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Lecture - 42 and 43 

Cross Flow Elements: MATLAB Demonstration for Simple Configuration 
 

Welcome to lectures 2 and 3 of week 9. These lectures 2 and 3 are combined. So, in the 

last lecture, as you as you noticed we were we were discussing about the cross flow 

elements for the first time. So, you know when you whenever you have a cross flow 

element that necessarily means that you must have something like a this kind of a system 

where you have a 3 interacting ducts.  

 

𝑄଴ = ൫𝜎. 𝜋𝑑௣ 𝑙𝑝൯𝑈ᇱ = 𝑈଴𝑆𝑝   

𝑈ᇱ =
𝑈଴𝑆𝑝  

൫𝜋𝑑௣ 𝑙𝑝൯𝜎
 

So, there are basically two perforated pipes, for simplicity only I have assumed that the 

perforated section is a common section between the two pipes through which the or the 

air ways through which flow happens. And surrounding that is a jacket or annular region 

which basically contains or houses these pipes. So, the idea is that the flow has to go 

through the pipes and come to the other pipe. So, as a result we must have at least 3 

interacting ducts. 

𝐷ଵ =  𝐷ଷ

𝜁ଶ = 𝜁ଵ
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𝐶ଵ  𝜌଴  
𝜕𝑈෩ଵ

𝜕𝑧
+ 𝑈ଵ  

𝜕𝜌෤ଵ

𝜕𝑧
+  

4

𝑑ଵ
 𝜌଴𝑈෩ଵ,ଶ = −

𝜕𝜌෤ଵ

𝜕𝑡
                             (1) 

𝑈ଵ,ଶ =
𝑝ଵ − 𝑝ଶ

𝜌଴  𝐶଴𝜁
                  (2) 

Now, with this understanding you know we were we are beginning to derive the 

equation. So, this was the continuity equation. I just wrote it down the different 

equations, the namely the continuity equations, momentum equations in duct 1, 2, duct 3. 

So, that is the nomenclature we follow.  

𝜌଴ ቊ
𝜕𝑈෩ଵ

𝜕𝑡
+ 𝑈ଵ

𝜕𝑈෩ଵ

𝜕𝑥
ቋ = −

𝜕𝑝෤ଵ

𝜕𝑧
                           (3) 

𝜌଴  
𝜕𝑈෩ଶ

𝜕𝑧
+ 𝑈ଶ

𝜕𝑈෩ଶ

𝜕𝑥
−

4𝑑ଵ

𝑑ଶ
ଶ − 𝑑ଵ

ଶ − 𝑑ଷ
ଶ   𝜌଴ 𝑈෩ଵ,ଶ       

 +
4𝑑ଷ

𝑑ଶ
ଶ − 𝑑ଵ

ଶ − 𝑑ଷ
ଶ  𝜌଴ 𝑈෩ଵ,ଷ = −

𝜕𝑝෤ଵ

𝜕𝑡
         (4)    

 𝑈෩ଶ,ଷ  =  
𝑝෤ଶ − 𝑝෤ଷ

𝜌଴𝐶଴𝜁
                     (5) 

𝜌଴ ቊ
𝜕𝑈෩ଶ

𝜕𝑡
+ 𝑈ଶ

𝜕𝑈෩ଶ

𝜕𝑧
ቋ = −

𝜕𝑝෤ଶ

𝜕𝑧
                                (6) 

𝜌଴

𝜕𝑈෩ଷ

𝜕𝑧
+ 𝑈ଷ

𝜕𝜌෤ଷ

𝜕𝑧
−

4

𝑑ଷ
𝜌଴𝑈෩ଵ,ଷ = −

𝜕𝜌෤ଷ

𝜕𝑡
                        (7) 

𝜌଴ ቊ
𝜕𝑈෩ଷ

𝜕𝑡
+ 𝑈ଷ

𝜕𝑈෩ଷ

𝜕𝑧
ቋ = −

𝜕𝑝෤ଷ

𝜕𝑧
                                (8) 
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𝜌෤ଵ =
𝑝෤ଵ

𝐶଴
ଶ , 𝜌෤ଶ =

𝑝෤ଶ

𝐶଴
ଶ ,   𝜌෤ଷ =

𝑝෤ଷ

𝐶଴
ଶ                (9) 

So, we get all these things as a result, we get all the equations. Now, it becomes actually 

quite messy to kind of simplify that. And note that we here we are assuming time 

harmonicity. So, we whatever time variables are there  

𝜕( )

𝜕𝑡
=

𝑗𝜔

𝐶଴
  

we assume the variable to have a 𝑒௝ఠ௧ dependence.  

So, it is called; so, it is basically it gives you jω times that particular variable. So, support 

is it is p, so we get  

  𝑝 = 𝑝 ෥ 𝑒௝ఠ௧ 

 So, we get 𝑒௝ఠ௧   and you know basically we get 𝑒௝ఠ௧ is cancelled on both sides of the 

equation. So, eventually we get this quantity.  

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑝෤ଵ

𝑝෤ଶ

𝑝෤ଷ

𝜌଴𝐶଴𝑈෩ଵ

𝜌଴𝐶଴𝑈෩ଶ

𝜌଴𝐶଴𝑈෩ଷ⎭
⎪⎪
⎬

⎪⎪
⎫

ᇱ

 =  

⎣
⎢
⎢
⎢
⎢
⎡
𝐴ଵଵ 𝐴ଵଶ ⋯ ⋯ ⋯ 𝐴ଵ଺

𝐴ଶଵ ⋯ ⋯ ⋯ ⋯ 𝐴ଶ଺

𝐴ଷଵ ⋯ ⋯ ⋯ ⋯ 𝐴ଷ଺

⋮ ⋯ ⋯ ⋯ ⋯ ⋯

⋮ ⋯ ⋯ ⋯ ⋯ ⋯

𝐴଺ଵ ⋯ ⋯ ⋯ ⋯ 𝐴଺଺ ⎦
⎥
⎥
⎥
⎥
⎤

଺×଺

 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑝෤ଵ

𝑝෤ଶ

𝑝෤ଷ

𝜌଴𝐶଴𝑈෩ଵ

𝜌଴𝐶଴𝑈෩ଶ

𝜌଴𝐶଴𝑈෩ଷ⎭
⎪⎪
⎬

⎪⎪
⎫

 

And this is often divided by the sound speed, so we replace this thing by k0. So, you 

know, so that is the standard simplification process you would have kind of followed it 

by now. So, we hope to put the matrix in this sort of a form  is equal to a X, where you 

know where the X vector is basically nothing, but this particular vector this is the X 

vector, ok. So, and this is your A matrix the entries of which we will have to populate. 

