
Muffler Acoustics-Application to Automotive Exhaust Noise Control 
Prof. Akhilesh Mimani 

Department of Mechanical Engineering 
Indian Institute of Technology, Kanpur 

 
Lecture - 40 

MATLAB Demonstration for Fully and Partially Perforated CTR 
 

Welcome to lecture 5 of week 8. So, this is the final lecture for this week and all the 

momentum that we have been building to finally demonstrate the MATLAB results the 

MATLAB plots some simulation in MATLAB for the CTR; that is what we are going to 

do in this lecture. So, before we do that. Let us just very briefly review what we had done 

in the last thing. 

So, this, these were the slides for the last class. You know you see these equations, 

 

𝑑

𝑑𝑧
[∆]{𝑋} = [𝐴]{𝑋}   

{𝑋} =  

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

 

𝑑{𝑋}

𝑑𝑧
= [𝐵ିଵ][𝐴]{𝑋}   

Where, X is your vector which was written in this manner and we found out that once we 

do B inverse A and what we have calling this as matrix C. Now, we had purposely recast 

them. These equations in a manner which is basically rearranging writing the momentum 

equation first, then the continuity equation in the duct one on the airway, then your 

momentum equation two and the continuous equation two. So, with this arrangement M1 
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C1 M2 C2, you know we what we get is basically, leads to the form where we have your 

B matrix in the in this form. So, this gives you if you set M0  is 0, then it we get by the 

identity matrix and we need not invert it.  

𝐴 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0             − 𝑗𝑘଴          0                       0
 

−𝑗𝑘଴ −
ସ

ௗభ఍
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ସ
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మ൯఍
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ିସௗభ

൫ௗమ
మିௗభ

మ൯఍
            0  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤ 𝑀ଵ

 
𝐶ଵ

 
𝑀ଶ 
𝐶ଶ

   

𝑋{0} = [𝑇]𝑋{𝐿} 

  𝑒𝑥𝑝𝑚 (−[𝐶]𝐿) 

𝐵 =  ൦

1         𝑀଴         0          0
  𝑀଴        1         0         0   
0           0          1         0
0           0          0          1

൪  𝐵 = 𝐼 

You can just simply I times this is just your variable state vector. Now, if M0 is non-zero 

then, it is good idea to inverse the matrix invert the matrix and multiply,  it with A. So, 

pre multiplied with [A] so, to get [C]. Now, what we can do is that basically, we just 

need to invoke the function expm [-C][T]. So, I have just shown the derivation only just 

discussed it is derivation in a little bit detail in the last class. 

So, basically what happens is that 

൛𝑋⃗ൟ = 𝑒𝑥𝑝𝑚 ([𝐶]𝑥){𝜙}  

Where 𝜙 is a constant you know phi is your set of constant 

𝜙 = ൞

𝜙ଵ

𝜙ଶ

⋮
4

ൢ 

which are to be determined from the boundary conditions. Basically, relating things 

upstream and downstream. 
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So, now what are those? Basically,  

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ ୀ ଴

=   𝑒𝑥𝑝𝑚 ([𝐶]0){𝜙}   

 let me call this matrix well. For now, I am just writing this guy as like this and at x is 

equal to 0 you know I just have to put 0 to get the phi thing.  

So, e to the power expm to the power 0; that is that will just give me I matrix remember, 

the definitions that we had. We had the definitions e exponential to the power A is your I 

plus A plus A square by 2 factorial plus A cube by 3 factorial and so on. So, we here, we 

are just getting what? 0, 0 matrix you know. 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ ୀ ଴

=  = 𝑒𝑥𝑝𝑚 (0){𝜙} 

So, we just get we can replace expm by  

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ ୀ ଴

=   [I]ସ×ସ {𝜙}ସ×ଵ 

So, I times identity times which is the 4 cross 4 and this 4 cross 1 here, we just get back 

your 𝜙  vector. 

 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ ୀ ଴

=   {𝜙}ସ×ଵ        
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So, phi constant; so, phi constant is nothing, but your state vector or the variable vector 

at x = 0. So, remember your perforated section something like this you know. So, this 

was the sections z = 0 and this was z = L. So, this constant can then, be your state vectors 

at x is equal to 0 ok. We will put all these guy here, is not it and then, 

{𝑋} = 𝑒𝑥𝑝𝑚 ([𝐶]𝑥) 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ଴

 𝑖𝑛𝑣 (. ) 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ ୀ ௅

=  𝑒𝑥𝑝𝑚 {[𝐶]𝐿} 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ଴

   

Now, if you go back to our figure this was x is equal to L. So, at this point this was x is 

equal to L  

  𝑒𝑥𝑝𝑚 {−[𝐶]𝐿} 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ ୀ ௅

 

                   =  

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ଴

   

So, this is x is equal to L. Now, in transfer matrices we usually relate things that are 

upstream to that at the downstream. So, what we can do from this guy from this equation 

is that, if we were to multiply both sides by to e the power minus CL that is expm that is 

what we can do is that you know expm minus. 

