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Linearization of Governing Equations, and Development of 1–D Acoustic Wave and  
Helmholtz Equation 

 

Welcome back on this series of lectures on Muffler Acoustics. We stopped at the momentum 

equation in the last lecture 3. So, in this lecture, our goal will be to linearize the momentum 

continuity and momentum equation appropriately by dropping certain higher order terms, and 

then combining that with your equation of state, which is basically your isentropic equation, 

to finally arrive at the one-dimensional wave equation. 
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So, let us first write down the continuity equation what I basically briefly mentioned. This 

was your continuity equation that I mentioned let me encircle it again here. So,  
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here is the total density; similarly, U is the velocity, often in flow ducts we have a mean 

velocity also and small perturbation velocity. 



So, here of course, we will just consider right now we just consider U as the particular city, 

we will consider a stationary medium that is a look in mufflers of used in automotive 

application in exhaust system of automobiles there is usually a flow. So, something like there 

is a constant flow plus there disturbances that are convected in along the direction of the 

flow. 

So, right now to for the development of these equations the basic wave equation without 

flow. We just going to ignore the mean flow effect and just consider U as the acoustic particle 

velocity and pressure of course, is the ambient pressure plus the pressure perturbations. So, 

now, let us consider this continuity equation what I have encircled and go about the process 

of linearization. 

Before we begin the linearization process the following things might be important that 
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Similarly, now when we pull out the continuity equation which is somewhere here and start 

expanding the terms. There is also another thing that I want to point out is that we are also 

considering that spatially the ambient density is not changing, that is to say we do not have a 

stratified medium or well, we are not considering those cases we just considering a medium 

in which the ambient density of air or any gas does not change. It is uniform density gas with 

respect to space. 

Now, with this when we pull out the continuity equation and use these relations what we 

eventually get is something, 

𝜌௧ + 𝑈 ∙ 𝜌௫ + 𝜌𝑈𝑥 + 𝜌  𝑈𝑥 = 0 

So, now, let us underline and identify terms which are first order and which are sort of second 

order. Now, that is the process of linearization. 

So, we immediately recognize that intuition says that 𝜌௧ that is the first order term and so is 

this term, whereas, these two terms are second order. The reasons can be justified by noting 



that well 𝜌 ≪  𝜌  smaller than the ambient density and your velocity is   𝑈 ≪ 𝐶smaller than 

the sound speed or in other words,  

𝑝

𝜌
≪ 1    

Now, there might be a concern that if 𝜌  is small, its temporal derivative might not be small. 

Similarly, if U is small its spatial derivative Ux need not be small. It is a well justified 

concern and that can be elevated by considering you know more physical argument when like 

you know in the beginning lectures we talked about the disturbance is propagating at sound 

speed C0. 

So, if we consider the disturbance, 

(𝛿𝜌)௧ = 𝜌௧  ≃ 𝐶 𝜌௫ 

 if this propagates if you take a temporal derivative of this, so this is your rho t approximately 

since its acoustic disturbance is small speed for small speed equations this would 

approximately. So, basically what it means is that if we were to basically substitute this 

relation in the above equation let us see what we get. 

So, here we substitute 

𝐶𝜌௫ + 𝑈𝜌௫ + 𝜌 𝑈𝑥 +  𝜌 𝑈𝑥 = 0  

So, this is an important substitution that we made and let us compare the terms. So, clearly, 

we if we take well this term and this term 𝜌௫ suffix x that is derivative with respect to x. 

So, this term if we take common and C0 and U and we also made an assumptionthat. 

𝑈 ≪ 𝐶 

So, clearly this is the dominant term and this term sort of can be ignored and similarly in 

these two terms if, 

𝑈𝑥 (𝜌 +  𝜌) 



So, we will see clearly that this term is a smaller order term and only this term would survive. 

So, basically what it means is that if you pull out this equation only this particular term would 

survive,  

𝜌௧ + 𝜌  𝑈𝑥 = 0                                      (12) 

which is. So, this is what we are going to get. 

