Muffler Acoustics - Application to Automotive Exhaust Noise Control
Prof. Akhilesh Mimani
Department of Mechanical Engineering
Indian Institute of Technology, Kanpur

Week-11
Lecture - 54 and 55
Circular Chambers: Characterization and TL Analysis using 3-D Piston-Driven
Model

Welcome back to our NPTEL course on Muffler Acoustics. So, this is again the
combined lectures 4 and 5 and in this extended lecture what we will do is that we will
consider a three dimensional analysis of circular cylindrical muffler subject where the
ports are located arbitrarily on the inlet or out arbitrary on the either on the end faces or
on the side surfaces. So, single inlet and single outlet system. So, and hopefully we will

be also able to see some MATLAB simulations.
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o Finite Sized or Cross Section Area is Represented by Mathematical Points

e Green’s Function Definition Response to a Point, Point Source in Space or
Impulse Time

e Uniform Piston Driven Model Planar Wave Fronts in The Port, Right at the

Chamber Interface

And so, what we will do is that we will we need to probably revisit the contents of the
last presentation you know. So, basically what we had? We had the Green’s function
coming in somewhere here you know this was the Green’s function in the Cartesian
system and subject to I am sorry the point source represent representation of the port and

this was for the uniform piston model in both in Cartesian system.

(Azﬁ + %;ﬁ) = —jwpeQod(x — x0)6(y — ¥0)6(z — z,) ©))
2 ko, = excitation wave number z k2 = 1
Co m m?
= —jwpeVy 6(x — x0) 8(z — 2,)
(A% + k§) P = —jwpeQoS(x — x0)8(y — ¥0)8(z — ) (4a,b)

Inhomogeneous Helmholtz equation

Now the key thing for this lecture for a circular cylindrical chamber circular cylindrical
chamber is that we need to make some subtle changes we need to make certain some

important changes to the governing equation.
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Circular Cylindrical Chamber

AL

So, basically what we have again your excitation wave number. And t is of course, is

varying harmonically. So, this is
(V2 +k3)p (r,0,2) =

6(r—ry) 6(0—0y) 6(z—zp)
h, hg h,

—jwpeQo

Now direct data function definition will change that is the key point. So, let us say the
source is located at r naught. So, we have a you know a circular chamber and r this is
your distance theta and let us say this is z ok. So, for theta you have the h factor. So, you
here you have h r h 8 and h z. So, what are h r h 8 and h z? They are basically your

scaled factors.

ax\2 dy z
m|Gr) + (5
ar ar
X =1 cosf

Y = rsinQ

So, you know let us you know I think we did something regarding the scale factors a
long time back in week 2. So, you know so, this is given by the following thing for the

2D system z will obviously, not be there because mind you thisis x =rcos 8 y = rsin 6.
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So, here you have r theta x and y ok. So, once we substitute this guy we will see that this

is sin square theta plus cos square theta root over this is 1 and h theta is.

So, this will be your r square, r square you can take this thing common and this will

become

= +/sin?r + cos?r =1

- |2 ()

That is a Laplacian in the circular polar coordinate circular cylindrical coordinates. And

that is basically

=7rS2+C?%2 =7

wo P10 10 8
or? r or r 00?2 0z

So, you know you get this Laplacian form ok. So, with this with these substitutions all

this thing, if we substitute back in this equation, what will it look like? So, it will look

like, we basically substitute in place of h r 8 z the equations I mean the expressions that

we have derived are here and that is

62+16+1 62+62
0r?2 r or 12002 0z p

50 — Q0)d(z — zp)
r

= —jwpeQo 8(r — 15)
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So, these are direct delta functions in cylindrical polar coordinates. Remember one thing
there is a small digression that I like to make here is that you know here r minus r naught
into theta minus theta naught in the direct delta system.

%6(7‘—1@@ 6(z —zy)r do dr dz
v

=1
/
o /
You know over when you do dv over this cylindrical volume you know what does it
mean? So, dv is 1 so, instead of dv you write r dr d@ that is your d that is a small r here
and the d. So, if you consider basically an elemental volume in this in the cylindrical

polar coordinates, basically your you know d@ dr small this thing and something a top

kind of a thing here.

So, we get r dr d8 dz ok. So, r r gets cancelled and eventually what you will get is this is
1. So, basically you know this the idea is that this representation is consistent with the
definitions of direct § function and of course, I guess I forgot the term here that is k

naught square I am sorry for that.

So, k naught square is; obviously, there the wave number. So, basically what we do is
that we need to have if you recall our discussions in the week 2 lecture, we need to find
out for simplicity let us say you know we set Q, to 0. And actually incidentally you know

if you have a piston driven excitation.

So, what we will do is that instead of this we will have u naught into f of you know f of r
theta into delta z minus z naught ok that will be there if the port is located on the r theta
on the you know on the end phase somewhere here. If the port is located on the side
surface somewhere here, then your this will become minus then you know instead of this

thing you will have your this thing say
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= —jwpoUy 6(r — 1) f(L,0)

where f of L comma theta is unity its basically unity over the port area and it is 0 over all

the side surface area where the port is not there ok. So, that is one thing.

So, we get basically this sort of a we get this sort of a thing. Now the key idea behind
underlying this derivation now is to substitute the solution of homogeneous equation

which is which [ am going to write down.

Now, is basically p 7,6,z t I am not writing is understood ejwt. So, this is a model
summation solution which is nothing but this subject to if you consider a long cylindrical
circular cylindrical thing with rigid wall condition U or W is 0 here; U or [ would say U

z =0, Ur =0 and there is no and U8 mind you U 0 is there is no condition on U theta ok.

a
(Cl,l,m cosmf + Cz,lm sinm@) Im ( znr T) cosm 6 sinm 0

0

Only thing is that p (6) = p (6 + 2m) this will always be there ok.

So, this is the periodicity condition as a result of that periodicity condition is very
important. So, you will get the solution you know eventually when we do a variable
separate from this I think we discussed also sometime back. You know we have m as an

integer value. So, m is the so, this you know the modes like this

()
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So, we can also write this as ¢™ ¢?™ and all that. So, basically these are called you

know when for m is equal to 0, you know we get something like a radial mode.

=0 o (37)
0

So, you get basically radial mode and when
M=+0

Whatever it is then you get your you know circum and circumferential mode, but then in
that case your n should be 0. So, n =0 (1,0),(2,0),(3,0) mode and so on; these are

all your circumferential mode as we saw it will be something like

i3

So, it is given in nicely in my book here.
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So, this is the book that has been published recently on the elliptical muffler design. We
are not going to discuss elliptical cylindrical mufflers in this NPTEL course is an
advanced course, but what I did was that I presented the solution of a circular cylindrical
case as a degenerate case of elliptical case elliptical mufflers. And I can what I can do is
that I can show you the mode shapes of how these things would look like. So, just bear

with me for a minute and we can have a look at the PDF file as well.