We just put a minus sign and multiply this thing L being the length you know L is the 

this length, is not it? So, once we do that and 

 

550



⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ ୀ ଴

=  
𝑒𝑥𝑝𝑚 {−[𝐶]𝐿}

[𝑇ᇱ]
 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ௅

   

upstream variable                      upstream variable  

Now, this will be equal to what expm, exp minus CL multiplied by expm in whole of C 

into L that is that becomes expm to the power 0 or that is your identity matrix. So, this 

will then become your identity times that is simply your p thing p1 c1 I mean p1 at x is 

equal to 0 ok. So, then here, basically, that is what; that is what we have. 

So, now, writing this in a more you know more arranged manner this we can write this as 

expm. So, all we need to do to solve this thing of course, perforates now, one thing I 

want to note here, is that just provide some general information that perforates has been 

around since a lot of time ok, perforates have been around since almost like last 30-40 

years. 

This it becomes an integral component of all mufflers, but computation cheap 

computational power is there only since the past 15-20 years or so. Now, in lot of 

packages you have inbuilt commands for example, MATLAB which I have associated 

with the course. We just use this command expm and minus C which is a C matrix which 

is really you are A B inverse A.  

And this entire matrix what we can do is that we can call this matrix as let say, [T]1. So, 

and another thing that just calculate this guy and invert this. So, rather than inversion, 

you would rather rely on you know suppose, if we calculated this matrix expm {[C][ L]} 

and try to invert that matrix using the command inv something like this or this is the 

matrix. 

So, you could have done that, but a more clever technique is just use expm {-[C][ L]} 

and let us denote this as [T]1. So, upstream variable this is your upstream variable and 

this is your downstream variables. So, we have related upstream and downstream 

variables. Now, how do we; how do we go about using this information; that is what we 

have to see. 
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Now, having denoted this matrix as T1, we probably would want to reshuffle a few 

things, because we just trying to follow the convention available in the literature 

regarding plane wave analysis of concentric or well perforated mufflers. So, as a result 

what we would like to do is basically, if we just reshuffle the matrix in the sense that you 

know let me just sort of rub this guy. 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ଴

=

⎣
⎢
⎢
⎡
𝑇ᇱ

ଵଵ    𝑇ᇱ
ଵଶ    𝑇ᇱ

ଵଷ    𝑇ᇱ
ଵସ

𝑇ᇱ
ଶଵ    ⋯    ⋯    ⋯   𝑇ᇱ

ଶସ

𝑇ᇱ
ଷଵ   ⋯    ⋯    ⋯  𝑇ᇱ

ଷସ

𝑇ᇱ
ସଵ    𝑇ᇱ

ଵଶ    𝑇ᇱ
ଵଷ    𝑇ᇱ

ସସ⎦
⎥
⎥
⎤
 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ௅

 

And write it something like this 𝑇ᇱ
ଵଵ    𝑇ᇱ

ଵଶ    𝑇ᇱ
ଵଷ    𝑇ᇱ

ଵସ. So, this will become like this 

ok. Now, if we were to just reshuffle this by putting p2 in the second row and getting this 

guy here. Similarly, p2 at the downstream will be here, this will be here. So, this will be 

followed by some sort of a; some sort of a rearrangement of the equations; that is your 

rows as well as some of the columns. So, if you were to do it. 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ଴

=

⎣
⎢
⎢
⎡

𝑇ᇱ
ଵଵ    𝑇ᇱ

ଵଶ    𝑇ᇱ
ଵଷ    𝑇ᇱ

ଵସ

𝑇ᇱ
ଷଵ    𝑇ᇱ

ଷଶ    𝑇ᇱ
ଷଷ     𝑇ᇱ

ଷସ

𝑇ᇱ
ଶଵ    𝑇ᇱ

ଶଶ    𝑇ᇱ
ଶଷ    𝑇ᇱ

ଶସ

𝑇ᇱ
ସଵ    𝑇ᇱ

ସଶ    𝑇ᇱ
ସଷ    𝑇ᇱ

ସସ ⎦
⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
[்]

 

⎩
⎨

⎧
𝑝෤ଵ

𝜌଴𝐶଴𝑈෩ଵ

𝑝෤ଶ

𝜌଴𝐶଴𝑈෩ଶ⎭
⎬

⎫

௫ୀ௅

 

Let see how the final thing or the form that will be amenable to application of boundary 

conditions would look like. So, here this is looking like this. So, this would be 𝑇ᇱ
ଵଵ and 

this would clearly be 𝑇ᇱ
ଵଷ. So, this no this is a fairly easy thing so, here since we are 

moving 𝑝෤ଶ in the second; in the second spot and 𝜌଴𝐶଴𝑈෩ଵ  in the third spot in the column. 

