ଴,ଵ,ଶ⋯ 

ቌ ඵ cos(𝑚𝜃)

 

ௌಶೖ

൬𝐽௠ ൬ 𝛼௠௡

𝑟

𝑅௢௨௧௘௥
൰   

 

−𝛾௠௡ఉ
ଵ 𝑁௠

 ൭ 𝛼௠௡

𝑟

𝑅௢௨௧௘௥
൰൱ 𝑟𝑑𝑟𝑑𝜃ቇ

 

× ቆඵ  cos (𝑚𝜃) 
 

ௌಶ೔

  ൬𝐽௠ ൬ 𝛼௠௡

𝑟

𝑅௢௨௧௘௥
൰  

 

−𝛾௠௡ఉ
ଵ 𝑁௠

 ൭ 𝛼௠௡

𝑟

𝑅௢௨௧௘௥
൰൱ 𝑟𝑑𝑟𝑑𝜃ቇ

 ×______________________________________

ቊ൬
𝑙𝜋

𝐿
൰

ଶ

 + ൬
𝛼௠௡

𝑅௢௨௧௘௥
൰

ଶ

− 𝑘଴
ଶቋ 𝑁௟,௠,௡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

         (19) 

so this one this is this was how the Green’s function look like, but we are not really 

considering the Green’s function. The form is the same you know J, Nm;  is again here I 

am calling it for n even for nonzero I mean nonzero values N m that is 1 2 3 4, but for the 

x concentric extended inlet and outlet m is only 0. 

−𝛾௠௡ఉ
ଵ =  

𝐽௠ିଵ൫𝛼௠௡ఉ൯ − 𝐽௠ାଵ൫𝛼௠௡ఉ൯

𝑁௠ିଵ൫𝛼௠௡ఉ൯ − 𝑁௠ାଵ൫𝛼௠௡ఉ൯
          (20) 

And 𝛾 
ଵ is basically this thing. These are obtained you know these values, these β values 

were obtained from solving the Eigen equation or the equation subject to rigid wall 

condition. 

And for different values of beta, I have sort of tabulated some of the higher order mode. 

So, let me just go quickly to the table and show you know these things to you so well. 
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Table 3. Non-dimensional cut-on frequencies (rigid wall modes) of a circular cylindrical 
chamber without pass tube (𝛽 = 0) and that with a concentric rigid pass tube with 
𝛽 = {02.05} 
 

nm,  m = 0 m = 1 m = 2 m = 3 m = 4 

n = 0       

𝛽 = 0 
𝛽 = 0.2 
𝛽 = 0.5 

 

0 
0 
0 

1.8412 
1.7051 
1.3547 

 

3.0542 
3.0347 
2.6812 

4.2012 
4.1991 
3.9578 

5.3176 
5.3173 
5.1752 

n = 1 

𝛽 = 0 
𝛽 = 0.2 
𝛽 = 0.5 

 

3.8317 
4.2358 
6.3932 

5.3314 
4.9609 
6.5649 

6.7061 
6.4950 
7.0626 

8.0152 
7.9638 
7.8401 

9.2824 
9.2734 
8.8364 

n = 2 

𝛽 = 0 
𝛽 = 0.2 
𝛽 = 0.5 

 

7.0156 
8.0551 
12.6247 

8.5363 
8.4331 
12.7064 

9.9695 
9.5495 
13.1704 

11.3459 
11.1060 
13.3476 

12.6819 
12.6102 
13.8923 

n = 3 

𝛽 = 0 
𝛽 = 0.2 
𝛽 = 0.5 

 

10.1735 
11.9266 
18.8889 

 

11.7060 
12.1651 
18.9427 

13.1704 
12.8997 
19.1032 

14.5858 
14.1493 
19.3684 

15.9641 
15.7127 
19.7354 

n = 4 

𝛽 = 0 
𝛽 = 0.2 
𝛽 = 0.5 

 

13.3237 
15.8210 
25.1624 

14.8636 
15.9932 
25.2035 

16.3475 
16.5193 
25.3224 

17.7887 
17.4324 
25.5214 

19.1960 
18.7548 
25.7978 

 

Non-dimensional cut on frequencies for a circular chamber without a pass tube and that 

with a pass tube. So, this is essentially a you can instead of a pass tube, it is a basically 

concentric annular region and β = 0.2 plane wave mode always exist. But let us focus 

only on the column here, these things are not quite relevant right now.  