So, you see these are the these are the radial mode shapes of a circular chamber we can

also have a look at the PDF file sometime later

and these are your circumferential modes in the first in the first column ok. So, plus
minus minus plus and alternating signs and then you have a cross modes when m and n
are both non zero ok. So, it is all documented in my on my in the recently published

book on elliptical muffler analysis circular cylindrical case being a part of that.
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So, what we do is that this is of course, your non dimensional resonance frequencies
value also tabulated in this book and this subject to this thing. So, you basically have to
solve this numerically this is all Neumann functions. So, that is what we that is what we

do, we basically do that.

And now once we once we get the modal solution which is now I think it is getting a bit
untidy. So, just box it something like this ok. So, we get this sort of a thing. Now we
need to substitute this guy back in this equation ok. Once we do that you know once we
substitute this particular thing in homogeneous Helmholtz equation where the
inhomogeneity can be a point source or piston source and then invoke more

orthogonality.

So, unlike you know unlike circular function there are certain things with Bessel

functions. So, it is orthogonal with respect to the weighing function r.
2 dafe by

ko
a a
f]m (ﬂr)]ml (ﬂr)rds # 0
ko ko
0
only m=m,
n=n;
=0m # my
n#nyg

if either of this condition is not met or is met [ am sorry then this is 0.
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And cos 0 the trigonometric function or orthogonal in the regular sense essentially what
you do is that you multiply by r dr d® and integrate over the volume and then just take
these this particular term to be along with the Bessel function, this is with trigonometric
function, this is with the also trigonometric function along the z direction and then you
know invoke mode orthogonality get the modal coefficients which are given here C;

Cz, I,m ok.

Once you get that then back substitute to get the Green’s function. So, what we will do is
that we look at the Green’s function solution and also the piston driven solution just in a

while.

So, this is the book I was referring to. So, this is the book that was published a while
back by me it is a spring of paper. So, what I am going to do is that I am going to go to
the second chapter where you know the solution of this the solution modal solution is

given for the circular cylindrical case.

p(r,0,z,t) = { i i (amn )(A Tn.n COSMO

m=0,1,2... n=0,1,2...

+ A% sinm0) (CL, , e KemnZ 4 €2, kzmnz)} et (2.58)

So, these are all elliptical things which are more complicated you know. So, you see this
equation (2.58) is the case where you have this modal summation as I was talking about
of course, here you have you are not and really enforce the you are not really enforce the
rigid wall condition along the z direction.

Z z z CpmnCem(§m,z,t) X

P=0,1,2.. m=0,1,2... n=1,2...

Pnz
Cem(n qmn)cos< L )
p(Enz 1) = | s elot (3.1)

+ z Z Z SemnSem (& Tmn) X

P=0,1,2.. m=0,1,2... n=1,2...

Pnz
Sem(n,qm rl)cos( L ) )

N

But once you do that what we can do that we can go to the third chapter of this book

where the Green’s function solution is given and this is what you get; this is the modal
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summation solution for the elliptical duct, but let us focus on the circular cylindrical
duct. And once we put the modal summation back we are going to get this as the Green’s

function solution ok.

p(Tr, O, 2r|7s, U5, Zs) _ G (1, O, zg|7s, 05, Z5) .
= = jKoCo
PoQo PoQo p .

Jm (Uvmn 12_1:)) cos (PE_LZR) Jm (amn g_i) cos (%) cos (m(HR - 65))
() + (%) -1} Nima

So, I guess. So, you know you said you see this J;;, amy R / Ry and these kind of a thing.

3.13

So, these are J,, is like I said these are Bessel functions ordinary Bessel function the first
kind and you know Neumann functions do not feature in the circular cylindrical case
because the origin is obviously present and the Neumann functions would blow up

causing similarity at the origin. So, they are not included in the solution.

However, in case of a circular cylindrical pipe with a circular cylindrical chamber with a
concentric rigid pipe then the origin would not have been present and in which case it is
necessary to include the Neumann functions ok. But here in this case the Neumann
functions are not quite there ok. So, this is one of that now basically what we get is this is

the Green’s function response port source port and

Nl,m,n,P
r=Ro 2 6=2m z=L P 2

= f r(]m (O;nn r)) dr f (cos(mG))de f (cos (%)) dz ; (3.14)
r=0 0 0=0 z=0

you know cos eventually you will get things like cos m 8 R into cos of m 6S and your
plus plus sin of m theta R into sin m theta S, which can be combined into one
trigonometric form which basically tells you that because of axisymmetric of the nature
axisymmetric of the problem only the relative location relative angular difference
between the inlet and outlet ports are of importance not their absolute thing unlike a

elliptical thing.

Now these are like I was saying your you know integral of the square of the product of

particular set of mode shape functions.
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_ d]m (km,nr)

=k =
Omn m,n *0 d(km,n T) -
=Ro

1
= E‘Um—l(amn) — Jms1(@mn)} =0
So, these are found by orthogonality they are basically you know they are basically
closed from the expressions for that for example, a closed form expression for the first
integral that is this one in equation 3.4 is given by 0.5 are not this thing which can be
found out from different mathematical handbooks and other functions are sort of trivially

you can find it out.

And it is also given such a function in you know other paper that was published also
sometime back in journal of computational acoustics for a circular cylindrical chamber
you know you have you know this kind of a thing. So, I guess we can have a look at the

muftler configuration.

- L -
S S — —1
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! - -
L ﬂ:‘ % .!.“nl:
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— .

So, this is a end inlet and end outlet flow reversal chain, but forget about the pipe we are

not interested in the pipe just yet ok.

So, we are interested only in the circular cylindrical without a concentric pipe. So, this is

the more well a little more larger font size of you know this Green’s function.

They are essentially the same, they are the same and using that you can find out the
impedance matrix parameter characterize that and this is the roots non dimensional roots
which have been tabulated also in my monograph you know for the first as much as, as

much as first 10 roots first 9 orders and 10 roots each or that has been tabulated.
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m=0 | m=1| m=2 | m=3 | m=4 | m=95 m=6 m=7 | m=8

S

3
5

0 1.8412 | 3.0542 | 4.2012 | 5.3176 | 6.4156 | 7.5013 | 8.5778 | 9.6474

3.8317 | 5.3314 | 6.7061 | 8.0152 | 9.2824 | 10.5199 | 11.7349 | 12.9324 |14.1155

7.0156 | 8.5363 | 9.9695 |11.3459|12.6819 | 13.9872 | 15.2682 | 16.5294 |17.7740

10.1735|11.7060{ 13.1704 | 14.5858|15.9641 | 17.3128 | 18.6374 | 19.9419 |21.2291