Now, in the last class I just stopped here, and what we could do as a good way to start is 

basically write down the different entries on the A matrix. So, basically you know 

written in this form where all the pressure things are in one side and velocities are the in 

the other side, we would get the following form of the A matrix. 
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So, A matrix then is sort of given by; and here note that is one more thing that I sort of 

forgot to tell and that is that we have incorporate the convective effects of mean flow by 

the underlying terms. So, here we have these underlying terms you know U2, U3 and so 

on and U1 also in this duct, but for simplicity we can sort of ignore the convective effects 

of mean flow altogether in the ducted system. And we can just consider the dissipative 

effects of mean flow.  

And how do we do that? So, we incorporate the dissipative effect. So, the perforate 

impedance expression. So, you know it is been shown in the previous papers like there is 

one famous paper by Munjal and others published in about 87 in the Journal of Sound 

and Vibration, where they are shown that they have also ignored the mean flow 

convective effects. So, mean flow because it makes life easy. You know it kind of 

simplifies the algebra and lot of terms drop out.  

They are just, they just evaluate to 0, so we need not consider them, but they can still 

account for the most important dissipative effects of mean flow which we are going to 

see now by using appropriate perforate impedance expressions. Now, as a result all these 

equations that you see here, you know the equations in this line this I mean this kind of a 

term here, this term, and your this term, this one all these terms will one by one start 

dropping out. And you know the A matrix will be much more simplified.  

So, with this assumption write down the entries of the of the A matrix when convective 

effects are ignored. So, here it is written in the following form. A matrix let us do this 

thing and just for argument sake we will put this where the subscript two denotes to 

denotes the middle or the annular cavity or the chamber itself.  

So, let us make appropriate things here. So, the A1 4, we are now writing the momentum 

equation first and let us also divide this into 6 parts, 2, 3, 4, 5, 6. So, here we what we 

will do? You know we will write down the momentum equation in the first duct at the 

very first. So, A1 4 this term will become  
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డ௣భ

డ௭
  

 
డ௣మ

డ௭
     
 

డ௣య

డ௭
=  

 

𝜌଴𝐶଴
డ௎భ

డ௭
 

𝜌଴𝐶଴
డ௎మ

డ௭
 

𝜌଴𝐶଴
డ௎య

డ௭
⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0                  0              0        − 𝑗𝑘଴       0           0
 

0                  0               0            0         − 𝑗𝑘଴     0 
 

       0                0              0              0             0         − 𝑗𝑘଴

 

−𝑗𝑘଴
ସ

ௗభ఍భ
        

ସ

ௗభ఍భ
       0             0            0              0    

 
      ∗              ∗∗            ∗∗∗          0             0               0

 

0                
ସ

ௗభ఍మ
     − 𝑗𝑘଴

ିସ

ௗమ఍మ
  0            0                0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑝ଵ

 
𝑝ଶ

 
𝑝ଷ

 
𝜌଴𝐶଴𝑈ଵ

 
𝜌଴𝐶଴𝑈ଶ

 
𝜌଴𝐶଴𝑈ଷ⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

You see because you know here you have a state variable X dash. So, what it really 

means is that 
డ௣భ

డ௭
 is equal to −𝑗𝑘଴ times 𝜌଴𝐶଴𝑈ଵ. 

So, here we write the momentum equation first. Now, you know this is with the 

understanding this is the A matrix. So, I am just sort of rubbing it off other equation of 

course, is your momentum equation, is not it. So, what will be this entry? So, this is 

−𝑗𝑘଴. So, here you will get your 3, it is A3 6, sorry this will be something like this. So, 

−𝑗𝑘଴. And there will be, there will be a term here also corresponding to del z of p2, that 

will be −𝑗𝑘଴here.  

So this, this thing this goes with this particular guy, is not it. So, like this we have written 

down the momentum equation, ok. Now, comes the continuity equation which is; 

obviously, more challenging because here it is an exchange like I have been mentioning 

at the very beginning of the lecture on the perforated mufflers. It is basically the 

exchange of mass between through the perforates and that is why the continuity equation 

is kind of modified it has to be modified, ok. 

So, we get this sort of a thing, and we get this. Let us write down the entries 

corresponding to the continuity equation. So, here we have −𝑗𝑘଴+ 4 / d1 ζ1, so this goes 

here, this guy goes here, −𝑗𝑘଴ -4 /d1 ζ1, ok. And then you have your p2 term. So, this 

will, this guy will go in here ζ1 and this will be 0, 0, 0. So, now, there is one thing that I 

want to introduce here. By default by default this a matrix is initialized at 0s.  
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In this case, 0 cross 0 something like this, ok. So, this is what it is. Now, once we have 

your the second momentum equation, I mean the momentum equation in the annular 

duct. What do we get? We will get.  

4𝑑ଵ

(𝑑ଶ
ଶ − 𝑑ଵ

ଶ − 𝑑ଷ
ଶ  )𝜁ଵ

 

So, apologies for the lack of space, but this will be the term here. So, what I am going to 

do actually? Let me sort of, let me sort of rub this guy completely, and what are we 

doing is that I will put a star mark here and a double star mark here, ok. And as well, ok. 

So, I will put this and then I will also put another triple star mark here and I tell you what 

these expressions, what these expressions are. And in the meanwhile wherever there is 

nothing, its 0. So, like I said it is all initialized with 0, so 0, 0, 0.  

Now, the entry is pertaining to the continuity equation in the third duct or the second 

perforated pipe that is your outlet pipe, ok. So, here you will get,  
ସ

ௗభ఍మ
, ok. And here it 

will be −𝑗𝑘଴ and −𝑗𝑘଴ and  
ିସ

ௗభ఍మ
. So, and everywhere else its will be 0, 0, and 0. So, what 

are these stars? So, these stars are they are pretty much expressions looking of the same 

form just that they have few more terms.  

∗        =
4𝑑ଵ

(𝑑ଶ
ଶ−𝑑ଵ

ଶ−𝑑ଷ
ଶ)𝜁ଵ

 

So, you should avoid the typo. In some of the books you know people what they have 

done they have put full thing here and then they have put this kind of a thing and then 

there are some sort of typographical error which would really completely corrupt the 

results. So, be mindful of that.  