We would basically reshuffle this guy comes here this guy comes here. So, as a result 

what we would really have is, 𝑇ᇱ
ଵଶ    𝑇ᇱ

ଵଷ and nothing will happen to this thing. 

Similarly, this will become 𝑇ᇱ
ଶଷ and 𝑇ᇱ

ଶଶ  𝑇ᇱ
ଶସ and I am so, sorry my mistake this will 

become 𝑇ᇱ
ଷଷ and 32 34, because remember we have just interchanged this thing here, 

this thing comes here, this row entire row and we are just shuffling across the different 

columns. So, this is irelia 𝑇ᇱ
ଷଷ will come in the in this place and so on.  

So, this will become 𝑇ᇱ
ଶଵ   𝑇ᇱ

ଶଷ 𝑇ᇱ
ଶଶ and it will be something like this ok. So, all these 

thing will be there and  𝑝෤ଵ 𝜌଴𝐶଴ I am so, sorry ok at x is equal to L this is the vector here. 

Once, we have this sort of an arrangement of the transfer matrix and let us call this 
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entire, this entire guy as the T matrix ok. So, there was a reason why I called this as T1 

this is simply the T matrix. So, we can write this entire thing as T times this thing. 

𝑝ଵ − 𝑝ଶ

𝜌଴𝐶଴𝑈∗
 =   𝜁  

 

Now, going back to our E-CTR configuration extended concentric tube resonator or just 

CTR with so, it is also name as E - CTR. E - CTR means Extended Concentric Tube 

Resonator so; that means, with neck extensions at the inlet and outlet. 

So, once we have got this kind of a thing, it is a will be a good idea to have a look at the 

boundary condition. So, let me go back to this figure. At this particular boundary, you 

have a rigid plate you can also have a yielding plate, but for simplicity, because nothing 

is rigid really. 

We just assume the normal velocity to be 0. So, that our analysis becomes bit simple, but 

in principle you can have you know a coupled or one way coupled system, meaning that 

the you can have sort of a non-yielding walls. So, here one needs to go to structural 

acoustics concepts here, at this interface the normal velocity or the basically, the normal 

velocity of the fluid is equal to the normal velocity the time rate of displacement normal 

to the plane of the plate.  

And your plate itself is governed by may be your Kershaw equation. It could be a thin or 

thick circular plate with a concentric hole in at the middle and then, your other condition 

is a pressure condition which acts like a loading condition and this will radiate noise 

outside in the far field. 
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And similarly, here, but maybe we can those are still advanced topics and we probably 

would not be bothered about that, but my purpose of introducing this was that in real life 

imposing this rigid condition is only an approximation, because plates can sort of vibrate 

they will yield no matter how thick you make them. 

So, but for our purpose, we will introduce a rigid ball boundary condition there as a 

result what will happen. Actually, let me go back to this place at this particular place you 

know a and this is b,  

𝑃𝑎

𝜌଴𝐶଴𝑈𝑎
= + 𝑗𝑐𝑜𝑡 𝑘଴𝑙𝑎 

Assuming that this is la and this is lb ok. So, here the velocity is; obviously, looking into 

the cavity, but if we have to really change its sign. So, here we have to put a minus sign. 

So, this will become plus. Similarly, at this point the point b 

   
𝑃𝑏

𝜌଴𝐶଴𝑈𝑏
= −𝑗𝑐𝑜𝑡 𝑘଴𝑙𝑏 

The velocity direction of velocity is not a problem we just have lb ok. So, now, with 

these conditions, we are good to proceed ahead and let us get back to these equations. 

What we will do is that now, putting those boundary conditions. 