13.3237|14.8636| 16.3475 |17.7887|19.1960 | 20.5755 | 21.9317 | 23.2681 |24.5872

16.4706|18.0155|19.5129 120.9725|22.4010 | 23.8036 | 25.1839 | 26.5450 |27.8893

I
| A RN -

19.6159(21.1644|22.6716 |24.1449|25.5898 | 27.0103 | 28.4098 | 29.7907 |31.1553

22.7601(24.3113]25.8260 |127.3101|28.7678 | 30.2028 | 31.6179 | 33.0152 |34.3966

Il
|

sSis(s|(=R|=B|=B[(=B|=|=
I

25.9037(27.4571|28.9777 |30.4703|31.9385 | 33.3854 | 34.8134 | 36.2244 |37.6201

I
=]

Table 26. The Roots of the derivative of Bessel function of the first kind: non-
dimensional cut-on frequency in a circular cylindrical waveguide D, =D; =Dg (e =0, &

— 0)

Let me just show you that quickly. So, first 9 orders including the m is equal to 0 order
and first 9 roots. So, such things are also seen in engineering books. So, engineering
maths text books or things like that or maybe acoustics book you can have a look at these

tables, but for rigid wall condition that is the duct satisfying the Neumann condition

these tables are there ok.

Now, you get this Green’s function solution and mode orthogonality. And now basically
you know again you have to integrate the Green’s function over the port area. So, if the

ports are located both at the at the end faces as we saw in the configuration just a while

back; you just have to integrate the Green’s function

D

1=0,1,2.. m=0,1,2... n=0,1,2...

0,
Jjkoco < (ffs cos (m@)J,, ( RL> rdrde)

Zprpi = g——<—

o X (ffSEk cos (m8)J,, (amn RLO) rdrde)
X
SR (GO L

And you know the other function you know if this n ports located on the end surfaces

~~

then z value this particular thing z are that can be simply be 1 or minus 1 depending upon

whether the ports are on the same surface on the opposite surface. If ports if there is a
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end inlet and end outlet configuration we said simply you know z is equal to on the same

phase slow flow reversal chamber.

Then z is equal to 0 you can substitute and you get 1 and if it is 1 port is on 1 of the end
face the other port is on the other end face you said 0 here and | here. So, it can be minus
1 you know you get your cos I w1 depends on the value of | it can be 1 or minus 1 for 1 is
equal to 0 you get you know 1 1is equal to 1 you get cos m 1 is equal to 2 you get cos 2 &

and so on. So, you get 1 or - 1 depending on the value ok.

In this case we get just 1 you know that is why this the z term is taken care of and you
have to integrate the Green’s function over both the receiver port and the source port and
divide by the e the port area of the of the inlet and outlet ports to get the average

response you get the impedance matrix parameters.

And you know other thing I just wanted to talk about is that you know the all the very
briefly solving you know getting the impedance matrix parameters by solving this
inhomogeneous system of equation subject to homogeneous boundary condition; that is

everywhere it is the everywhere it is the same or the boundary conditions.

That is the same as solving a homogeneous Helmholtz equation subject to
inhomogeneous boundary condition. So, what do I mean? You know this would require a

little bit of elaboration more of a conceptual thing.

Now, let us consider you know a circular cylindrical we are looking at the let us say the
side view we have a concentric chamber something like this and we have a port like this.
So, what it means that over this domain you still have this thing p is equal to 0 ok and

then you can express this as you know modal summation.

o0 0 a '
= Z Z {C},m Jm (gm r) (cos m@) e~ Jk7m g
0

m=0,1,2 n=0,1,2

H

a .
+ C2, Im (%r) (sin m@) elkzm"}
0
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And cos of m theta plus some e to the power minus j kz mn into z this entire thing plus
you can call this C2,, ok you get this sort of a thing ok. The solution of this is a solution
of this equation there is no source term here, but what happens really you know what the
annular surface where [ have shown with the red hatched surface velocity U, - ¢ and Uy

you are as let us assume that uniform piston driven model here. So, it is u naught.

So, U, = U, which is non zero ok. So, and in this port immediately from the port
chamber interface you can assume planar wave. So, U,U, = U,port and in the port area
you are assuming U naught velocity U naught into e j omega t that is a given and that is
equal to the velocity particle velocity along the axial direction in the chamber and the

axial velocity in the chamber is 0 at the annular surface that is at these points ok

And pressure other condition of course, is the pressure at the port is equal to the pressure
in the chamber over the annular area. So, you know what we do is basically you know
use these conditions to get this thing. So, how do we do that? You know for the axial
particle velocity you have this condition U, t is equal to minus dou dou x of dou z. So,

from this expression we can find out this term and you know this is nothing but

ao

]wpo V4 aZ

you can find out U, in terms of these things. So, U, is this entire modal summation is set
to 0 here and it is U, Uy here and then again multiply throughout by multiplied
throughout by

r
Jm (amn R_) cosm,0 rdrdf6
0
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And you know integrate over the r dr df and due to orthogonality of the modes only that
mode will survive where m; = m; and n; = n; and only the cos term will survive similarly
we need to multiply by sin and then we will get the C2,, coefficient C3,, and C},,, like
this we can evaluate back substitute and get the final modal summation solution in term
in the cylindrical lattice assuming a planar piston excitation that is to say there is no

coupling between the this chamber and here.

So, you know this is a homogeneous equation subjected to inhomogeneous boundary
condition in homogeneous B ¢’s why? Because you know it is you know is used at a 0 or

the annular part and this is equal to this over this part and.

So, basically you know we get this sort of a thing and once we get that we will basically
get the solution impedance matrix parameters can also be obtained like this. So, now

basically after that we can evaluate the transmission loss of such a system.

1 2
(YE1+YE2)
> ~ 10log,, (—4’YE1YE2

1
4Yg1 Y2

ZE1E1YE2 + ZEZEZYEl

TL = 10logq, < 7
E2E1

So, what we are going to do now is that I can just show you some probably run some
codes in MATLAB and talk to you about how the transmission loss is evaluated and all
the integrals over these ports are done. So, actually before I do that let me also just show

you the how does it how does it look.

1 1
p(& = &oMsz Zs2|€o 51, Is1 ) = Sside 2 ﬂ-
side side2

Sside 1

ff {G(fr = $oMs2, Zs2|¢s = $oMs1, 151)hnd7751dls1}hnd7752dlsz} (3.34)
sidel

So, for the end port for the so, these are the formulation integral formulations for the end
port, but I guess we can have a look at such formulations for this port just in a while. So,

this is my thesis in which you know the integral expressions represented.