So, it is really something like −𝑗𝑘଴ is a separate entity, otherwise dimensionality also 

dimensionality wise also it will not be correct. So, −𝑗𝑘଴ is separate. You know let me 

write it a bit more separate. So, I would write it here −𝑗𝑘଴ and in the, in the numerator of 

this term.  
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∗∗      =
4 ቀ

𝑑ଷ

𝜁ଶ
+

𝑑ଵ

𝜁ଵ
ቁ

(𝑑ଶ
ଶ − 𝑑ଵ

ଶ − 𝑑ଷ
ଶ)

− 𝑗𝑘଴ 

And this term  

∗∗∗      =
4𝑑ଷ

(𝑑ଶ
ଶ − 𝑑ଵ

ଶ − 𝑑ଷ
ଶ)𝜁ଶ

 

 Now, all these terms have to be put inside the appropriate entries here and this of course, 

will also be 0. So, this is the matrix. Again, we are getting back the form you now again 

as like I said 𝑋′ is equal to a Ax, where 𝑋′ is, dash means d /d z, that is the spatial 

derivative. 

⎩
⎪
⎨

⎪
⎧

 ∙ 
∙
∙
∙
∙
∙ ⎭

⎪
⎬

⎪
⎫

௭ୀ଴

ି௑

=
𝑒𝑥𝑝𝑚 (−[𝐴]𝐿)

[𝑇]

⎩
⎪
⎨

⎪
⎧

 ∙ 
∙
∙
∙
∙
∙ ⎭

⎪
⎬

⎪
⎫

௭ୀଵ

 

𝐴 = 𝑧𝑒𝑟𝑜𝑠 (6,6) 

So, again you know this is the command. Now, just one small digression that I would 

like to sort of make, prior to this work you know ages back when the analysis of 

perforates first started the work by Sullivan and Croker what they did was they use the 

segmentation approach.  

 

So, they used to divide the duct into number of small parts and analyze you know get 

transfer matrix matrices across each part. So, for example, you know let us go back to 

our original the configuration let us say this one. So, you know does not matter whether 

2 or 3 ducts. The point is that they used to divide the ducts into small regions and get 
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transfer matrices across this one and this one. And then what their approach used to 

really do is that they could account for the exact number of holes in each of the things.  

So, they could account for non-uniform porosity also. So, this is like a you know it is like 

a discretize system. And another thing that I want to tell you is that you know flow we 

are assuming the grazing flow in a straight through duct to be constant throughout, but it 

will never be constant.  

It will be gradually be you know sort of as the flow passes the grazing flow will tend to 

decrease and more of a, little bit of nonzero flow will be there across the a perforated 

element even in a straight through muffler that is a two duct muffler, two interacting duct 

muffler. 

 

Cross-Flow Reversal Chamber 

And then it will be minimum sum in the middle, and then we will gradually pick up and 

be a kind of a steady value when it reaches. CFD analysis would do a proper justice, and 

specially, when you come to a configuration like this one or perhaps this one, the flow 

would actually gives us something that I have to discuss in a greater detail. The flow 

usually comes the grazing flow and it tends to have become go to a almost 0 value, 

suppose this guy is not there it is a closed cavity, ok.  

So, this will be 0 here, from maximum value it will go to 0, and in the process your 

grazing flow I am sorry your bias flow will be nonzero here, and that will be entering 

this value this perforate here. And you will be having some nonzero convective value in 

the duct in the central duct as well which you sort of conveniently ignored.  

And then we will be picking up from 0 value here to a maximum value here in the outlet 

duct. So, the idea is that the flow is gradually varying and segmentation approach by 
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Sullivan and Croker and in basically in Sullivans paper in 19, I guess 60, late 60s I 

believe or probably 70s those papers basically talked about considering the mean flow 

effects also, gradually varying mean flow effects also. And but in this particular thing in 

the analysis that we are doing we are, we are considering the perforate impedance to be 

at least uniform throughout the duct.  

And it is like a distributed parameter approach as opposed to the discrete segmentation 

approach by Sullivan. And so, this basically everything has its own benefits as well as 

drawbacks. So, in our approach we probably cannot take the porosity well, porosity is 

one parameter or impedance to vary along the length that is this thing. So, we are 

assuming really in all these expressions that we that you are seeing wherever you are 

considering well, perforate impedance this guy. 

We are considering this to be uniform throughout the cross section because porosity is 

assumed to be uniform and whole distribution pattern is assumed to be uniform and all 

that, but it need not be. If it is varying that is if we have a non-uniformly perforated pipe 

it will have its own sort of effect.  

Now, for such a thing we can consider a segmentation approach which will be slightly 

different. So, we still assume over small segments things do not vary much and we can 

probably analyze the special muffler configuration called a CCTR conical concentrate to 

resonator that is outside cavity is of conical shape. And then we can do all this matrix 

and approach in a you know in its full form, means you know it completely harnesses the 

power of this nice mathematical approach. 

 

So, this is something here now coming back to the problem were left with integrating 

this particular matrix and to this end we will have to go to MATLAB and integrate in an 
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with the understanding that we also have to apply appropriate boundary conditions. So, 

before we actually go to MATLAB let us also write down the different boundary 

conditions that we have you know for basically for ducts of this sort is called a across 

flow expansion duct, ok as you know.  

It is an expansion kind of a thing. So, here you are, ok. So, the flow leaves from here, 

goes on here, ok. Now, what are the boundary conditions? If we fix our z is equal to 0 

here and you know z is equal to l is really here, ok. So, what do we get? At X is equal to 

0; you what you basically you know get is your the boundary conditions are  

𝑍ଶ(0) =  
𝑝෤ଶ(0)

−𝑈ଶ(0)
 = −𝑗𝜌଴𝐶଴𝑐𝑜𝑡𝑘଴𝑙𝑎 

 So, basically 2 is this region, 1 is this guy 3 is here. So, basically at this point we are 

assuming a rigid world end plate, ok. 

They need not always be rigid, but you know like I have mentioned before let me write it 

down on a sort of different page or at least let me sort of reduce the length of this and 

utilize the space properly. So, z2 (0) at this point that is somewhere here and this 

interface.  

And the same thing applies for the duct here. So, cot cannot, you know cot cannot a level 

or cot cannot always keeps on occurring you know as we have seen from the very 

beginning of this lecture where for a rigid and cavity. So, apply all these things here, ok. 

That is why it is important to you know kind of pay attention at the expressions, right 

from the beginning because these will be useful now. So, again why is a minus sign? 

Because velocities considered positive along this direction, ok.  