 

𝑝෤ଶ(0)

−𝑈෩ଶ(0)
= −𝑗𝜌଴𝐶଴ 𝑐𝑜𝑡𝑘଴𝑙𝑎

𝑝෤ଶ(𝐿)

𝑈෩ଶ(𝐿)
= −𝑗𝜌଴𝐶଴ 𝑐𝑜𝑡𝑘଴𝑙𝑏

⎭
⎪
⎬

⎪
⎫

    

So, we will have these boundary conditions. Now, after a lot of manipulations remember, 

we are dealing with the system with certain with the boundary conditions mentioned 

here; these ones.  

So, we need to somehow incorporate these boundary conditions in this equation. We had 

already done that in probably lecture 3, I recommend and then, we kind of slightly 

digressed and moved on to different things probably perforated impedance expressions 

and all that. But now, once we incorporate these boundary conditions and simplify those 

for those equations that we discussed in the last in week lecture 3 I believe of this week.  

554



What we will get is basically, the following transfer matrix between the points I will if I 

call this point as you know 1 and this as point 2 just in the pipe just outside the perforate. 

So, we would get  

  ቐ

𝑝෤ଵ(0)

𝜌଴𝐶଴𝑈෩ଵ(0)
ቑ =  ൥

𝑇௔ 𝑇௕

𝑇௖ 𝑇ௗ

൩ ቐ

𝑝෤ଵ(𝐿)

𝜌଴𝐶଴𝑈෩ଵ(𝐿)
ቑ 

So, we will get something like this ok. Where T a is given by 

𝑇௔ = 𝑇ଵଵ + 𝐴ଵ 𝐴ଶ,     𝑇௕ = 𝑇ଵଷ + 𝐴ଶ 𝐵ଵ     

T11 this particular element. So, I am just writing down the equations and we need to 

introduce a few more variables which you can which basically, come from the previous 

lecture 3. Once you simplify these things, you will be able to get it. 

𝑇஼ = 𝑇ଷଵ + 𝐴ଵ 𝐵ଶ,     𝑇ௗ = 𝑇ଷଷ + 𝐵ଵ 𝐵ଶ  

So, what are A1 A2 B1 B2 what are those. So, A1 is nothing, but your another variable 

𝐴ଵ =
(𝑋ଵ𝑇ଶଵ − 𝑇ସଵ)

𝐹ଵ
       𝐵ଵ =

(𝑋ଵ𝑇ଶଷ − 𝑇ସଷ)

𝐹ଵ
   

 𝐴ଶ = 𝑇ଵଶ + 𝑋ଶ𝑇ଵସ     𝐵ଶ = 𝑇ଷଶ + 𝑋ଶ𝑇ଷସ   

  𝐹ଵ = 𝑇ସଶ + 𝑋ଶ𝑇ସସ  −   𝑋ଵ = 𝑇ଶଶ − 𝑋ଵ𝑋ଶ𝑇ଶସ    

So, what is. So, we know now, A 1 A 2 B F 1 is known everything is known.  Only thing 

that is not known is 

𝑋ଵ = −𝑗𝑡𝑎𝑛𝑘଴𝑙𝑎  

  𝑋ଵ = −𝑗𝑡𝑎𝑛𝑘଴𝑙𝑏   

 20 log
𝑀

2
   

 20 𝑙𝑜𝑔ଵ଴

1

2
9 
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something like this ok. So, this is basically, your inverse of once you kind of. I mean this 

tan terms comes from these boundary conditions once we invert these things and you 

will get to know that. So, once you know the four pole parameters the transmission loss 

can be easily evaluated in terms of these expression. 

 

So, I guess now is the time to jump on to MATLAB and we have already written the 

code for that. So, here are some of the codes let me go through this only in a very 

sustained manner the code. So, frequency ranges the first and lower and upper bounds 

are 5 hertz and 2000 hertz you can choose whatever values you want.  

But make sure that you are well within the plane wave range and this is more than plane 

wave region just for the continuity sake the. So, the results will not be accurate up to this 

range much before that, but just for argument sake, I have taken 2000 hertz and porosity 

you can change you can put its like 30 percent. 
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And th dh. so, this is the thickness of the perforate holes. And now, these are the 

parameters. So, you have 100 mm of annular area; 50 mm on each side. So, that will 

make up your entire 150 mm length is 400 mm. These are some of the values. 

 

So, I would choose. Let us say; let us begin with 200; that is your 0.5 times this thing and 

this is your 1 4. So, let us keep like this. Now, perforated length is the difference of the 

extension length and this one. And actually, what I would do is that really put this as 0 

initially. 
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And similarly, this also 0 so, we really have a CTR with no extensions. And this function 

calls in the transmission loss file that is basically nothing, but thing to compute the value. 