So, if the port is located on the end surface you know and it is you know the distance
between the center of the port and the center of the circular chamber is less than the
radius then this expression would apply cos m or sin m6 these integral values are which

derived carefully.
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0=0,+2 I(r=6 cos(0—8¢)+ /rf—z?zsinz (6-60) \I
cos (m6)4 Xmn 5
6 < f sin (m f r]m( R, r) dr ; df
9=90 l r=0 J
0=0,+ (r=6 cos(8—6,)+ /rsz—azsinz (0-6) ]
cos (m0) 4 Xmn ¥
f sin (m@ r]m( R, r) dr pd8  (4.62)
0=0p-z Ik r=0 J
0=0¢+1/2 r=2mcos(6-6,)
6 a
§=r, f “o ((Tn 9) f r]m( o r) drbde  (4.63)
0=0¢—-1/2 r=0 0
=0y +sin1 (r=5 co (6—0¢)+ /roz—é'zsinz (6-6y) 1
cos(m@) (amn )
6 < f sin (mé f m R, r|dr
— —cjin—1
§=Bo=sin — |r2-82sin2 (6-60)
de (4.64)

Or you know you can also write this as theta naught you know you can redefine the
limits and all that. If it is exactly equal to the radius then you then these limits apply and
if it is more than ry then the other limits sort of apply. And for the it is easy to see when
you have m is equal to 0 and n is equal to 0 you get back the plane wave mode and in
which case you know you know this will just become 1 and r dr d® you know in such a

case this will also be 1.

And you see it is easy to see that you know you will eventually get back m dy> / 4 and you
know theta naught is describes the angular location of the center of the end port with
reference to the X-X axis as shown in the previous schematic. So, eventually you know
for a plane wave case. So, that is for the lowest order mode plane wave mode you will

get back 7 d* / 4 which is important for the check for the sake of self consistency.

a
—]m(;?nnrs)zo,rszo, m# 0 and
0

Ton
Jo (R—r5> =0, 75=0m=0m=0 (4.66a,b)
0
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sin (m6 R,
:90 =0
=79
amn
=2r f r]m( R r) dr ¢, m=0 (4.65)
r=0 0
=0, m=*0

And for you know delta is equal to 0 you know these things the theta and r directions
will decouple and you will get that is for basically for the concentric case and you get
back your r this thing. So, that would basically mean that only axisymmetric modes will
propagate and non axisymmetric modes will not propagate. So, it brings a lot of
important thing a lot of important conclusions that you know if you center the port center

the inlet port.

So, let us get back to the presentation you know if you have circular chamber and you

center your port somewhere here

m=20
(0,0)
(0, 1)
0,2)
0.6276R,

or the radial modes will propagate 0, 1, 0, 0, 0, 2 and so on. If the port is not suppose it is
offset you know at certain distance here then of course, all the other modes all will

propagate.
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m=0,1,2

(0,0)
0,6276ro0 = 6

And based on the location of offset location of this port here you know delta you can
actually suppress you know the propagation of the 0, 1 mode if it is located at exactly
0.6276 times r naught if delta is equal to this thing you know then the 0, 1 radial mode
will not propagate because you see a its a nodal circle is there and if you center it the you

know the integral will evaluate to 0.

Like this a lot of interesting you know rules that a lot of interesting observations that has
come out you know all this is possible by analytical formulations. And finite elements

we can obviously validate. So, that is what [ am saying is that

amn

Rq

_]m[ Ts] =0,175=0,

a

m=#0 and J, %rs]zo, rs=0m=0m=0 (4.66)
0

and this is and this is not equal to 0 for r s is equal to and for the Oth order Bessel

function that is the purely radial mode this is not 0.

So, basically the number of conclusions corollaries that we made that for z matrix
parameter due to a concentric end port as well as between two concentric end ports
located on the opposite faces is independent of the azimuthal modes and the z matrix
parameter or impedance matrix parameters between a concentric end port and an offset

code is also independent of the azimuthal modes.

So, you know and similarly they are expressions for deriving integral expressions when

the port is located on the ends on the curvilinear surface that is the curved surface.

s = mrf {1+ (r0>2+ : <r0>4+ 5 <r0>6 o8
sideport — T Ty 8 \R, 64 \R, 384 \R, (4.68)

So, you know the different cases the general expression is this for m is equal to 0 mode it
is like this and m naught is equal to not equal to 0 you get this thing. So, what we can
was possibly you know do is that what we can possibly do is basically go to the go to the
MATLAB code now.
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And we can run a couple of simulations you know just to show the expansion chamber or
kind of a behavior or you know short chamber behavior side end inlet side outlet or side

line inside out side port. So, those special cases we can see we just see that in a while.

1 function [] =transmission loss_plot_two_port ()
22— tic

3 I
4— c0=343.14;

5

B frangel=5;

T— frange2=2500;

8

g — f=frangel:5: frange2;
10— nl=size(f); n=nl(l,2);
11

12 — L=300/1000;

13— | 221=].;

What we do now is basically you know for the first time in this course we are doing the
three dimensional analysis of although of only reactive mufflers and circular cylindrical
geometry you know rectangular I kind of avoided showing you the code because of time
management thing. But for this thing I like to spend some time and show you how the

how these codes were written some of you can try on your own system.

19— spl=load("Portl.dat"); 3
20— sp2=load('Port2.dat");

21

22

g3 — sp2l=locad('Port2.dat"');

24

Ehi= Tl=zeros(n,1);

26— for i=1l:n S
27

28— T1{i) =transmissian_loss_two_pcsrlt {(Mode, spl, sp2l, s
29— 3

30— end

."f'! = ch="k": - -
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I — z21=L;

14

ES= kO=(2*pi*f) /c0;

16

L= Mode=load ('Mode.dat'); I
18

19— spl=load('Portl.dat"');
20— sp2=load('Port2.dat"');
21

22

23 — sp2l=load('Port2.dat');
24

25— Tl=zerosin.1):i ‘

So, as usual we have transmission loss port which is the main file which cause the which
invokes the transmission loss port where the actual with the final computation of
transmission loss from the overall impedance matrix is computed using in the terms of

scattering matrix parameters. So, number of parameters have to be computed first.

Basically the you know the n 1 mn value the mode shapes integral of the square of the
particular mode shapes of the chamber and then the integrals for the particular port. So,
you know let us consider let us consider what we are trying to study here is the let us say
we have a expansion chamber ok this port can be located somewhere here and circular

thing. So, inlet and outlet ok.

———— —
—
A—[ ‘,.qu.—-“'\-h-
So, we have this sort of a thing. Now this is delta distance then this is concentric port this

is offset port. Now based on the value of the offset distance this is the length 1 diameter

D and Dy and this is all port diameters are assumed to be equal.
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So, let us say D is equal to 250 mm L is L we can vary, but we can also vary D and port
diameters, but we just have to compute some integral values before, this is 50 mm and so
on. So, now, we get all these things. Now what is happening here is that delta we just get

back to the code we are going to analyze this thing for different values of delta.