Another way of looking at this linearization process for the continuity equation is basically to 

non-dimensionalize a variable. So, suppose if we introduce variable 
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With this non-dimensionalization choice what we end up we can put this continuity equation 

given in here in the following form  

𝛿𝜌ఛ
ା 𝑈ା𝛿𝜌௭

ା +  𝑈௭
ା + 𝛿𝜌ା𝑈௭

ା = 0 

So, now as we have already assumed that this quantity has to be much smaller because rho 

tilde by rho naught is much much smaller. So, what it means is that the quadratic terms that is 

these terms are much smaller than the linear terms that regardless of the differentiation. 

Basically, this resolves the concern that you know in the continuity equation which was 

presented here the linearized we basically dropped the terms without the consideration of the 

fact that in the first term here we are differentiating with respect to time t well in these terms 

we are differentiating with respect to the space x. 

So, what if the density acoustic density were to vary rapidly with distance but slowly with 

time? So, now, that is the reason that we could probably introduce some non-

dimensionalization constant and which is your given by this set of variables and what we see 

immediately that 𝛿𝜌ఛ
ା, this is a linear term and similarly 𝑈௭

ା this is also linear term and 

𝑈௭
ା + 𝛿𝜌ା𝑈௭

ା = this is clearly a quadratic term and so, is this one. 

So, this one so, so, this is the second order term, these two and the first order first order. So, 

basically that is how we retain this and when we put that back into the dimensionalization 

constant we get back the linearized version of continuity equation. So, this equation is very 

important. I would number this as (12) linearized continuity equation. 



𝜌(𝑈௧ + 𝑈 ∙ 𝑈௫) + 𝑈(𝜌௧ + (𝜌𝑈)𝑥) = −
𝜕𝑃  

𝜕𝑥
 

  𝜌(𝑈௧ + 𝑈 ∙ 𝑈௫) = − 
𝜕𝑃  

𝜕𝑥
(6) 
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                                   (7)        

Similarly, let us pull out the momentum equation now momentum equation which is this. So, 

let me write it down. 

𝜌(𝑈௧ + 𝑈 ∙ 𝑈௫) = −
𝜕𝑃  

𝜕𝑥

𝜕𝑃  

𝜕𝑥
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(𝜌 +  𝜌)(𝑈௧ + 𝑈 ∙ 𝑈௫)  =  
𝜕𝑃෨

𝜕𝑥
 

So, basically what happens now is that if we expand the left-hand side out completely, we 

would get 

𝜌𝑈௧ + 𝜌  𝑈 ∙ 𝑈௫ +  𝜌𝑈௧ +  𝜌  𝑈 ∙ 𝑈௫ +  𝑃෨𝑥 = 0  

Now, clearly let us identify the different orders of term this is your first order term clearly 

and so, is this one 𝜌is ambient quantity and you just differentiating the velocity with respect 

to time t and here you have your first order quantities and this term 𝑝 into Ut this is a second 

order term. 

So, I am putting two lines underneath it and so, is the convective term U x into U which I am 

also putting double line and this quantity is actually a triple order quantity. So, this can be 

obviously, can be completely ignored.  

So, based on the same arguments that I presented for the continuity equation what we could 

do possibly is get rid of the second order terms initially and then the third order terms as well. 

Ending up with this one, which is nothing but. So, I am going to call this as equation (13) 

right equation (13) and this was equation (12). 
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𝑝

𝜌
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𝜌
 = 𝐶ଶ(10) 

𝑝 = 𝐶
ଶ𝜌                                                       (11) 

So, now what we need to do is that this relation equation number (11) and substitute that in 

equation number 12 and 13 that is to say we will now formally replace all the density variable 

in terms of the pressure perturbation variables. So, let us begin the stuff for the continuity 

equation and which basically means is that your continuity equation is equation number (12). 