 

So, this is nothing new in this code. This always has to be used. But, main thing is your 

transfer matrix. So, this is the key thing. So, it takes in the inner diameter, outer diameter 

length la lb frequency value; that is your wave number at that frequency thickness and 

diameter holes porosity and the grazing flow value. So, computes the pipe area. 

And now, they are different perforated impedance expression, that is why I reviewed it 

initially. So, this was for the stationary medium and it is given in Salamat’s paper in by 

the book by Munjal and also Melling has suggested the use of 0.85, but it would not 

make too much of difference and he suggested use of 0.06 rather than 0.006. 

So, it would not make too much of a difference for a stationary medium. This is only this 

expression is only for a stationary medium. For a grazing flow medium; this is the one, 

but which is given in the Rao and Munjal’s paper published a long time back; found out 
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experimentally using an impedance tube test set up. And this is yet another expression 

for a perforate. 

 

 

You know use rather more you know in the modern times with the one given in the book 

or the paper by El Nady and others. So, here we can have grazing flow and bias flow 

happening concurrently. So, we do not have a bias flow really. So, we just set the bias 

flow value to be 0 and put mg some value. 
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So, these are all commented things you do not have to worry about that. These are the A 

matrix written in a certain manner. So, I would not go through all the details, but these 

are basically of the form that you know pertains to your I guess the ones that we 

discussed here, is not it? Somewhere, something along these lines ok. 

So, A1, 2 and A2, 1 and all that. So, and this is your eye matrix; that is identity matrix. And 

only when you have non-zero mean flow non-zero grazing mean flow; you define these 

things and C is equal to B slash A when this is 0 when this is not 0 and simply use C is 

equal to a which I have commented out. And this is the guy what I was talking about 

expm minus C L. 
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And then, you re-shuffle or rearrange the matrices. This is the [T1] matrix; I was just 

talking about this is the [T] matrix and then, these are your these are kind of your 

boundary conditions which comes from the boundary condition. They are themselves are 

not the boundary conditions, but they arise these terms, because of the implementation of 

boundary condition due to the neck extension. 

So, when la and lb are both 0, X1 and X2 are tending to 0 they are 0 and as a result, all 

these terms will go away and this term will go away this term will also go away this term 

and this term. The resulting expression will be much more simplified expression and we 

will get a concentric tube resonator without extensions as the one the case that we are 

about to discuss. 

Then once we get Ta Tb Tc Td parameters these are really four pole parameters and now, 

we convert this in terms of mass velocity by simple multiplication by characteristic 

impedance and division of this thing by this thing. So, this is fairly simple standard 

procedure. Main thing is these rather complicated expressions which kind of can be 

nightmarish if you were to do it by hand calculation.  

So, I avoided doing that and used a little bit of computer algebra and some known 

literature to verify things. So, this I would suggest that you please practice it in your free 

time and using the long hand manner. Now, one more thing before we go into parametric 

studies, because from now onward, we spend a few minutes to do some parametric 

studies. So, this is the perforate impedance file. 
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Which I have written sort of separately; so, this is your rather complicated thing that I 

have shown you about. So, one needs to be have little bit of practice with programming. 

So, that will be useful. This can be done in Fortran or you know there are so, many 

things Octave or Python or something like that whatever you are comfortable with and.  

So, basically these are this file basically takes in all the parameters and at the end, it 

gives you the zeta parameter that is your perforate impedance. So, porosity mu kinematic 

viscosity and all these things are sort of well computed. Now, once we have these things 

all, we need to do is basically invoke this function ch really means what color you would 

want to plot with. So, let us see what happens and we can keep changing the value. So, I 

have set mean flow to 0.1. 
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But we can put it to 0. So, let us do some transmission loss parametric studies. 

 

So, what we do is we just click this function and with the parameter set, what we will do 

is that. Let us plot with black color. It should basically get as the transmission loss. 
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You see the maximum transmission loss is about it follows the dome and trough pattern 

you know; exactly what you have for a simple expansion chamber, but do not be be-

fooled by do not just go with the fact that, well this is looking just like a simple 

expansion chamber. So, what is the use why to do this algebra?  

I have already told you the reasons why we should must use a perforated thing and use 

do some extra work in you know deriving the equation then, you know getting the proper 

perforate impedance expressions and all that. Although, we with this thing we would just 

get this thing. We will soon see how the extensions can dramatically affect the 

performance can enhance the performance exactly, like we saw for the you know 

extensions without any perforate.  