But because you are looking into the cavities of - U3 times that thing will give you will 

basically change the direction of velocity and then you have this expression readily 

applicable. So, here also, 

𝑍ଷ(0) =  
𝑝෤ଷ(0)

−𝑈ଷ(0)
 = −𝑗𝜌଴𝐶଴𝑐𝑜𝑡𝑘଴𝑙𝑎 

 Now, at this point you know this cavity is close.  
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𝑍ଵ(𝐿) =  
𝑝෤ଵ(𝐿)

−𝑈ଵ(𝐿)
 = −𝑗𝜌଴𝐶଴𝑐𝑜𝑡𝑘଴𝑙𝑏 

Now, we have really one more boundary condition and that is at this point. So, let me 

write it down here only. We get this kind of a thing. 

𝑍ଶ(𝑙) =  
𝑝෤ଶ(𝑙)

−𝑈ଶ(𝑙)
 = −𝑗𝜌଴𝐶଴𝑐𝑜𝑡𝑘଴𝑙𝑏 

You know implementation of all this boundary condition in a MATLAB code is certainly 

not trivial. You know it was already messy you know in the last for this particular case, 

you know I guess these were the things and then we had all these mathematical or 

algebraic manipulations. And all these boundary conditions eventually led to you know 

quite tedious expressions. They are it is not like they are very complicated, but they are 

definitely tedious. 

{𝑋} = 𝑒𝑥𝑝𝑚 ([𝐶]𝑥) 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ଴

 𝑖𝑛𝑣 (. ) 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ ୀ ௅

=  𝑒𝑥𝑝𝑚 {−[𝐶]𝐿} 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ଴

   

𝑒𝑥𝑝𝑚 {−[𝐶]𝐿}  

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ ୀ ௅

 

                                     =  

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ଴
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⎩
⎨

⎧
𝑝෤ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଵ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ଴

=

⎣
⎢
⎢
⎡
𝑇ᇱ

ଵଵ    𝑇ᇱ
ଵଶ    𝑇ᇱ

ଵଷ    𝑇ᇱ
ଵସ

𝑇ᇱ
ଷଵ    ⋯    ⋯    ⋯   𝑇ᇱ
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So, imagine the thing for a 4 cross 4 system. So, to eliminate appropriate variables and 

you know eventually what we want, we must ask ourselves what exactly are we looking 

for. So, we are looking for a relation between the state variables. So, basically what we 

are sort of seeking for is really this kind of a thing, is not it. 
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We really are seeking this kind of a thing. And then to eliminate all these things and to 

finally, arrive at this form it is not trivial. It is definitely not trivial. You know it involves 

a lot of thing expressions. So, we can do it in a number of ways starting beginning of 

course, from this guy. You know eventually we need to integrate this and get it in this 

form. And once we have this kind of a thing we can call this as a T matrix, ok T matrix.  

 

So, T is equal to x e to the power minus A into l, where A is a matrix. So, what we will 

do now is that we will directly go to MATLAB and have some fun with our scripts. 

Well, it is fun for me, so I am saying so. Now, this is the overarching function as we 

know from the programming logic that I have adopted. An overarching function causes 

another subroutine and which calls in another in turn its own the heart of the program or 

the main thing that models the system. 

So, this is your frequency range which is fairly simple have set. Deliberately set some 

very low sigma values, we can modify that porosity. So, this really is your porosity, ok. 

And these are the thickness of the pipe and the hole diameter respectively, frequency 

range and all these things are known.  
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Now, D2, let us come to the business end of the things. So, D2 is your diameter of the 

chamber. So, going back to the presentation, so D2, by D2 I really mean this thing. And 

you know here I am assuming now one thing that I want to make clear here I am 

assuming D1 is equal to D3, ok.  

The diameters of the perforated duct or the airway are equal and so, the distribution of 

perforates. In other words, the porosity is same, but perforate impedance they are 

basically same,  

𝐷ଵ    = 𝐷ଷ

𝜁ଶ   = 𝜁ଵ
 

So, now we have this kind of a thing. So, D1 and D1 and D3 are same and 𝜁ଵ and 𝜁ଶ are 

same, ok. 

Now, with this sort of understanding let us hope on back to the MATLAB. So, L is your 

overall chamber length and la is the extension neck extension of the inlet and lb is the 

neck extension of the outlet. So, what is the perforate distance? It is L-(la + l b).  
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So, here we have that that is the perforate perforated distance, ok. So, we get this sort of 

a thing. Now, this function in turn call invokes the function in which transmission loss 

computation actually happens, but then in turn this invokes the heart of the system. That 

is it passes all the functional parameters, and what it does it calls the main subroutine. 
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So, let us assume what exactly how I assume for the mean flow. I think I have a I have 

set me grazing flow have taken it to be 0. So, we can continue with this thing. And let me 

show you how we go about. So, we can you know sort of assume we can still use the 

expression given by Elnady, expression given by Elnady that is your this thing.  

 

 

 

So, bias flow is D1 by 4 times l perforate the expression that we derive which is 

approximately sort of valid and these are your you know density values and kinematic 
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viscosity and all that. So, this is a same routine that we call. Now, here is the thing here 

is a deal A 6 x 6 matrix.  

So, we slightly rearrange it in this form p1 𝜌଴𝐶଴𝑈ଵ because this is shown to be a bit more 

stable than the other form. This is again obtained, this experience is obtained only 

through number of numerical experiments or these things. So, A1 to A3 these are all 

something that you know, the thing is that this is all what I have written in the slide 

which I presented. 
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Now, this when, but however, if you put recast the equations in this particular form p1 

𝜌଴𝐶଴𝑈ଵ p2 𝜌଴𝐶଴𝑈ଶ and so on, you we will get this sort of a thing. And T1 is exponential 

times A into l perforates, ok. And then, we again rearrange back by doing this operation 

we are is a bit.  

It requires a lot of coding, it requires a lot of patience. So, you know coding in my 

opinion is a very humbling experience, you will make a lot of mistakes, but do not get 

disheartened by that. You might have to spend hours to debug your code. I would 

encourage all of you to write your own codes by a simple expansion chamber.  
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And gradually moving onto you know step by step move on to more complicated muffler 

configurations. And then, when you do that you get you have to you know your T matrix 

is integrated from 0 to l. Now is the time when you apply your boundary conditions. So, 

here we have we have defined you know like I said I was saying these boundary 

conditions are quite messy. They are not that trivial. Just that they are very tedious. So, 

we have to define a few variables with a view to finally, get a transfer matrix. 

So, you know the detailed derivation you can find in the third chapter of the book on 

ducts and mufflers by Professor Munjal, but again I am presenting it here. So, here we 

have X1, this these there are something that you can do it on your own also. The 

expressions are given in the book you can derive on your own also.  