𝜌𝑈௧ + 𝑃෨𝑥 = 0                      (12)    

                                        𝜌
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𝜕𝑡
 +
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𝜕𝑥
= 0                               (13)         

𝑝 = 𝐶𝜌 

𝑝௧ = 𝐶  
ଶ 𝜌௧   =  

𝑝௧

𝐶  
ଶ =  𝜌௧ 

So, this we will put back in the continuity equation, 

1

𝐶  
ଶ

𝜕𝑝

𝜕𝑡
+ 𝜌 𝑈𝑥 = 0                             (14) 

So, this is our equation number say (14) and let us bring out our equation number (13) which 

is we do not need to do any simplifications here in terms of substituting for density. We can 

just use it let me write it down again here, 

𝜌

𝜕𝑈

𝜕𝑡
+

𝜕𝑝

𝜕𝑥
= 0                                        (15)   

So, we need to now eliminate. So, I am I would just put it like this we need to eliminate U 

and put everything in terms of p. So, what do we do? We differentiate equation (15) which is 

actually the same as equation 13, I just replaced it. I probably not want to do that. I would just 

differentiate this with respect to the space that is x. To get this, this is square and again 



differentiate this with respect to time t to get say equations(12)and(14) and this would be 

(15). Subtracting 15 from 14 we get. 

So, we end up with a familiar equation. You can also write this as like this just putting it like 

this, 
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So, finally, we arrived at the one-dimensional wave equation the hyperbolic equation and 

now, this is the wave equation because here you have that with respect to time t it like I said 

like we discussed in the first couple of lectures it models or governs the propagation of pulses 

dt of pulses or some transient waves, the free waves also if you insist harmonicity you end up 

with Helmholtz equation and then you can get the force response. 

So, now suppose, 

𝑝 = 𝑝(𝑥, 𝑡) = 𝑝(𝑥)𝑒ఠ௧ 

 where now you have a complex exponential that is cos omega t plus j times sin omega t. So, 

if you do that, what do you end up with? If you put this equation here, you actually end up 

with an ODE rather than a PDE Ordinary Differential Equation. You end up with a term 

called 

𝑑ଶ𝑝

𝑑𝑥ଶ
+ ൬

𝜔

𝐶
൰

ଶ

 𝑝 = 0 

So, omega by C, now we are gradually one by one introducing important notations that we 

will use throughout the course in muffler acoustics and also in acoustics generally, 

𝜔

𝐶
= 𝑘       షభ 

the wave number k naught is the ratio of the angular frequency divided by the sound speed, 

where k naught has a unit of per meter because this has unit of per second, this has unit of 

meter per second; this, this goes away. So, it has units of  



𝑠ିଵ

𝑚𝑠ିଵ
    𝑓 

It is like the spatial frequency just like f or the frequency is how things vary at a particular 

point or location with time. Similarly, your k naught tells you if you freeze time how does the 

wave vary in space it is like the spatial frequency. 

So, basically this 

 

𝑑ଶ𝑝

𝑑𝑥ଶ
+ 𝑘

ଶ 𝑝 = 0 

 So, this is the Helmholtz equation Helmholtz equation one-dimensional.  

Obviously, for 3-dimensional things which we will discuss in the next weeks lecture, we have 

additional terms the complication arises just by intuition of additional terms. So, right now 

we just focus on the one-dimensional aspect. 

So, with this I think we will stop the lecture for this for this class and resume in the next class 

where we will take up the cases for the forced response. We will particularly take up the 

things that we are going to do for forced response like a piston excitation, we will talk about 

different boundary conditions like rigid wall boundary conditions, open end boundary 

conditions, talk about the general solution in terms of harmonic waves. 

Which is something like I will just give an idea of what we are heading towards something 

like solutions of the  

𝑝(𝑥, 𝑡) = (𝐴𝑒ିబ௫ + 𝐵𝑒ାబ௫ )𝑒ఠ௧ 

So, we will see we can still have waves that propagate along the positive x-direction and the 

negative x-direction and how they satisfy the Helmholtz equation. 

These equations are central to muffler acoustics at least the plane dimensional test case, a 

plane dimensional frequency propagation wave propagation and we will talk about that in the 

next lecture. 

So, thanks for attending. 