What it means basically is that for the higher order modes, the first radial mode for a β =   

0.2, 0.5. They get cut on at a much higher frequency compared to the circular cylindrical 

chamber. I mean for 0.2 is this is small difference.  

As we keep increasing beta there, the ratio of the inner the that is basically r naught to 

small r0 to R0 value, if this ratio keeps increasing, then we have in the radial modes, the 

excitation frequency keeps getting shifted in the higher frequency range as its seen by 

these values ok.  
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So, such values have been prepared also for me and we will what we will do is that right 

now, we will just consider we will just consider this guy and then, we will use that and 

you know and the modal solution for the region D will also look exactly like region B. 

So, instead of B is you will have  

൛𝐷௡
ା𝑒ି௝௞೙

ವ௭ + 𝐷௡
ି𝑒ି௝௞ವ

೙ ௭ൟ 𝜓௡
஽  (𝑟) 

This will remain the same; you know then, you can consider find set of modes. So, once 

we got the modal solution, what to do now? How do we proceed ahead? ok. So, for 

proceeding ahead, we need to have the matching condition. So, right now for the first 

time after all this background, I am presenting to you some matching condition. 

So, let me draw this guy again. You know let us focus only on the extended inlet. This is 

the region A, B and C. 

 

 𝑝෤஺|௭ ୀ଴   =   𝑝෤஼|௭ ୀ଴ 

   𝑝෤𝑩|௭ ୀ଴   =   𝑝෤஼|௭ ୀ଴ 

and because the field continuity must always be satisfied. Over this region here, the 

pressure is the same and for this one at each and every point, the pressure in the annular 

port just at z is equal to 0; the same as z is equal to C ok.  

So, we get that and what about the velocity condition? Velocity, 

 𝑈෩஺ห
௭ ୀ଴

   =    𝑈෩஼ห
௭ ୀ଴

 

 𝑈෩஻ห
௭ ୀ଴

   =    𝑈෩஼ห
௭ ୀ଴
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So, we basically get this sort of a thing. So, annular velocity here it is the same as the one 

in the chamber and in the annular cavity that is also the same.  

Now, basically what you know this is the paper that I am following is the one by Selamet 

and his co-worker, long time back published about almost 20 years back or so, I guess it 

was published showing a paper later in 1999. So, more than 20 years, but a Abomb and 

others, what they have done is that they have used separate equations.  

Selamet and his co-worker, Selamet and Ji, they have basically combined these two 

equation in a certain manner which we will soon see. So, what we need to do that just 

using the modal summation solution that we have derived or explained so far, we will 

you know multiply, we will basically do some sort of a mode matching.  

Basically, use again exploit again and again you know three-dimensional analytical 

things or you know whenever you have a mode matching thing or a Piston driven model 

or a Green’s function model, wherever basically one has to incorporate the three-

dimensional effects, in such a thing without resorting to full 3D analysis, you know 

without completely discretizing the 3D continuum into finite elements rather just 

discretize the to work on the two-dimensional problems. 

You know we all repeatedly have to make use of orthogonality principle. Basically, rely 

on modal summation multiply both sides by modal appropriate modal functions, 

integrate over a certain domain and if they are orthogonal, it is fine. If they are not 

orthogonal, we still have to well deal with them. And then, what we can do is that, once 

we have this system, now let us go to the solution here. So, what we do? We need to set 

up the system of equations ok. 
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So, this is the paper that I was talking about Acoustic Attenuation Performance of 

Circular Chamber Mufflers with Extended Inlet and Outlet by Selamet and Ji; quite 

widely cited paper published in JSV, Journal of Sound and Vibration more than 20 years 

back. 