Just follow the road map and you will get it. So, here we are defining X1 and X2 these are 

your cavity at the because of, if you said la and lb 0 you get back your fully perforated 

duct, ok. So, F1, C2, A2 all these expressions are kind of interrelated. 
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They have to be, you cannot make a mistake in bookkeeping. Finally, your TT matrix 

which basically relates the p1, the state variable at z = 0 section in the duct 1 and the 

annular duct 2 with those at z = l section in the annular duct 2 and the chamber at z =2 

and the outlet duct at z = l. 

 

So, with all these boundary conditions will give you these TT matrix terms. And then 

you will have your parameters defined in terms of the TT matrix and number of other 

parameters. So, I have purposely committed out this part and finally, you know this Ta, 

main thing is your Ta, Tb, Tc, Td. 
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So, these are your full pool parameters and then you just put it back in p form rather than 

p 𝜌଴𝐶଴𝑈଴ for. It is appearing very simple, but when you code it you will realize that each 

term has its own importance and has to be done quite carefully. 

So, with this I think we are good to go. And let us generate some curves for you know 

some configurations, and particularly demonstrate the effect of you know mean flow or a 

fully perforated muffler. So, just by just by setting this thing you know we can do a lot of 

things. So, let me run a few example.  

So, this is one example that I thought of taking from the paper by published long time 

back by Munjal and Rao and Sahasrabudhe. So, very famous paper on air acoustic 

analysis of perforated components published in Journal of Sound and Vibration. So, 

these are the parameters that I have taken from there. 
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Figure: Partially perforated resonator configuration.  (a) Partially perforated resonator (b) 

concentric perforated section. 

 

Figure:  Cross-flow element (a) Cross-flow expansion (b) Cross-flow construction 

element 

This is the paper that I was talking about. So, what they have and this is a well cited 

paper, very nice paper. So, they have analyzed different 2 duct configuration, and 3 duct 

configuration you know with cross flow elements like this one of the grazing flow 

element like this one and you know plug muffler.  

We will we will do all this in today’s a class. Let us let us first analyze this one. So, this 

is called a cross flow configuration because flow really comes here and it has to go 
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through the pipe and go through this pipe and otherwise the flow is coming here it 

crosses over the pipe and goes through this pipe, ok. 

So, then, so when it does so, it definitely there is a, it experiences much more back 

pressure than the straight through one, but still it is not that the back pressure problem is 

not that much as compared to the case where you have you know and if you completely 

leave it open and did or something like that.  

Because of perforates and you know and specially, because the flow has multiple has this 

these paths, so this would allow you different this will basically guide the flow. So, the 

back pressure although more than the bit more than the straight through element. It will 

not be, it can still be tolerable in the context of automotive exhaust systems. 

So, let us consider the dimensions given here. Basically, 49.3 mm, 148.1 mm or roughly 

149 and the other diameters are same as the d 1. Length is about perforate sections about 

129 mm and extension is about only very small extension 6.4 mm and 3.9 percent is the 

small porosity. So, they have considered a very less porous or you know nearly a solid 

section, but still it can do wonders. It of course, this is a completely a section with almost 

0 porosity; obviously, I will not have any transmission loss.  

So, the flow cannot go through, this the waves cannot go. So, you have to have need to 

have certain nonzero value. So, they are chosen a duct with a low very low porosity, that 

is ok.  

So, and the whole diameter is something that I have chosen. What we need to do is we 

have already put in the parameters for you guys to for demonstration. And I just need to 

run the code. But before I do, so let us have a look at the transfer matrix here. So, I am 

using the Elnady’s expression these guys this expression is rather modern one and the 

one presented in the paper this paper is in present was published in 1987, so ages back. 

They used an different, an altogether different perforate impedance expression. It is not 

unique like I said by the brief review an attempt to a review that I try to do a few classes 

back. So, the idea was to demonstrate a few popular expressions. So, these are the two 

ones, 

𝜁 = (6 × 10ିଷ + 𝑖4.8 × 10ିଷ 𝑓)/𝜎 
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𝜁 = (0.514𝑑𝑀/𝑙𝜎 + 𝑖4.8 × 10ିଷ 𝑓)/𝜎 

 So, this is the sort of thing. These are the ones now ah. So, what we need to do now is 

that instead of using this we will use some let us set the grazing flow to 0 only and let us 

generate some curves using Elnady’s expression where you have this sort of a thing. So, 

we just said mb bias logarithm by this one and you just plug out this guy.  
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So, we get this kind of a curve. And we will see Munjal; and others are presented it for 

nonzero mean flow as much as 0.2. So, we will soon get there. And let us see even a 

what a small difference in the flow field can sort of do. So, definitely does lift the things. 

So, I do hold on and use another colour, g, green.  
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And put in another value for the flow field like about 0.1 or so. Let us see what it does. 

Green might be difficult to see, so let us see use blue. So, it gives you this kind of a 

thing, ok ah. Well, I must say that plane wave may not be valid for such a large 

frequency, rigid might just break down here.  

But for sake of completeness we will do that. So, there are obviously, much more 

advanced topics in muffler acoustics. It is a huge field in itself, like you know 3-

dimensional numerical mode matching of perforate elements ah. It is very interesting 

topic. But I do not think so we can cover it in course in this course.  
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May be in more advanced courses perhaps in future. But for now we have to be 

contained with plane waves, that is the world. And of course, a glimpse of some 3D 

analysis using analytical things later on. So, then we do mean magenta colour 4.2 Mach 

number. So, you know see the dramatic effect the flow has.  

So, we will do grid minor and have a look at the transmission loss graphs, ok. Let us see 

how they look. Well, using Elnady’s expression this is this is what we sort of get. 

Transmission loss always starts from 0. The fact that it is still at 5 hertz, at 5 hertz 

frequency it is still about 1.84. It is you know Elnady’s expression is tends to, you know 

slightly well the modern expressions tend to slightly over the transmission loss even at 

very low frequencies, but of course, we need to do a more thorough you know maybe 

experimental corroboration of all these things.  
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But nevertheless one thing is clear using the modern expressions where you know mean 

flow and mean bias flow and mean grazing flow occur simultaneously and these 

expressions can readily take care of that. We will also use the previous the expressions 

known before and see how the shape of the curve changes. 

What we however notice that mean flow definitely tends to increase these dooms at least 

for the cross flow expansion chambers. And you know black one was for 0 flow. So, 

with the with nonzero flow these peaks tend to come down, but then these troughs which 

are more notorious more problematic, they are significantly lifted.  