So, the; however, I must point out that the transmission loss performance of a E-CTR; 

that is Extended Concentric Tube Resonator will be quite different in terms of tuning of 

the length compared to a simple expansion chamber with neck extensions, for the simple 

reason that perforate impedance has a major, major role to play. And you notice the 

slide, the transmission loss is not identically 0. Although, it tends to that. Practically it is 

0, but there are troughs that are lifted. 
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Now, expansion reach this maximum transmission loss you know. Some of the 

assignments that you would have solved, you can easily figure out that the maximum 

transmission loss for something  

𝑋ଵ = −𝑗𝑡𝑎𝑛𝑘଴𝑙𝑎  

  𝑋ଶ = 𝑗𝑡𝑎𝑛𝑘଴𝑙𝑏   

 20 log
𝑀

2
   

So, this for the m is your area ratio ok. So, this would become 3 square that is 9. So, this 

will become 4.5. 

 20 𝑙𝑜𝑔ଵ଴4.5 
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And if we ask MATLAB to help us with the computation, we will get log 10 4.5 so, 

13.06 for a simple expansion chamber. 

 

And what are we getting here? We are getting 13.27 very very close to that you know. 

Because of the perforate impedance, it has certain value. So, basically this will these 

troughs, these domes will keep on has an increasing sort of a trend and what we will do 

is that. 

 

We will hold on to this figure we will hold on and have some fun with it. 
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Let us do some parametric studies. Let us put some mean flow 0.05 ok. 

 

And you hold on and plot with other color which is red. 
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So, in a fraction of a second, it did give us well 1.35 seconds to evaluate for the whole 

frequency. Plane wave is very fast. So, it definitely does increase this thing and the 

troughs also tend to increase the flow. 

 

 

And let us do one sort of 0.1. We can say you remember maximum Mach number that 

we can have is about 0.1 5 or something like that. 
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So, this can be your blue color. So, this tends to increase and you have certain wiggles 

here starts they start to show up. 
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Let us do one more thing for 0.1 5 ok and then, let me use some other color magenta and 

we see these peaks happening due to the mean flow at very low frequencies alright. 

These are all characteristic of the mean flow thing. So, what I would suggest is that let 

me close this figure. 

 

And let us get back to our basic figure for the case when we have a 0 flow; that is a 

stationary medium. Remember the code will work, because mean flow is already there, 

so, you just as a matter of setting things. 
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Now, once we do that let us simply generate this figure which we will have generated 

now, and hold on to it and now, play around with neck extensions. 

 

Now, let us do it in a step-by-step manner. So, what is half of 400? 200. So, 0.5 L the 

other. So, extensions at the inlet, but there are no extensions at the outlet. Let see what 

we get? 

 

571



 

So, we will get this kind of a curve. That is a phenomenal increase we will do grid minor 

to have a greater insight. Before we you know start putting in a extension of the outlet, 

there are quite a few things I want to discuss. You know you see let us first put the data 

tip ok. So, forget about the peak.  

Peak can be anything peak theoretically, it is going to infinity. So, I do not really care 

about the amount of attenuation that is produced. The frequency at which it it is 

happening is important. We are we are doing the discrete frequency at 11 hertz so, 402. 

Now, the resonance of this chamber is 343 divided by you know basically, C0 by C0 

divide by 2 l C0 by l C3 by 2 into C0 by l.  

Basically, when you equate k k naught l is equal to n pi you get the actual resonance. So, 

l is the complete length of the chamber including the extension. So, the first trough is 

observed at the first resonance frequency of the whole chamber; that is at k f is equal to 

C0 by 2 l. So, you know 343 divide by 800 if you do, because l is your this thing or c 343 

divided 0.8 if you do you will get about 428 or something like that ok. 
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You will get 428 if I have to click this something like this 428. Now, we remember for 

us extension concentric chamber with you know with extensions; you know with 

extensions at the inlet and outlet; if we just had tube with l by 2 length. Theoretically, it 

would have exactly tune the performance we saw that ok.  

But then, the thing is does not really happen, because of end correction effects there were 

some end corrections you would also have done some assignments related to that in the 

last couple of weeks or so, but here we are we are deliberately choosing at l by 2 and 

assuming only plane wave still they are able to tune the performance ok and that is really 

because of the perforated impedance. So, that is one point I want to tell; that just by 

looking at the configuration shown here, you would see that this is very much similar to 

your extension. 

 

So, basically if I were to use let me use the space here. So, theoretically, it is looking all 

very much sort of similar to this one. So, this is sort of equivalent to your this 

configuration, but because you have perforate, it plays a major major role and you have 
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very different looking. Conceptually they are the same, but then you have quite different 

results ok. So, we have this sort of a thing ok. 