While the main emphasis and contribution of the work is on the multidimensional 

wave propagation and attenuation, the limiting case of the planner wave behavior is 

also simply superimposed to illustrate its application bunds as applied to the 

present configuration 

So, there is a formulation that I have sort of presented so far is basically following the 

work by Selamet only. 

So, these are the functions that we just saw just now. Now, other thing that is very 

important of course, is the velocity condition. You know if you go back to the 

presentation to this thing, you know you see that the matching condition really means 

there is a matching condition. Yeah. So, we have velocity also that is to be matched.  
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Velocity fields have to be continuous; the pressure field also has to be continuous. So, 

but so far in the modal solution, we have derived only the pressure modal summation 

expansion of the pressure field. But we need to do, we need to get that thing for the 

modal summation for the acoustic particle velocity as well. 

So, you know what do we do? We use the Euler equation you know 𝑗𝜌𝜔𝑈 = −
డ௉

డ௭
. 

Where, U is the velocity along the z-direction is = −
డ௉

డ௭
. Now, we once you substitute 

you know and this time harmonicity, you get jω and U is just U, I mean you just solve 

for the spatial 𝑗𝜌𝜔𝑈 = −
డ௉

డ௭
.  

So, once you know P because the modal summation solution you already know. The 

trick here is that you need to carefully be careful with the signs. So, moment you do that 

you know 𝑗𝜌𝜔can come down now and you know j once you take you know - jk you 

know on the modal summation you have  

𝑈(𝑟, 𝑧)−=
1

𝜌𝜔
 ෍ 𝑘௡ ൫𝐴௡

ା 𝑒ି௝௞೙௭ − 𝐴௡
ି 𝑒௝௞೙௭൯ 𝜓௡(𝑟)                  (6)

ஶ

௡ୀ଴

  

So,  

𝑃(𝑟, 𝑧)−=  ෍  ൫𝐴௡
ା 𝑒ି௝௞೙௭ + 𝐴௡

ି 𝑒௝௞೙௭൯ 𝜓௡(𝑟)              

ஶ

௡ୀ଴

 

 take common and here that is why you will get a minus sign and minus minus will 

cancel here and j j will also be cancelling. So, you know you will get 
ଵ

ఘఠ
 and kn. So, kn if 

it was just a plane wave mode, it would have been very simple nice clean analytical 

solution k was ω by c or 𝐶଴.  

So, ω would have cancelled and you would just get 
ଵ

ఘబ஼బ
  that is your characteristic 

impedance. By now, the thing is these things should be something like a bread and butter 

for you. So, but however, in a higher order modes, you have you know you will 

something like this. So, kn is not obviously, it is not kn is not k naught in the general case. 

It is you know root over k0 square minus your 𝛼௡ by r square root over the entire thing. 

So, kn. So, basically kn you cannot take out of the summation sign, it must remain like 
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this. So, let me just zoom this thing for you so that you guys can have a look at it a bit 

more clearly. 

So, this is what it is you know. So, this is the one that I am talking about ok. So, these 

you know this will be valid for any region; only psi function will change and 𝐴௡
ା and 𝐴௡

ି 

that will also change and the rigid wall boundary condition, obviously, this is one thing 

that I sort of forgot to mention apologies for that. So, basically you know if you go to 

your if you go to your region, the well the muffler region, at z if you fix the condition on 

here at z is equal to at this end plate. 

So, at z = - l1 velocity UB = 0 because the rigid plates because the end plates are 

considered to be rigid, they are not they are not yielding or they basically they do not 

deform. So, rigid wall conditions will be applied and there will be. So, we have a 

standing wave pattern set here and similarly, at UD = 0 at z =  l 2. So, you know let us get 

back to our paper and see what these guys have done. 