For 0.2, it is almost about you know 5.63 d v, 5.6 dv and this one was only about one and 

half dv, 1.7 dv or so. So, it is basically lifted the troughs which is more important than 

you know the peaks coming down and these peaks are obviously, going up. So, you 

know in in effect it is basically you know the mean flow always tends to lift the trough 

and the same time it tends to lower the peaks.  

So, this effect is known. So, notice one thing that we have completely ignored the 

convective effects of mean flow that will be sort of quite tedious to incorporate if you 

have to need to have B inverse A matrix and do all those sort of things and get 

approximate expressions for m2 within the cavity.  

And it is going to be very tedious. So, that would have just changed the dv value by a 

few db here and there. So, we will be contented with using ignoring the convective 

effects you know and just sort of focusing on these values, ok. Now, let us see what 

perforate impedance expression for we change it for a mean flow, what it does really. 
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If we just take 0.2 and let us say you plot in a different terms sort of figure and use the 

expressions that available you know its 2021 now. It is about you know 30 35 years back 

or so, or maybe more perhaps 35 years, 40 years back whatever it is ah. You know those 

expressions those classical expressions, if we just change these values let us comment 
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out these things. So, D1 is the diameter of the duct, mg is the grazing flow, Mach number 

and these are the things ah. So, let us see what do we get.  

 

 

 

We get for this one much more. Now, if you go to simply pick up the curve here for this 

guy and place it here, heaps of difference. There is a lot of difference although the shape 
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remains intact, but difference in perforate impedance expression can completely give you 

different you know attenuation values. 

So, which one is correct? Well, I am not quite sure here to be honest . I mean, one thing 

is for sure that we need to use the more modern expressions because they have been sort 

of they have been obtained by much more accurate mathematical models and they have 

been corroborated quite well experimentally. So, I would say that you know, I would sort 

of trust the predictions based on modern expressions for perforate impedance more at 

least for a cross low configurations when mean flow is present. 

You know we show if you recall your if you play back your last lectures at your leisure 

time you will see that you know we used a variety of different perforate impedance 

expressions and we did not quite see much of a difference, even when the flow was about 

0.15, 0.15 or something like that. We did not quite see much of a difference. So, but for 

cross flow configurations it is its quite important. Because here now the you have a 

nonzero bias flow that is very important.  

And you know that will definitely add a lot of damping, you know lot of attenuation. So, 

you know we are seeing a number of things there. So, it definitely does impact, but the 

black colored one curve is what Sahasrabudhe, Munjal and Rao all these guys reported in 

their paper and that sort of a thing. But these are the more modern predictions. 

 

Figure: Transmission loss for the tree-duct cross-flow element of figure 4a --- Prediction 

by segmentation approach (16 segments). M = 0.1; …, prediction by distributed 

parameter approach, M = 0.2; -  
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So, I would, I would probably go with the modern one and would urge you also to use 

the more, I mean more accurate expressions for impedance. So, this I mean, and there is 

one more thing that I could sort of point out here even for a cross slow configuration and 

that is your if we said the grazing flow to 0 and put and you know sort of compute it for 

the using the classical expressions I written. So, this is what we get really. 

 

 But and if we take this curve maybe you like to use sort of another colour, this was 

obtained using Elnady’s expression. And let us change the colour. So, you get this kind 

of a curve a red coloured curve.  

But you know the point I am trying to make is that these black and red colour curves are 

nearly the same, in the low frequency and there is qualitatively they remain the same you 

know as we go in the higher frequency range. And of course, there is a limit up to which 

plane waves are there. 
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So, and then deviations will happen as the mean flow becomes approaches a nonzero 

value. So, there is a lot of interesting things that one can do. You know there is lot of 

room for, lot of research show, lot of people can take up research projects in this in this 

area of muffler acoustics because perforates, you know analysis of perforated 

components are really the a very important topic. And there is still a lot of things that are 

not quite analyzed.  

So, this is an interesting opportunity you know to take up new projects maybe masters 

project or doctorate investigations in such fields ah. And it is practically very important 

field you know of one of the important areas with a noise control engineering. So, 

basically with this thing I will close of this figure and probably try to analyze just one 

more cross flow expansion chamber configuration where you will find some totally 

different sort of a transmission loss curve.  

 

So, basically, we need to change a few parameters. And what we are considering now is 

cross flow expansion chamber with slightly different dimensions and with more 

extension. This is just to bring out some qualitative kind of a kind of a difference. So, let 

us say this is 200, 200 mm, ok. And your length is about, well length of the chamber is 

about 750 mm, ok. This is about 150 mm, 150 mm and this diameter is about 40 mm or 

the perforated duct. So, this is effectively a perforate section is about 450 mm, ok. 
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No mean flow is considered. The idea was to bring some substantial la neck extension 

values compared to the perforated length and see what sort of a curve you are getting. 

And let us take some realistic value. Well, highly porous duct I would say. Let us say 20 

percent, ok and we may not go to such a large frequency because plane wave is really 

would not be valid anyways for this thing.  
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So, I will clear out this guy and plot it. So, there is some instabilities that are happening 

here. So, let us see, I hope we do not get such a problem for this thing. We have changed 

the expression. Let us see are we getting the same thing. Well, it seems we are. Well, 

slightly shifted. So, you know again these are all artifacts of numerical error or 

instabilities. Transmission loss can never be negative. At least for a passive system 

which does not have energy generation inside the system transmission loss is always 

positive. 

Why? Because it is a ratio, logarithm of the ratio or the energy or the acoustic pardon 

sorry incident to that transpired downstream of an termination. So, incident thing is 

always incident acoustic power is always greater than the power that is transpired and 

that can happen only when you when you have a passive system, not an active system.  

When active system you might have some additional sources. So, specially, if there is a 

flow separation going on and of course, we are not considering that in our mathematical 

modeling flow generated noise, and anyways there hopefully that would not be there 

because of perforate guides the flow as I have been repeatedly telling. So, this basically 
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the idea that these guys cannot be negative, ok. They cannot really be negative. They 

have to be positive these are all artifacts of numerical instabilities. 
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And you see you know if you change the porosity value, you might end up with slightly 

better thing. Maybe if we consider only 10 percent porosity, let us see what happens. For 

high enough porosity always also tends to, yeah look it is much better. So, if we use like 

a 30 percent porosity thing in here something like this thing you will see a lot. So, this is 

an issue although MATLAB is very advanced, expm it is like you see it is its garbage, it 

is pretty garbage.  