_1_ ~ function [int_wval] = m::M:le».-s’.hape_prnai:cu:nl:mteltil,iz,Tll
2 EHEEHEEHELLLLLLHESLLEESHLTELERLLLLEIELLHLHHLE%S
= Sc=(pi/4)*(D"2);

4-— i3=i1+1; id=i2+1;

5 %%% il is the order of the Bessel function, whil
iy beta=non_dim cut on_ freq(i3,id); %%% root number
7 EEAEEBEHABHE R LR LESH LR ARLSEABRLRBHAL DL SRS
= R=D/2; %%% Radius of the circular expansion cham
9

b— if il==0 && i2==0 %%% plane wave mode (0,0)...

= int_wval=Sc;

L2

L% i2~=0 %% (m=0,n) mode o
' 6 %%% m= 0 m= 1 =
T mat (1,1)=0; mat (1,2)=1.841183
8= mat (2,1)=3.83170597020751; mat (2,2)=5.331442
a9- mat (3,1)=7.01558666981562; mat (3,2)=8.536316
10— mat (4,1)=10.17346813506272; mat{d,Z}-ll.?ﬂEDU!
EE= mat (5,1)=13.32369193631422; mat (5,2)=14.8635

= mat (6,1)=16.47063005087763; mat (6,2)=18.0155
| = S mat (7,1)=19.61585851046824; mat (7,2)=21.16436
4 - mat (8,1)=22.76008438059277; mat (8,2)=24.3113
- o mat (9,1)=25.90367208761838; mat (9,2)=27.4570

:16- mat (10,1)=29.04682853491686; mat (10,2)=30.601
17— mat (11,1)=32.18967991097441; mat (11,2)=33.74¢61
18 LSRR A AR RS R R AR AR AR R AR AR PR E LR EERTEEERAEER
[ —t— A v
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F6 | m=10 =
= mat (1,11)=11.77087667495558; 5%% lst root of
M= mat (2,11)=16.44785274848650; %%% 2nd root of
5 mat (3,11)=20.22303141268170; %%% 3rd root of
10— mat (4,11)=23_.76071586032744; %5%% 4th root of
B mat(5,11)=27.18202152719053; $%% 5th root of
2= mat (6,11)=30.53450475400707; %%% 6th root of
13— mat(7,11)=33.84196577513572; %%% 7th root of |9
14— mat (8,11)=37.11800042366561; %%% B8th root of
15— mat (9,11)=40.37106890533389; %%% 9th root of
16— mat (10,11)=43.60676490137951; %%% 10th root ofi
I mat(11,11)=46.82895944656456; %%% 1llth root of
5 — ©
6 5%% m= 0 m= |1 -
g — mat(1l,1)=0; mat(l,2)=1.841183
B— mat(2,1)=3.83170597020751; mat (2,2)=5.331442
9— mat (3,1)=7.01558666981562; mat (3,2)=8.536316
10— mat(4,1)=10.17346813506272; mat (4,2)=11.70600
L= mat (5,1)=13.32369193631422; mat (5,2)=14.86358
E2— mat{E,l]-16.4?&63005087?63; mat (6,2)=18.01552
13— mat(7,1)=19.61585851046824; mat (7,2)=21.164367
14— mat(8,1)=22.76008438059277; mat (8,2)=24.31132
B mat (9,1)=25.90367208761838; mat (9,2)=27.45705
Le6— mat (10,1)=29.04682853491686; mat (10,2)=30.6019 ¢

El= mat(11,1)=32.18967991097441; mat (11,2)=33.7461
18 A A AR AR EAARERE R AR LR AR RAR R AR AR RR AR AR AL LR EL L
"ﬁ - L

So, let us get back to the code where you know we compute the mode shapes pre
compute the mode shapes first and this is the cut on frequencies beta non dimension
values [ was referring to in my book. You know these are for large. Now large orders are
considered as many as first 10 11 orders I guess including the including m is equal to 0

order and first 11 roots of such things.

So, such square matrix where the thing is done and these values are computed by
numerically solving the derivative of the Bessel function going to 0 or evaluated using
some Newton quadrature sorry Newton-Raphson’s method or bisection method I do not

remember exactly, but it some numerical method was used.
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1 function [int wal] =simpson_three_eiqht_disc_valf

A ml=size(F); m=ml(l,2);

e — sum=0;

4 — for i=1l:m

= val=F (1) ;

b — if i==1 || i==m !
o= sum=sum+val;

3= elseif rem(i,3)==1I

g — sum=sum + (2*val);

= else

HE= sum=sum + (3*val);

. end

3= end x

And this Simpson’s three-eighth rule is used to you know do general numerical
integration numerical quadrature and what we what I have done you know is basically.
You know these are two separate files where I have written you know first is to compute

the integrals over the port surface area depending upon the location of the port.

1 function [mode_ val]=mode_ shape integration pipe:®
2 T T T T T TT T T e ST 00808 e 8
i tol=10"-6; iter=30;

4 e R R A A S R e R A R R R R AR R SRS
S r1=d1¥2; R=D/2;

& %% thetal is the reference angle (in radians)
7 %% center of the excitation port....

8- i3=1i1+1; i4=i2+1;

9= beta=non dim cut on freg(i3,id); %%% root numbe
10— kr=beta/R;

11

12 | e e e e N S S SRS
= - A T S -

So, these are the radius of the port and the chamber tolerance limit where how many
iterations is required. This was found to be good enough and different cases based on the
plane wave mode we have this and you know | will not bother going through each and

every line of the code.

But basically they are based on what is given in the you know PDF files that I showed

you about my papers and thesis and all that and then you have your mode shape pre
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computed and they are kind of they are nothing but integrals of you know Jr Jm square dr

and all that.
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E >>
1 function [Z]=impedance_matrix_two_port{Mode,spl,T
2— j=sqrt(-1);

== c0=343.182;

4

o om D=250/1000;

6— | R=D/2;

'}' o R o e A O e e e s e e e o A e v e A e B = I e T = R )

8 2 .

9 $%% First Column...

10 %% Impedance due to the Middle Side Port...

Bl — Spl=spl(1,1);

12— Ypl=c0/Spl;

= SnZ2=sp7(1.1): s

So, this for the plane wave mode this is for the you know. This for the 0 0 n mode or
generally mn mode and this is the these were pre computed using things that were run
and then what we need to do is that let us fix up some values. So, we that is why we first
compute this diameter is fixed port diameter and chamber diameter fixed length / can

you can vary.

But if you want to change d capital Dy and small dy you just have to re compute these
values again. So, basically what is happening here is that we compute these things and
then enter the same value diameter in the impedance matrix which computes the which

once you and then you load in these functions you know spl sp12 mode. All these things
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are loaded here and then they are passed on to this function impedance matrix function

where the actual response functions are computed I guess here.
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1

34 —

35

36

37 — +1)~2) /den;

38 — 1) /L) * (spl(i2+1,i141) *sp21(i2+1,i1+1)) ) /den;
39

40— +1)~2) /den:;

41

42 —

43

a4 —

45 —

46— Sy

So, this is the characteristic impedance and you know for the first 20 action modes and
first 11roots 11 modes were computed and those many modes were considered and for

convergence analysis.