 𝑈஻|௭భୀି௟భ
= 0     (𝑜𝑛 𝑆஻)                  (7) 

we have this. So, when you do that, what we do? You know you essentially, we have to 

look sorry for going back and forth in this thing, but that is the nature of the things. So, 

we are expressing  

𝐵௡
ା =  𝐵௡

ି  𝑒ିଶ௝௞ಳ,೙௟భ                   (8) 

 So, you know 𝐵௡
ି is the wave that goes in the negative x z direction; so, we and 

similarly, 𝐷௡
ା. 

𝐷௡
ି = 𝐷௡

ା 𝑒ିଶ௝௞ವ,೙௟మ 

So, what about the other one? You know 𝐷௡
ି the wave that goes in this direction is 

propagated is written in terms of 𝐷௡
ା. So, these are some of the clever tricks that you 

need to do. 
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Figure 1. Circular expansion chamber with extended inlet and outlet ducts. 

Now, basically let us get back to our matching conditions. This is obviously, another this 

is one boundary condition; at the other end, we just talked about in the annular cavity 

that is at z is equal to l 2 here that this plate is also rigid. So, we get this condition. Now, 

comes the matching condition which I have just written down in the presentation.  

So, for you know we put the modal summation expansion for, how do we how do?  

 𝑃஺|௭భ ୀ଴   =   𝑃஼|௭భ  ୀ଴         𝑈஺|௭భ  ୀ଴    =    𝑈஼|௭భ  ୀ଴               (𝑜𝑛 𝑆஺)      (9, 10) 

   𝑃𝑩|௭భ  ୀ଴   =   𝑃஼|௭భ  ୀ଴      𝑈஻|௭భ  ୀ଴    =    𝑈஼|௭భ  ୀ଴          (𝑜𝑛 𝑆஻)       (11, 12) 

We go about data? What do you do further to process the equations? Well, we expand PA 

and PC in the modal summation solutions that we just got and multiply as Selamet and Ji 

mentioned for the pressure continuity condition, multiply both the sides of the equation 

(9). 

That is, equation (9) is basically nothing but the first one and equation (10) is this (11, 

12). So, equation (9) is multiplied by the modal function psi A, s and that is for the duct 

and this is multiplied you know again you know mode orthogonality will apply. So, you 

multiply this by a generic function, if this is n, well if this is let me just get to this one.  

If this is n, you multiply this by n; here you multiply by e n N1 you know you multiply 

this by N1 and then, you integrate it. So, only that mode will survive when n =  N1 ok. 

So, that is why you just writing this as only one term  

(𝐴ௌ
ା + 𝐴ௌ

ି) 〈Ψ୅,ୗ  Ψ୅,ୗ〉 ஺ =  ෍(𝐶௡
ା +  𝐶௡

ି) ൫Ψେ,୬  Ψ୅,ୗ൯ ஺  

ஶ

௡ୀ଴
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𝐵ௌ
ି൫𝑒ିଶ௝௞ಳ,ೄ௟భ൯ 〈Ψ୆,ୗ  Ψ୆,ୗ〉 ௕ =  ෍(𝐶௡

ା +  𝐶௡
ି) ൫Ψେ,୬  Ψ୆,ୗ൯ ஻  

ஶ

௡ୀ଴

 

So, or n is equal to N1. So, you can call that s. So, that s mode will survive and this you 

know so and we you. So, for multiplying over that. So, this we need to integrate over the 

port area that is this thing.  

So, you multiply with r. So, dS is nothing but r dr d theta and this is a Ψ୅,ୗ function and 

using mode orthogonal mod orthogonality only this function will survive and you have 

only this term and then, the mode function Ψ୅,ୗ and this is integrated this one with the 

mode function in this one that is the Bessel function with the in the larger radius in the 

numerator; I am sorry in the denominator that is basically your this guy R0. 