 

It is completely kind of unstable. So, you know these are all numerical instabilities at 

works ah. So, this is another challenge. So, these are some of the things I wanted to 

purposely demonstrate in front of you guys. So, I would say let us go with the nominal 

values. 
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Let us say you know 15 percent porosity. Hopefully you should be able to demonstrate 

suitable things. It still 15 percent porosity still means you know quite porous duct you 

know. So, it is about something like this, ok something like this. So, we get peaks here 

and these are really it happening due to your neck extensions, ok.  
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Now, if I were to sort of increase the grazing floating, let us say we take 0.1 and let us 

say we do figure 1, which popes up I am sorry figure 2 is what I called. If they hold on. 

So, it plots next time it plots, it plots on this graph, ok. So, the peaks are started to come 

down, troughs are slightly lifted.  

 

The same story being repeated again and again. So, let us do with the maximum value 

that you typically encounter and automotive exhaust. Well, the effect is more sort of 

prominent, is not it. So, we get these wonderful nice results and apart from the 

occasional mishap that happened because of instability. 

So, you know 15 percent porosity, 20 percent porosity still very highly porous section 

only, but typically suppose if we have 30 percent or more porosity it is almost like 

acoustically transparent. But in the process what happens you know your perforated 

impedance expression tends to become because you have your zeta.  
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So, zeta has its dependent upon porosity you know in the denominator. So, typically you 

have you might end up with the exponentially large numbers when you know you use the 

function expm. So, it goes beyond the machine precision and it is kind of failing there. 

So, those are definitely problematic things beyond the machine precision. But the point I 

am trying to make here is that even 15, 20 percent porosity value if you are obtaining a 

decant smooth stable curve.  

So, you should be happy with that and with the understanding that if it, if it vary like 30 

percent, 40 percent porosity although you are not able to calculate this due to instabilities 

numerical round of errors and all that. The curve would eventually become you know 

would be very similar to these curves, because you see highly porous section is nearly 

equivalent you know the results would converge as the porosity tends to 100 percent 

because it is like an open ended section there is virtually nothing there.  

So, it is only because of machine problems round of errors and all that you are not able to 

calculate beyond the certain value, but the curves would approach that of a open ended 

thing. That is the physical explanation that we can give, that if it is the perforate is not at 

all existing for such high porosity, but in physical reality it is there, ok.  

So, you should be happy with until instability happens and then go along those lines of 

predicting. Now, what we will do is that we will analyze another configuration which is 

called reverse flow configuration. So, you need to bear with me for a minute before I get 

on with that configuration.  
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Figure:  Three-duct muffler components. (a) Cross-flow expansion chamber; (b) reverse 

flow chamber. 𝑑ଵ = 0.0493𝑚, 𝑑ଶ = 0.1481𝑚. 𝑑ଷ = 0.0493𝑚. 𝑙 = 0.1286𝑚. 𝑙௔ = 𝑙௕ =

0.0064𝑚, 𝜎 = 3.9%. 

This configuration is shown in this paper also given in the book ducts and mufflers by 

Munjal. So, this flow goes here and comes here the only thing that we have now is that 

we have a rigid bond condition, rigid boundary condition here as well as here. So, for 

simplicity what we will do, we will consider a completely perforated duct that is with no 

extensions and you know let us make some suitable changes in our codes and you know 

analyze such a system. 

So, far we have considered a cross low expansion chamber. But you know if you recall 

we also have another configuration where we just slightly change the boundary 

conditions. So, instead of the flow going somewhere like this we it reverses. So, such a 

configuration is called a cross low reverse expansion chamber. You know, so the 

boundary conditions here let me just very quickly draw this configuration here and for 

simplicity. Let us well we could still take partially perforated duct something like this, 

ok. 

And we could do the following. And here we have another partially perforated duct, and 

it is a solid thing in here, and it goes here like this, ok. So, the flow goes in here and it is 

like this. So, you know at this end we let us consider this as z =  0 and this as z = L, ok. 

So, this is what it is. At z = 0 we have you know the following boundary conditions 

which are relevant to this particular configuration. So, z 2, z 2 that is basically this is 

your duct 2, 1, and 3. So, this is the rigid wall boundary condition here. And similarly at 

this is la and actually there should be a minus sign. 

 

                 𝑍ଶ(0) =  −𝑗𝜌଴𝐶଴𝑐𝑜𝑡𝑘଴𝑙𝑎           
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                𝑍ଶ(𝐿) =  −𝑗𝜌଴𝐶଴𝑐𝑜𝑡𝑘଴𝑙𝑏    

Similarly, we can apply the appropriate boundary conditions here. Here will be it will be 

something  

 𝑝ଵ

𝑈ଵ
ฬ

௅

= −𝜌଴𝐶଴𝑐𝑜𝑡𝑘଴𝑙𝑎 

 𝑝ଷ

𝑈ଷ
ฬ

௅

= −𝜌଴𝐶଴𝑐𝑜𝑡𝑘଴𝑙𝑏 

And here we can similarly apply the appropriate boundary conditions. There will be a 4 

boundary conditions 1, 2, 3, 4, what I have already sort of mentioned. And here at this 

point we do not have any boundary conditions this is just the inflow condition, outflow 

condition, at this these are all rigid plate. So, now, basically what is happened is that you 

can have a look at the text by Munjal for those boundary conditions is the simplification 

of that are rather tedious. 

So, what we will do, what I suggest is that a simple configuration of these fully 

perforated duct. So, here you know all these terms will be will be going to infinity here. 

So, you know there are lot of simplifications that one can sort of do. 

⎩
⎪
⎨

⎪
⎧

𝑝ଵ

∙
𝑝ଷ

𝜌଴𝐶଴𝑈ଵ

∙
𝜌଴𝐶଴𝑈ଷ⎭

⎪
⎬

⎪
⎫

௭ୀ଴

= [𝑇] ൞

 
 
 
 

   

ൢ

௭ୀ௅

 

And eventually you know if you write the state vector. So, you know with appropriate 

simplifications what we what we could do is that you know basically; let me just write it 

down. Simplify matters here, 
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⎪
⎨

⎪
⎧

𝑝ଵ

∙
𝑝ଷ

𝜌଴𝐶଴𝑈ଵ

∙
𝜌଴𝐶଴𝑈ଷ⎭

⎪
⎬

⎪
⎫

௭ୀ଴

=
[𝑇ଵ] 
[𝑇ଷ]

[𝑇ଶ]

[𝑇ସ]

⎩
⎪
⎨

⎪
⎧

𝑝ଵ

𝑝ଶ

𝑝ଷ

𝜌଴𝐶଴𝑈ଵ

𝜌଴𝐶଴𝑈ଶ

𝜌଴𝐶଴𝑈ଷ⎭
⎪
⎬

⎪
⎫

௭ୀ௅
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So, when we have such a thing, what we do is basically you know since all these things 

are going to 0, we what all this is what it is and because all these things are going to 0. 