And these are the mode shift value L into L 0.5 and all that depending upon whether p is
0 or not and these are the modal summation approach and the response functions were
computed and z21 value was given based on whether you have a flow reversal chamber

or a expansion chamber. So, we can do both z21 is given here is specified in the this

parameter.
7—  frange2=2500; =
8
9~ f=frangel:5: frange2;
10 — nl=size(f); n=nl(l,2):;
11
12— L=300/1000;
3= z21=L.;
14
S — kO=(2*pi*f) /c0;
16
i— Mode=load ("'Mode.dat"') ;
18
19— spl=load('Portl.dat'}:

So, z21 L means location of the port 2 with respect to 1. So, if you change L you get
expansion chamber. So, let us run the case when the port is you know located at the
offset and this offset I am deliberately choosing at 0.6276 times Ry and when I actually

when I run the code you know when I run the code I have already done it.
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So, we get basically your this kind of a graph ok. So, you get you know this is k naught
R naught the non dimensional frequency this is not Hertz by mistake I have written
Hertz; so, ko Ro. So, you know do you see this expansion chamber kind of a behavior you

know this is an expansion chamber dome and trough.

So, this occurs that you know we can figure out certain things you know this is this
occurs at one point 1.3. So, you can work out how much based on the |1 whatever this is

this will in terms of k¢ L it will work out to be m ok 3.14 and this is just ko Ry,

Mew 10 MATLAB? See resounces for GeTling Stacmed.

500

Elapsed time is 73.140362 seconds.
>> 300/125

ans -

2.4000

fx>> 2.4%1.3
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Peew 1o MATLAB? See resources for Gefting Stacted.
dIs -

2.4000
> 2.4%] .3
ans =

3.1200

-ﬁlg ?} clc:l

So, because we have basically you know what is L? L is 300 and 145. So, 300 by 125 so,
2.4 if you multiply by 1.3 roughly you are getting close to it ok getting quite close it
always occurs at 2 m 2 w 3 m, but this in terms of k naught L in terms of k naught r these

are the values, but what is important is that you are you know at look at this value.
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You know it is because of the offset nature you are getting a peak you know the
azimuthal modes are you know if 1 of the port is centered other port is at offset that is
why you are getting a peak otherwise this would have failed right here and you are
getting another peak at this thing these are the cross modes and k naught R naught and
then 3.05 this is the peak because of the radial offset.
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Now, we can have some fun here we can sort of you know close this guy and make some

2

Transmission loss (dB)

simple changes in the code here. So, this is something probably once you write your code
you can do that you who knows you might be asked this in the final exam to run some

MATLAB codes based on that.
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13— z21=L;

14 e E e R A E AL BB R LR B A LA EREEY

15—  kO=(2*pi*f)/c0;

183

n7— Mode=load ('Mode.dat"') ;

18

19— spl=load('Portl.dat"');

20 — sp2=load('Portl.dat"');

21

22

23— sp2l=load('Portl.dat');

24

65— Tl=zeros(n.1):_

28 — Tl[i)=transmission_loss_twc_port{Mode,spl,sp21,51
29— i

30 — end

B1 - ch="1";

32— figure (1)

B3 = plot (k0*(125/1000),T1,ch);

34— hold on

35

36 — grid minor

BT — xlabel ('Frequency (Hz)') |
38 — ylabel {'Transmission loss (dB)")

39 % legend('3-D Analytical: Uniform Piston Approxi

a0 z

Mew to MATLAB? See resources for Getting Started,

i =

499

500

Elapsed time is 69.522909 seconds.

Jx|

So, instead of port 1 is a concentric 1 and if you have choose this sort of a thing let us see
what do we get. So, it will take about a minute or less than that or probably little over a
minute to get you the curve. So, this is what we are doing while the code is running let

me just go to the presentation.
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And in this we are doing a concentric case. So, we are doing something like this sort of a
thing. So, 6=0 for both things ok in other words we have bought this delta to 0 here. So,
let us get to the presentation I am sorry to MATLAB and see what the progress.

So, it is about 500 time steps of frequency steps that it has to do so, will be there in just a
while. So, we will see you know we will still see this expansion chamber kind of a we
have a dome and trough, but then the peaks the sharp peaky nature would at an ancient
peaks that will happen at a much later frequency you know possibly at from ko Ry =

3.05 onwards; so, constant.

g =
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|
i‘ﬂ |
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819



g

e
[=]
T

g

Transmission loss (dB)

5]

10 o
X 1.30465
¥ 0.455912

a i * ———y~

So, you know you can have certain things you can offset one of the port and you can
offset one of the ports and this thing. So, basically compare this with the graph here. So,
you know this concentric chamber thing kind of breaks down at kg Ry = 3.83 which is

basically a first radial mode frequency.

You know and, but at, but this particular thing continues to do well even beyond this
dome and troughs continues to do well for ends end centered a concentric inlet and a
offset port which is located at the radial mode.

Mew 10 MATLAB? See resources Tor GEIing STared.

499

500

Elapsed time is 69.522909 seconds.
>> figure(l)

>> hold on

Eﬁ‘_}} transmission loss plot two port()
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Now, let us do something even more interesting you know we will close this figure and

go to MATLAB and say figure 1 hold on and do something interesting, what is that?

28— Tl(i)=transmission loss two_ port (Mode, spl, spEl,sT
2= i

30— end

33 — ch="hb";

32— figure(l)

{3 — plot (kO0O* (125/1000) ,T1,ch);

34 — hold on

25

36— grid minor

3T — xlabel ('Frequéncy (Hz) ') |
38 — ylabel ('Transmission loss (dB)') 1
39 t legend('3-D Analytical: Uniform Piston Approxi
40 -
16 =
g — Mode=load ("Mode.dat") ;

is8

19— spl=locad('Port2.dat");

20— sp2=locad("Port2.dat"};

21

22 3
23— sp2l=load ('Port2|.dat") ;

24

25— Tl=zeros{n,1) :

26— for i=1l:n

27

I?_ﬂ = Tl {il=tranami ﬁ".:=5"| on_laoss two nort (Mode.sol .. .an?]. - g

So, we will change it to blue color to show different plot and now what we could do is
that you know we can put this as a port instead of concentric we could put this as port 2.
And this is also port 2 ok that is there and if you put this also as port 2. So, what exactly
are we looking at? We are looking at configuration something like this ok. We are

looking at this thing ok.
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499

500

Elapsed time is 70.605657 seconds.
X >>

Let us run it and see what does it give; will basically the dome and trough behavior will
come down even faster, then that transmission loss behave will come down for even
faster. So, you know note that you know in all these things we have considered as many

as let us go to the impedance matrix file well.