So, psi is this thing. So, essentially what it does is basically you know you when you talk 

about the (𝜓)[𝜓] thing you what we do is basically integrate say well let us  

(𝜓)[𝜓]    ඵ  𝐽଴ ൬
𝛼௡

𝑅଴
𝑟൰

 

ௗ௦

 𝐽଴ ൬
𝛼௦

𝑟଴
𝑟൰  𝑟 𝑑𝑙 𝑑𝜃 

 Basically, we multiply this by this thing and so well and then, basically only this mode 

will survive here when like I was mentioning and here, we have summation over entire 

thing.  

Similarly, when you multiply the other pressure continuity equality condition with the 

function Ψ୆,ୗ. So, again you know here you have your only one modal coefficient as we 

have explained just a while back and only that particular mode will survive in the annular 

region, this one because of orthogonality. 

Because you know we are basically considering orthogonality of such function over the 

domain of the port or the annular cavity. When you multiply, when you integrate, when 

you multiply with the corresponding function what I mean is that Ψ୅, when you multiply 

by Ψ୅ and integrate over the port area.  

So, here things will be all right; here you will have a lot of nonzero modes also, that is 

why you have the summation thing and similarly, here this is orthogonal over the annular 
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region. So, you have your Ψ𝐀,ୗ  you know this kind of a thing and again you have a 

summation. 

So, there is no problem here I believe until this part because again you know k B s this 

can be again like I said this can be written as j times root over whatever we are getting; j 

times whatever we are getting and with the convention that is followed. What is the 

convention? 

So, j is your they have followed the convention that j is root over minus 1 imaginary unit. 

So, when j square j square is minus 1 minus 1 is plus. So, they probably would have done 

something to suppress the numerical instability. So, we will work with our own codes 

here. So, this is what they are getting and these things will be there. 

Now, and the other condition is the velocity condition; other set of conditions. So, this 

one and this one. So, what now here the other trick is to multiply let us say this equation 

with the modal function modal function for the chamber C and integrated over the port 

area, similarly multiply the other velocity condition that is this condition with the modal 

summation solution modal function for this one and integrate over the annular area and 

then, add them.  Now, only when you add them, only this particular term survives and in 

all the other things, the other set of equations other terms will be there ok.  

෍  𝑘஺,௡ (𝐴௡
ା − 𝐴௡

ି) 〈Ψ୅,୬  Ψେ,ୗ〉 ஺ + 

ஶ

௡ୀ଴

෍  

ஶ

௡ୀ଴

𝑘஻,௡ 𝐵௡
ି൫𝑒ିଶ௝௞ಳ,೙௟భ − 1൯〈Ψ୆,୬  Ψେ,ୗ〉 ஻ 

𝑘஼,ௌ (𝐶ௌ
ା − 𝐶ௌ

ି) 〈Ψେ,ୗ  Ψେ,ୗ〉 ஼ 

So, this will be there. Now, integrals designated into this thing are deferred to the 

appendix of this paper. 

Similar conditions will apply will be set for the outlet that is where is the outlet? Outlet is 

this part you know so pressure here in the chamber is equal to the pressure here and 

pressure here is equal to the pressure right in the chamber D. So, that is how you know 

they  

 𝑃஼|௭భ ୀ ௟೎
  =   𝑃ா|௭మ  ୀ଴,         𝑈஼|௭భ  ୀ௟೎

   =    𝑈ா|௭మ  ୀ଴               (𝑜𝑛 𝑆ா)      (19, 20) 

   𝑃𝑪|௭భ  ୀ௟೎
  =   𝑃஽|௭మ  ୀ଴,      𝑈஼|௭భ  ୀ௟೎

   =    𝑈஽|௭మ  ୀ଴          (𝑜𝑛 𝑆஽)       (21, 22) 
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So, they have translated the coordinate system. So, for the port, this port, the coordinate 

system here is defined in the new coordinate system z2 is equal to 0 and z2 is equal to 0 

here for the annular cavity as well ok and z2 is equal to l2 at the outlet port. 