Now, we have the peaks here. So, what do we do with this? We have this thing here. So, 

basically by l by 2 we cannot really just unit we have to do some kind of a tuning we 

have to tune the length and anyways these are all based on plane wave model. So, this 

will; obviously, fail. 

There will be some high order mode generated at the interface between the inlet pipe at 

the extensions and the annular cavity. There will be high order mode generated due to 

the inductive effects of the evaluation modes, the effective length of the acoustic length 

of the pipes will increase. So, in order to tune that we have to consider the geometrically 

smaller length so, let me explain, but before we do that. 

 

Let us also set this as 120 well 100; that is your 1 by fourth. 

 

And at least draw the curve obtain the curve. This is blue color. 
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We see we have just readjusted the scale then, what we see. Now, is that your this peaks 

this peak definitely, again happens at where it used to happen just when you have l by 2 

and lb 0. But now, when we have extensions at both inlet and outlet, you know 0.5 l and 

0.25 l, the performance kind of enhances in the at higher frequencies I mean beyond this 

thing. 

Although, we would still see a trough here, the trough is lifted significantly, but you 

know another interesting thing is that even by choosing l by 4, we are not able to cancel 

the second trough; what we vary able to cancel for a simple expansion chamber with 

extension. So, these are definitely the doings of the perforate ok. So, let us have some 

fun with it. What I would do is that basically, get rid of the red curve ok 

 

And keep this thing intact and you know vary this thing. So, remember based on the 

plane wave model, we are having the peak at this value at you know at this particular this 

particular value ok. So, and this is happening slightly before the trough; that means, 
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perforate the. What perforate is doing, is that it is trying to you know kind of; its effect is 

to basically, increase the acoustic length. So, the resonance will occur a bit before. So, if 

you were to add the geometric length that is if you were to I am sorry. 

 

If you were to subtract or reduce the geometric length in such a manner that your net 

length; your net acoustic length will be such that it cancels the trough, then we can sort 

of uplift the thing. Let us reduce it by a small amount 10 let say 10. 
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So, let us do it with the red colored plot and we will get this kind of a thing. 

 

So, it is there its approaching and then, if we were to you know let me use another color 

or perhaps red only, but sort of get rid of this thing and put 15 here ok. 

 

 

And it is almost nullified the trough ok. And if I were to maybe, takes a little bit more. 

Say, 16 if I do. 
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So, it is almost cancelled. So, basically what it means is that; it is possible to you know 

account for the to tune the length tune the extension length in such a manner that really 

your first peak attenuation peak to the resonator form at the inlet cancels as a trough. 

And you see a dramatic increase you know this. If you come by this was only 13 now, 

this is much more 18, 5 db attenuation and this was trough, you are getting more than 20 

25 db at attenuation. So, this is a fantastic performance. Now, another thing that I want to 

point out is that; whatever extensions you are seeing. 
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Corrections or tuning you are seeing at the inlet, will also hold for the outlet. It does not 

plane wave kind of does not distinguish. 

 

 

So, we can sort of demonstrate this thing well slightly more, but it is much better. 
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So, if we were to; if we were to slightly modify it by taking 14. So, this was 16 just take 

a bit less maybe, we can try with 15 as well. 
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It would not be too different that is all I am saying. So, you are nearly there, but if you 

make it like 15 so, this is all done by hit and trial or trial and error. 
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So, if you have to do it 14 and do the calculations. So, you have nearly you know this the 

attenuation here, due to the resonator formed at the outlet has almost nullified the trough. 

So, basically what is happened is that, because of the perforate impedance, the exact 

tuning.  

If you choose l by 2, you know la is equal to l by 2, it does not really tune it based on the 

plane wave theory you know. It is it kind of mismatches the trough. So, by choosing an 

appropriate length, we can actually tune the performance and this happens by trial and 

error, but then we have to wait and watch.  

So, what happens is that; in the for experimental results, there will be full contribution by 

the three-Dimensional modes ok. There will be evanescent waves that are generated at 

the interface port chamber interface. So, the at the you know interface of the where the 

perforated pipe starts and where the extension ends. So, at the interface, there will be 

high order mode generated. So, all the tuning that we just talking about. 

These are just based on the plane wave analysis, but one really has to do either a finite 

element analysis of such perforated mufflers new based on things like advanced 

techniques maybe, we can discuss it in a different course called numerical mode 

matching or analytical mode matching where we find out the performance of such 

mufflers incorporating three-Dimensional arm effects. 