And similarly 

൝

𝑝ଵ

 
𝑝ଷ

ൡ

଴

= [𝑇ଵ] ൝

𝑝ଵ

∙
𝑝ଷ

ൡ

௅

 &   ൝
𝜌଴𝐶଴𝑈ଵ

 
𝜌଴𝐶଴𝑈ଷ

ൡ

௭ୀ ଴

= [𝑇ଷ] ൝

𝑝ଵ

∙
𝑝ଷ

ൡ

௅

 

So, this will become  

൝

𝑝ଵ

𝑝ଶ

𝑝ଷ

ൡ

௭ୀ௅

=  [𝑇ଷ]ିଵ  ൝

𝜌଴𝐶଴𝑈ଵ

𝜌଴𝐶଴𝑈ଶ

𝜌଴𝐶଴𝑈ଷ

ൡ

௭ୀ଴

 

And once we get that we just need to put this guy here, ok in terms of things here. So, 

this will become  

  ൝

𝑝ଵ

𝑝ଶ

𝑝ଷ

ൡ

௭ୀ௅

=
[𝑇ଵ][𝑇ଷ]ିଵ

[𝑇ସ]ଷ×ଷ
 ൝

𝜌଴𝐶଴𝑈ଵ

𝜌଴𝐶଴𝑈ଶ

𝜌଴𝐶଴𝑈ଷ

ൡ

௭ୀ଴

 

If you remember recall this was at z  = 0 and so U1 at z =0.  And in place of this we are 

writing the inverse of this guy. So, when you it is easy to see that when you sort of 

simplify we will get this. So, you know and then U2 at z is equal to 0 is also 0. 

Eventually let us say this is the matrix you know you can call this as matrix T 4 which is 

really a 3 cross 3 matrix. So, then you know if we take T 411, T 413 with a minus sign, I 

tell you why it is minus, and here we will get our final T matrix representation for such a 

system, ok.  

  ൝

𝑝ଵ

 
𝑝ଷ

ൡ

௭ୀ଴

=  ቎
𝑇ଵଵ

ସ −𝑇ଵଷ
ସ

  
𝑇ଷଵ

ସ −𝑇ଷଷ
ସ

቏ ൝
𝜌଴𝐶଴𝑈ଵ

 
𝜌଴𝐶଴𝑈ଷ

ൡ

௭ୀ଴

 

Now, this is minus because originally you know if for this configuration the transfer 

matrix when you derived here the velocity was in this direction, but now we have to take 

the velocity for the outlet in the direction going out of the duct. So, we have to multiply 

this with minus. So, because once you multiply with minus and take things inside, so this 

will become your p1, p3 and you know you will get this kind of a thing relating things at 

z =  0 also 0, ok. 
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Now, we need to do further things. Eventually, we would want the this is more like an 

impedance matrix something that we have not really come across pressures are related to 

velocity. So, now, we need to do something like a transfer matrix kind of a 

representation. 

What we have got now here is the impedance matrix. We need to convert this to a form 

like this thing. So, I will sort of you know do away with the showing with the 

simplification, but let us  

൝

𝑝ଵ

 
𝜌଴𝐶଴𝑈ଵ

ൡ   =  ቎

𝑇௙(1,1) 𝑇௙(1,2)
  

𝑇௙(2,1) 𝑇௙(2,2)
቏ ൝

𝑝ଷ

 
𝜌଴𝐶଴𝑈ଷ

ൡ 

We can have this sort of a form. So, what I am going to do is that just jump onto mat lab 

and show you the relevant thing.  

So, everything else, interestingly everything else in the code remains the same the same 

because it is really a 3 duct interacting system, you can use the same thing ah. So, you 

have this kind of a thing, you integrate it and then rearrange it in a form like this to have 

things in p and 𝜌଴𝐶଴U form rather than this particular form.  

 

And then I just comment out the other codes, and basically this is another, now this is a 

kind of a restructuring or just extracting out certain information only a partial 

information from the T matrix what we found out up here you know by reshuffling the 

different rows and columns of the T1 matrix and putting them in the T matrix. So, once 

we extract certain rows and columns on the T matrix into T1 and T2 matrices. This is 
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really the inversion thing that I was talking about and this is really your impedance 

matrix. 

 

So, it relates pressures at different ports namely at port 1 and 3 to the velocities at ports 1 

and 3. Now, you get these things. So, these are all sort of you know conversion of the 

impedance matrix in to transfer matrix. We need not do that when we come at a later 

stage of the course, in the next maybe next week or so. But for now I am just trying to 

kind of write down certain piece of code which essentially transforms the impedance 

matrix parameters into transfer matrix parameters. 
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You know p1 and 𝜌଴𝐶଴𝑈ଵ and then we get your this kind of a thing, ok. So, now I am 

good to go, I am good to run the code. So, let us let us choose a nominal porosity 10 

percent σ and 160 mm is a diameter, 40 is the perforate diameter; there are no extensions. 

The code, at the moment the code cannot take care of extensions for reverse flow 

configuration, so one needs to write a lot of things, one need to develop proper routines 

where you can have l a, l b values.  
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But for now we, just for the sake of demonstration I am just putting in 0 values and some 

value of this thing. You see it will behave exactly like your flow reversal end chamber, 

so you get lot of peaks and troughs. So, even as the flow is there let us see what flow 

kind of does to this configuration. 

 

If you put like a large flow you see and I will say hold on hold on and do this. So, really, 

that is magic. Flow really lowers the attenuation peaks and the troughs again are lifted. 

So, you keep getting the same kind of conclusions again and again, but of course, you 

know these results cannot be completely relied.  

Even in the low frequency range for flow reversal configurations because you know for 

flow reversal configurations we really have you know end connections. So, even the 

peaks that you are seeing here, in this case still be shifted towards the right side of the 

spectrum because of produced effective length of the chamber. So, you know these are 

all end correction businesses, maybe we can discuss all those some of them when we 

cover come to the stage of 3-dimensional analysis, ok. 

So, now, I will wrap up today’s class. It was rather lengthy lecture. I will move on to the 

next lecture. 

Thanks. 
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