Now, once we have this sort of a thing, we do the same business for the pressure 

condition multiply this with the modal summation for the PE port or PD port and then, 

integrate it. Only this term, only a certain term is survived in the port and the annular 

cavity and the velocity, you multiply by Ψେ,୬  . 

In comparison with Abom, the present approach adds the two integral equations 

for the velocity continuity conditions (equations (10), (12), and (19), (21)) to get one 

analytical expression, at the expansion and contraction, respectively, thereby 

reducing the number of equation 

And then, go about adding these things and only particular mode will survive in the 

chamber. Now, there is one thing now you know basically what is happening here is that 

your we have we want to evaluate the sorry the transmission loss this thing. So, 

transmission loss performance. So, E plus is a wave that propagates in this direction, E 

minus is a wave that propagates here in the negative direction where I am where I am 

trying to point ok. 

So, E minus has to be set to 0, all the modal coefficients E n minus, they have to be set to 

0 you know that is what an anechoic termination is exposed at the is imposed at the exit 

of the chamber by setting the reflected wave coefficients En to 0. So, this like this the 

number of unknowns reduces.  

෍   ൫𝐶௡
ା 𝑒ି௝௞಴,೙௟೎ + 𝐶௡

ି 𝑒௝௞಴,೙௟೎൯ 〈Ψେ,୬  Ψ୉,ୗ〉 ா =  (𝐸ௌ
ା + 𝐸ௌ

ି) 

ஶ

௡ୀ଴

〈Ψ୉,ୗ  Ψ୉,ୗ〉 ா 

෍   ൫𝐶௡
ା 𝑒ି௝௞಴,೙௟೎ + 𝐶௡

ି 𝑒௝௞಴,೙௟೎൯ 〈Ψେ,୬  Ψୈ,ୗ〉 ஽ = 𝐷ௌ
ା(1 + 𝑒ିଶ௝௞ವ,ೄ௟మ) 

ஶ

௡ୀ଴

〈Ψୈ,ୗ  Ψୈ,ୗ〉 ஽ 

𝑘஼,ௌ ൫𝐶ௌ
ା 𝑒ି௝௞಴,ೄ௟೎ + 𝐶௡

ି 𝑒௝௞಴,೙௟೎൯ 〈Ψେ,ୗ  Ψେ,ୗ〉 ஼ 
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෍  𝑘ா,௡ (𝐸௡
ା − 𝐸௡

ି) 〈Ψ୉,୬  Ψେ,ୗ〉 ா + 

ஶ

௡ୀ଴

෍  

ஶ

௡ୀ଴

𝑘஽,௡ 𝐷௡
ା൫1 − 𝑒ିଶ௝௞ವ,೙௟మ൯〈Ψୈ,୬  Ψେ,ୗ〉 ஽ 

So, this guy gets is set directly to 0, you know this guy is directly set to 0 and once, you 

do that and you get all these things and d plus is there. Now, what about we might have 

some trouble as I was mentioning earlier regarding.  

 So, this becomes this is the growing term. So, what we same thing same logic applies 

here. So, what the clever trick then is that the clever trick then is that you set Cn let me 

go to the presentation.  

𝐶௡
ା𝑒ି௝௞೙  

಴
𝑙ଷ

  

 
→ 𝐶ሚ௡

ା   

So, we trick is that let us set E; e to the power you know you have this. Even in this term 

and even in the velocity term, you set this guy - jkC n l3 like I was mentioning. This is lC, 

they have written; I am calling it l 3 I am calling ok. This entire thing you know this kC is 

such that its root over alpha n by  

−𝑗𝑗ඨ൬
𝛼௡

𝑙ଵ
൰

ଶ

− 𝑘଴
ଶ      𝐶ሚ௡

ା 𝐶(−)   

So, we will call this entire thing as 𝐶ሚ௡
ା.  We will solve for this guy rather than this thing 

because this might lead to numerical issues. They most likely it will. So, 𝐶ሚ௡
ା  this will we 

are setting this here. Coming back here, so well, we have resolved this problem but then, 

other thing has to be done.  