And then choosing the length in such a manner that the 1-D peak matches with a three-

Dimensional p peak and then, we can; we then we can do all those tuning business. So, 

basically, what I am trying to say is that; the acoustic performance of a E-CTR will be 

different from a expansion chamber with extensions and this and that is largely, because 

of perforates. Now, we will keep these results aside and what we will do is that. Let me 

make a simple change in the code. 
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Let me use figure 1 and you know put a some; put some significant value of the mean 

flow 0.1 say ok. So, it is hard to now start tuning the performance when you have flow. 
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So, but we will try to do something. So, I will initially, to begin with, put 0 here, and 0 

here, and see what happens? 

 

So, we get this. We already started getting these kind of things that we are seeing here. 

Let me maximize the screen and I will do hold on. 
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And now, with the same value, I will just uncomment it ok and see what happens. 

 

 

So, the performance definitely has increased. So, how about I do grid on and do this kind 

of a business. So, we see the one effect of mean flow definitely is that it basically, 

increases the trough. You know it increases the trough as we can see here, but it also you 

know brings down the peak. So, all the peaks attenuation peaks that were happening that 
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were occurring in these things; they have come down and the mismatch definitely is 

there. 

 

But, what I am saying is that attenuation is even at the lowest point, it is no it is fairly 

significant 12 db or 12.5 db, but the peaks have come down. So, the mismatch is there. If 

we were to you know sort of keep doing this iterations a few more time. 
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So, this can be a little annoying for the people who do not really want to do this. Let us 

put this as 14 and kind of go back to our figure and plot it again. 

So, you know we would want this peak really to completely cancel out the trough for a 

non-zero value. So, we what we can do is that; we can have a still higher value and do 

this exercise. 

 

So, I will say I will set the grazing flow value to 0.15. 

 

And the extensions, extension length could be 0 to get a baseline case. 

587



 

 

And see what happens? We get start getting these wiggles or these peaks. 
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I will put this hold on say put hold on and. I will sort of put this as 10 and 10 and see 

what happens. These are all hit and trial really. 

 

 

So, the peak is tending to this value, but what happens if we choose if we choose say 

another values. Let say, if we choose a 5 or some 5, let say we choose 5 ok. 

589



 

And see what we are tending to get. 

  

So, we are getting this kind of a thing. So, basically mean flow tends to reduce or 

decrease the end correction kind of a thing. 
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So, we are nearly there. So, basically, the point I am going to make is that the mean flow 

definitely reduces that attenuation peaks that are present, but it still kind of tends to 

produce you know it tends to produce some kind of increased attenuation at frequency 

range where normally trough would occur. 

So, basically what I was saying is that then, this mean flow will have only a small effect 

on the end correction, but then in presence of mean flow, it is you know rather hard bit 

difficult to tune the performance at least in the context of 1-Dimensional analysis. But 

specially, when you have a large porosity like you know the ones that we have 

considered, we have considered almost 30 percent porosity which is like you know 

acoustically transparent as we can see from here; 30 percent porosity. 

 

So, for such a case end correction will be very small. End correction really is kind of 

significant, when you have a very low porosity ok like something like less than 15 

percent or things like that. And other thing that we also must note that impedance 

perforate impedance is a function of many variables; which include you know, hole 

diameter thickness and your mean flow of course.  

So, they also have to be investigated and porosity of course. So, you know if we do it ah. 

Systematically, if we were to do it, we can find out the generalized curve fit based on a 

number of basically expressions for end corrections as function of all these parameters. 

So, that will require a lot of you know trial and error to find out things.  

591



So, what I would suggest is that, we leave these things here and what we will do in the 

next week that is week 9. We are really getting into the business end of the things and 

seeing things what happens practically. For the first time in this week, we have 

investigated. We just seen a glimpse of what mean flow can do in terms of very realistic 

configuration.  

This configuration has the lowest back pressure, because flow just goes through a 

straight pipe. It has the least back pressure minimal. Now, what it could do is basically, 

this sets the scene for analysis of more complicated mufflers like for example, cross flow 

chambers. You know when you have the flow has to necessarily come out of the pipes 

and your it has to go through the pipes and leave the chain from the other pipe and do all 

the business. 

And then, we have to there are different approaches; what we could do and then, we will 

probably look at three pass mufflers; a bit more complicated and discuss things when 

you have multi-path propagation multi different path the waves can take and how do we 

do a network analysis of such a configuration. So, this probably will be the subject 

matter of week 9 and possibly you know spilling over to week 10 and then, we will see 

how we go with it so, till that time. 

Thanks a lot.  
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