19 =
20— for il=0:1:10 k% first 10 order of the Bes
21 3

22— for i2=0:1:10 %% root numbe:

23

24 — alpha=non_dim cut _on freq(il+l,i2+1);

25

26— k disc= (alpha/R)*2 + ( (p*pi)/L )*2 -
27

28 — if p==

29— int_vcl=M0de{i2+1,i1+l]*L;

30 — elseif p~=0

31— _ int vol=Mode (i?+71.i14+1)}*T.*0.5: -

You know we have considered as many as first 10 orders in actually first 11 orders of
Bessel function and first 11 rules if you put this as 0 0 0 0 0 will just get the plane wave
mode. So, we can see what sort of a behavior does the plane wave mode also give us just

as a corollary, but we will probably do it for a reversal chamber.

So, we are running short of time. So, what we will do is that we need to skip all not all

cases can be considered can be covered. So, we will we let the simulation run perhaps
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next time we will do it for a shorter frequency range ok. In the in well [FL] well it fails

down even faster.

So, it I mean at a much earlier frequency you know at basically at what frequency does it
fail? Or the dome trough pattern you know there is a collapse of the dome trough pattern
at least dome trough pattern you can get only at isolated frequencies you are getting

problematic thing the muffler was transparent.

So, the good thing about dome trough pattern is that you know at least you know where
you have the problematic frequency range. But when this fails down you not only get a
collapse you get lot of you know troughs and you know attenuation is also completely

annihilated.

So, as low as one point well k naught 1 k naught 1 is equal to m or the first actual
resonance it kind of after that the plane wave would fail. And you know you getting why
because as for such a configuration that is shown here you know all the modes will start
propagating. So, higher down modes you know 10 mode will also propagate and that. So,

you basically get a you know when you had basically this configuration you know ends.

So, concentric inlet an offset port at least the frequency range over the which the dome
trough pattern occurred that was enhanced and because this 1 0 mode the suppression of
that was proposed that suppressed because of the concentric nature. Similarly 2 0 mode 3

0 everything was suppressed.
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=
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Now, similarly when you have the port here one one of the ports at the center this are the
offset. So, 0 1 was also suppressed, but you have both the ports at the 0 1 mode node so,
but in such a case all the circumferential mode will start propagating. So, we see that you

know this kind of fails at kg r = 1.84 yes.

So, my guess was right. So, it breaks down at the onset of the first circumferential mode
and then the story is over you know it is no longer valid beyond k naught R naught equal
to 1.84. So, you know the outcomes of this thing there are lots and lots of things

parametric studies can reveal to you.

So, a strong analytical background is very much desirable then you can you know do this
3D effects in a very nice elegant manner. Although this is a piston driven approach is
somewhat an approximation, but 1.84 is the frequency at which in which it fails, but in
the other case it feels at much larger range. The, what is the point am trying to make? I
am trying to make a point that you know the location of the ports has a lot to do with the

transmission loss behavior.

So, that is very important ok. So, if you can at least you can have concentric inlet and
outlet ports is still good if you can have one port offset at a certain thing it is even better,
but do not have both the ports offset although they are both at the radial nodes of the
radial mode, but that is not sort of recommended. So, I will close off this figure and do

you know show you something interesting even more interesting for a short chamber.

16 ]
El— Mode=lcad ('Mode.dat') ;

18

19— | spl=load('Portl|.dat');

20 = sp2=load('Port2.dat");

21

22

g3 — sp2l=load('Portd.dat"):

24

25— Tl=zeros({n,1l);

26 — for i=1:n

27

?'H = Tl{il=transmission loss two bort (Mode.snl.sn?l o &

irTE A TSy R PR —— = A P A
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So, I will put this as the concentric port remember port 1 was a concentric 1 port 2 is this
thing you know with respect to this thing and. So, basically what is happening is that you
know you have this situation. So, this is the port 1. So, z 11 is this thing z 2 is this thing

and the and with regards to the z21 parameter that that you see.

So, before we actually run the code you know we can use the same code to analyze a
reversal kind of a muffler configuration. So, let us say you know this port is concentric
here and this is something like this. So, inlet, outlet ok. So, inlet and outlet and the length

is L.

So, what we need to do in the code is that just put z 12 is equal to 0 basically this port if
you know consider the coordinate system z is equal to 0 here with respect to the port 1
this is also located at the same value. You know so, basically let us go to the MATLAB
code. And just put z 21 is equal to 0 which is which I have done.

So, it is a flow reversal chamber and port 1 is the concentric one this is the offset one at a
certain location and z 21 is also the same because this is the cross impedance matrix kind
of a parameter which is evaluated somewhere here this is the cross matrix parameter
pc21. So, this will give you the z21 parameter and z12 is the same as z21. So, this is the
critical part is p sp21 with reference to the port 1 what is the location of the port 21. So,

this is what it is and then let us hit run.

825



Command Window
Mew 10 MATLABT See resources for (efling Started

499

500

Elapsed time is 1.33443]1 seconds.
>> grid minor

fx>>

So, you see you know a flow reversal kind of a behavior lot of parametric studies that
you can do on your own. So, let us demonstrate the behavior for a long chamber muffler
configuration. So, what we are going to do? It is going to take a minute or so. And you

and we will also analyze the case where we have plane wave mode.

So, just to put m = 0, n = 0 and we can see the deviation what the end correction does
what are what we were discussing all this while. So, you just have to bear for a minute
and next what we can do is that we can analyze a short chamber expansion chamber or a
reversal kind of a muffler and we see even for short actual chambers things can be good.

So, bear for a minute and you will get the results soon.
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So, well we get the transmission loss characteristics of a flow reversal chamber. So, you
see this is a peaky behavior you instead of a dome trough thing you know you are seeing
a attenuation peak and a trough thing and there are multiple spikes this always occurs at
1.84 peak and this is occurring at the cross modes of course, and then you are getting a

peak at 3.05 and 3.84 I guess. Now 3.57 3.84 somewhere here I guess.

29 = I -
30— end
31 = ch="k";
32— figure(1)
43— plot (k0* (125/1000),T1,ch) ;
34 — hold on
35
136 — grid minor
B — xlabel ('Frequency (Hz)')
38 — ylabel ('Transmission loss (dB)"')
39 ik legend('3-D Analytical: Uniform Piston Approxils
a0
41 — toc
16— | pcl=0; pc21=0; pc2=0; e
157}
g - for p=0:1:20 %%% axial modes
9
PO - for i1=0:1:0 %%% first 10 order of the Bess'
P1 '
22— for i2=0:1:0 %%% root number i3 corresj
23
24 — alpha=non_dim cut on freq(il+l,i2+1);
25
26— k disc= (alpha/R)*2 + ( (p*pi)/L )*2 -
27
pg — : if p==0 £

So, anyways what we will do is that we will say figure 1 hold on because all the high
order modes at least the first several modes were considered. Now what we can do is that
we can change it to black color and in the impedance matrix file how about we change it
to 0 and O that is we are considering only the plane wave modes. You can put 100 here

not a problem and this hopefully should be much faster well you are there.
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So, plane wave does not take too long to validate because they are lesser number of
modal terms. So, we get this. So, you see a small shift; that means so, based on 3D the
peak was occurring at 0.709 0.71 kg Ry = 0.71. So, that we can work out the frequency
and for just on the plane wave it is occurring at I guess 0.68 or something like that 0.66.