Now, let us check if we have plus j j j sign. So, j square j square is minus in case of kC is 

imaginary. So, this will be exponentially dying term. It should not create a problem. So 

C, so, basically 𝐶௡
ି you know something this will be left as it is, but then we have to be 

careful with the other set of equations. What do we do? 

Now, at the other boundary condition, there is something that I want you to understand 

properly. So, here also we have you know these three equations. So, if we are setting this 

guy as like this. We cannot increase our number of coefficients, you see how many set of 

coefficients we have?  
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We have you know 𝐴ௌ
ିs reflected waves in the inlet pipe travelling wave, forward 

traveling wave, negative traveling wave in the chamber and B minus. So, three sets of, 

four sets of equation 1 2 3 4 and similarly, we have you know this is set to 0 5 here and 6 

and these two are known. 

Now, moment we set 𝐶௡
ା e to the power -jk Cn l3 to other coefficient 6 will be another 

coefficient, but then we are increasing unknown variable to 7. Now, we in order to, but 

we will have only 6 conditions; 3 here and 3 above; three sets of equations. So, to resolve 

this issue, we have to be careful with the other variable. Let us worry about what we are 

going to do with the other thing.  

So, 𝐶௡
ା is something that we have done. So, we need to do something with the this 

variable. What we did now was that we just set this guy Cn e to the power -jkn Cl3 is 

equal to C n the conditions at the outlet. Now, we because, but when we should not be 

increasing a number of unknown variables because we have only six set of equations ok. 

So, what we do is that we do a clever trick. This is the trick1 that we did at the outlet. At 

the trick 2 at the inlet is that you know just put just multiply this analytically be e with e 

jk n C l3. So, this will be 𝐶௡
ା is equal to 𝐶ሚ௡

ା  is equal to this thing.  

So, there won’t be any numerical problems because when this is j. So, j j square is minus 

and - k Cn l3. So, this will become exponentially decaying term. So, 𝐶௡
ା,  is an 

exponentially decaying thing and so, basically what we need to do really is that in here 

right in this term 𝐶௡
ା, we will substitute this with 𝐶ሚ௡

ା into e to the power jkn lC3. This we 

will do for the pressure equation here, this condition here as well as, as well as the 

velocity condition in this equation here. 

So, with this, you know we are good to go we can have different number of constants; 

we can have different number of constants in the chamber, in the port and number of 

different number of modal summation value n in the modal sorry in the inlet port as well 

as the as well as in the cavity here on the chamber.  

So, basically, let us consider what I mean is that if you go to the presentation, you know 

in this thing we can consider say first 5 modes here, 10 modes here, 20 modes here or 

actually 10 modes here; same this would not be too different. But you know or you can 
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have 10 modes here; 10, 10, 10 you know basically you know  n1 modes here, n2 mode 

here and n3 here.  

Generally, we consider n2 as equal to n3 that is the number of first few modes in the 

cavity annular cavity and the expansion chamber are considered the same. Inlet pipe, 

because you know those pipe diameters are typically quite small compared to the 

chambers about 40-50 mm for automotive mufflers. So, we consider you know limited 

number of modes given the operating frequency and so on. So, basically, you know with 

this, what we will do is that we will we have set up the system of equations.  

And they eventually, you know what other thing that I sort of must point out here is that 

once these things are set up, we will we have we have set up the system to determine the 

transmission loss then, what we need to do is that the dimensions of the inlet duct are 

assumed such that the incoming wave A plus its planar and its magnitude is chosen to be 

unity and anechoic termination is imposed like I was mentioning. 

So, we has infinitely theoretically infinite set of equations because n is going to infinity, 

but we have to truncate it to the first q mode. So, we have typically you know 6 q plus 1 

number of equations q being the first q mode, you know first you know the 1 means the 

planar wave mode and then, on the top of that whatever number of modes you want to 

consider.  

So, 6 q or 6 q plus 1 whatever you want to say so that many set of equations and that 

many set of unknown coefficients we have. So, all the things we are solving in terms of 

A plus. We are basically one thing that I must kind of clarify here that is very important 

that we are considering the excitation by only the planar wave ok. So, 𝐴ௌ
ା  is there or you 

know I would say I would say if you go on the top 𝐴௡
ା. 

So, n = 0 will give you the planar wave mode and there will be no in the excitation part, 

in the inlet port here and the excitation domain here, I mean in this chamber in the for the 

A region, there will be no we are what we are doing actually is that we are considering 

let me mention this point a bit more clearly. So, 
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𝐴଴
ା     =    1    𝐴௡

ି   ≠   0
 

𝐴ଵ
ା     =    0    𝐴ଵ

ି   ≠   0
 

𝐴ଶ
ା     =    0    𝐴ଶ

ି   ≠   0
 
⋮

 ⋮ 
𝐴௡

ା     =    0    𝐴௡
ି   ≠   0

 
𝐸௡

ା     =    0    anechoic condition

 

we do not know this cannot be 0. Similarly, A2 these are reflected wave coefficients, this 

we need to solve. So, all the variables you know what are those variables A and also of 

course, minus this cannot be 0.  

 
𝐴௡

ି

 
 

อ    
௡ ୀ ଴,   ௡భ  

          𝑛 = 𝑛ଷ  = 𝑞

 

 
𝐵௡

ି

 
 

อ    
௡ ୀ ଴,   ௡మ  

                                 𝑞

 

 
𝐶ሚ௡

ା

 
 

อ    
௡ ୀ ଴,   ௡య  

                                 𝑞

 

 
𝐶ሚ௡

ି

 
 

อ    
௡ ୀ ଴,   ௡య  

                               𝑞

   

 
𝐷௡

ା

 
 

อ    
௡ ୀ ଴,   ௡మ  

                                 𝑞

 

 
𝐸௡

ା

 
 

อ    
௡ ୀ ଴,   ௡భ  

                                 𝑞

        6𝑞 

   

So, we have you know that many variables or we assume all the variables, all the number 

if you assume n1 is equal to n2 is equal to n3, then we have is equal to q. So, q unknowns, 

q unknowns, q unknowns, q, q; so, 6 q. But if you consider plane wave separately, you 

can consider q 6 q plus 1 like that. But you know all these will be expressed eventually 

as a big matrix, where you have this block of equations. 

I am sorry unknown coefficients, 
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⎣
⎢
⎢
⎢
⎡

    
   

             
    
  
  ⎦

⎥
⎥
⎥
⎤

  

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐴௡
ା

𝐵௡
ି

𝐶ሚ௡
ା

𝐶ሚ௡
ି

𝐷௡
ା

𝐸௡
ା⎭

⎪⎪
⎬

⎪⎪
⎫

=

⎣
⎢
⎢
⎢
⎡

    
   

             
    
  
  ⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

𝐴଴
ା

⎭
⎪
⎬

⎪
⎫

  

and then we need to and then we need to invert that matrix and express all these variables 

in terms of A0; sorry A0 and find out the transmission loss as you know as given by this 

expression including the higher order mode. 

But usually, higher order modes will not survive in the outlet pipe, there are small 

diameter. So, this will reduce through the expression given in; expression that we have 

discussed so far. 

For planar wave, this will reduce to this form. So, in the next class, we will do the 

numerical analysis of such things. Till that time, I will hang up. I will just stop here and I 

will see you in the next class. I will do some numerical simulations in MATLAB. 

Thanks. 
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