So, there is a difference.

| X 0.663768
70 ¥ 88,6735 X 3.57062 1
i ¥ 63.4709

60 F
X 184253

Y 46.7887

2

X J.05562 X 3.833
Y 39.2162 | vy 383
T [ .

g

Transmission loss (dB)
o
(=]

Neww to MATLAB? See resources for Getting Started,

500
Elapsed time is 1.334431 seconds.
»>> grid minor
>> 0.05*125

alls -

6.2500

“fx_:»-::-l ::lc:l

So, point 0.05 Ry that is a difference. So, 0.05 into 125 if you do well you need to work
out how much it would evaluate in terms of Hertz, but there is a good 20-30 hertz
difference in the attenuation peak for different configuration you can have different

attenuation ranges different shift the variable shift in the peak frequency predicted by the
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plane wave and the 3D effects. Now basically you know if you put z naught is equal to

point instead of this thing if we let us have a shorter chamber.
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16— | pcl=0; pc21=0; pc2=0; B
17

EB= for p=0:1:20 %%% axial modes

19

20— for i1=0:1:10 k%% first 10 order of the

21

2Z— for iZ”D:rl:lﬂ %% root number i3 corresg
23

24 — alpha=non_dim cut on freqg(il+l,i2+1);

25

26— k disc= (alpha/R)”*2 + ( (p*pi)/L )*2 -

27

A : if p==() o -

And let us see what the behavior would be like. You know well this is not quite correct
because we have not considered the hard or more terms, but what I am what I am kind of
let us get back to the original thing and you know what it means is that you know we are
considering a much shorter chamber. So, one port is at the center other is it at is at delta

and delta 1s 0.6276 Ry.

So, you see you will see just in a while a fantastic broadband annotation even a short
chamber can give you provide that you can offset the inlet and outlet properly. So, this is
what I presented in my book. So, I am going to show you the graph of such a
configuration while it is doing its job. So, if you go back to the close of this guy in my
monograph, I have talked about this configuration let it load we should be nearly there

you should be getting a very broadband attenuation well.
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This is what we get and compare it with the other configuration. So, you know although

at slow frequency at attenuation amount of attenuation is relatively low, but you are

getting a broadband attenuation. And this is what you know I kind of got in my springer

monograph which is basically your it is not loading somehow [ am not sure why.

But, well, anyhow the point is that you know even a short chamber can get you a
broadband attenuation and you are able to get you know as much as if you continue to go

beyond it is going to fail at a much higher frequency probably about kg Ry = 6.8 or 6.9
something like that.
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But you know. So, these reversal chambers what is presented here they are used a lot in
your as an end chamber in a more 3 pass or multi pass perforated muffler system as we
discussed in you know week the previous weeks you know 8 to 10 we are discussing all

those things.

So, the point is that if you have a bigger system something like. So, if you have a system
like this the problem one of the research problems that comes in my mind and that is a
that is been there for some time you have a perforated tube you can try you know this is
the length here, what is the location of this inlet and outlet ports? Or the ports of the end
chamber this is perforated fully or partially depending upon what you want this got some

thickness this baffle plate.

And this end chamber which facilitates the flow reversal. These are the configurations
what I presented in my book and you can alternatively have another configuration you
know something like this you know single pass tube like this. The flow comes here has

to negotiate this you can have this is a partially perforated tube.

So, what is basically your optimal configuration? Basically this guy we know this guy
we know, but we have to design this guy and this guy what are the optimal location of
this port here and so on. So, all this needs to be done and so, mat so, 3 D analysis of such

configurations can be can prove to be very handy and that is what that is what we did.

So, other thing that we can also look into is that analysis of side inlet in a side outlet
configuration, but you know this something that you should probably try on your own.
There is something similar what we saw for a rectangular chamber with the end inlet and

a side inlet and a side outlet.
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So, let me just summarize the result you know rather than doing the calculations again
you know if you have things like if you have a port in here and one of the ports is say
located here at L / 4 other port is at L / 2, but this is say on this thing and this is at 90
degrees you know sort of not able to draw it. This is something like this and this is like
this. So, the included angle between this is 90 degrees then you would get a broadband

attenuation.

You have multiple peaks and you know you will get a broadband annotation first,
second, third resonance drops are basically eliminated and with 90 degree you can also
get rid of the 1 0 mode, but 2 0 mode you are going to have problems that at that point

attenuation is going to fail.

So, anyhow the point is that such codes can also be used for analyzing a side inlet and
side outlet or possibly an end inlet in a side outlet kind of chamber reports can be
arbitrary placed and these results are you know match pretty well with 3D analysis 3D
FEM analysis where there is a proper coupling between the inlet and outlet ports you

know that because the entire thing is taken as a continuum.

So, with this thing I will stop here and what we are go. So, this brings us to the end of
week 11 lecture, we just had a glimpse of the 3D analysis. But what we could also do is
that you know there are lots of geometries there as a final node for this lecture you know
piston driven model can be used to analyze a lot of configurations, but for systems such

as extended inlet and outlet systems.
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You know one necessarily has to consider modal coupling at least within between the
annular cavity that is you know that is between you know if you have a chamber like this
something like this between this part and this part and this part, there is a fully coupled
system one must consider that. So, hopefully we will take up that in the next week the

first few lectures.

And then touch upon some just touch upon the dissipative muffler theory because this is
huge theory is hard to cover in one week. You guys just have a glimpse of that and then
you know, but as a final note in this lecture, I want to say that you know analytical

solutions are possible for a lot of geometries in which Helmholtz equation is separable.

There are lot of cordial systems circular cylindrical and rectangular I mean Cartesian
system present only the simplest one the other one is elliptical system for which I have
written the monograph in terms of Mathieu functions, radial Mathieu functions and
angular Mathieu functions. So, they can be used to analyze elliptical chamber mufflers

which are used a lot in practical applications.

So, other than that of course, there is a concentric I mean circular chamber with a
concentric pass tube and so on then there are hemispherical chambers which can also be
analyzed using piston driven model and all that. So, they are a lots of things conical
pipes perhaps conical chambers and then there are advanced mode matching techniques.

So, all these can be used to analyze reactive mufflers quite well.

But I will probably stop here because the idea was to just to get you a glimpse of the 3D
analysis and we will basically meet in the next week where we will discuss the extent
inlet and outlet system using analytical approach. Let us see how much we can analyze
that using MATLAB code based on the time and the codes how much it is giving us

results. So, till that time I will stop here and I will see you in the next week.

Thanks.
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