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Welcome to lecture 3 of week 7 of this NPTEL course on Muffler Acoustics. So, as 

informed in the end of the last class, last lecture, lecture 2, I talked about deriving you 

know the loss factors and the basically the transfer matrix in the presence of mean flow 

for an extend inlet and outlet element, where we sort of incorporate the loss factors or the 

loss in the flow that is happening because of the mean flow effect. 

So, now towards this end, what we do is that we sort of revisit some of the, you know 

muffler elements that we probably introduce in the I guess week 3 or probably beginning 

of week 4. So, we here we have an say let us say we have using the previous 

nomenclature. We have this muffler element.  

 

Let us call this porters point is point 3 and the part that is right here point 2 and this guy 

is 1 ok. So, here we have this thing and there is a cavity and here we have a flow. So, this 
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is an extended inlet element. You know the derivation that I am going to talk about now 

is sort of equally applicable to an extended outlet element.  

Here we have pretty much the same nomenclature, that is your, apart from the fact that 

you know the chamber was the point in the chamber was mentioned as point 1 and here 

the a point just a the interface of the chamber in the port, but in the port itself is 

mentioned is point 1 ok. So, the thing is that we would like to develop a relation between 

a transfer matrix relation between the point 3 and 1 or 3 in 1 the flow is here in this 

direction. So, when it expands so what happens?  

We have already seen, we already know pretty well by now it should be clear that this 

guy you know, the annular cavity, what does it do? This acts like a quarter wave 

resonator. It is a quarter wave resonator and it acts like a shunt element. So this transfer 

matrix whether for this 1 3 2 1 or 1 to 3 for the K, I need to rub this guy this understood 

here. 

That was pretty a straight forward, p3 V3 for classical straight variables, this was pretty 

sort of straightforward. There was  

൜
𝑝෤ଷ

𝑉෨ଷ
ൠ =  ൥

1 0
1

𝑍ଶ
1൩ ൜

𝑝෤ଵ

𝑉෨ଵ
ൠ   

 𝑍ଶ = −𝑗𝑌଴ cot 𝑘଴𝐿 

 So, this one was pretty clear because p3 is equal to p1 and it is also equal to p2 and 

velocity, mass velocity enters here gets split into 2 parts, one that goes into the annular 

cavity another one that propagates downstream.  

So, V3 is equal to V2 plus V1. So, that one was a pretty clear and we sort of related 

eliminated some variables that is variables pertaining to the annular cavity 2 and found 

out the transfer matrix between 3 and 1. So, in case of 0 min flow this is what we get, we 

do not have any problems with it. So, whether it is an extend inlet or extend outlet 

element it does not quite matter. However, when we do have flow things would be a bit 

different. So, we will see how to incorporate the flow losses that happens here. 
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So, basically let us first you know, although we are going to talk only in terms of you 

know a qualitative discussion, because quantitative discussion would involve some flow 

simulations you know some  simulations to simulate the flow field and such a cavity. 

But basically, when you know because real fluid will have viscosity, so when you have 

flow coming in here, so and it is sort of going out again there will be there will be 

potential core as we are discussing just at the beginning of this week’s lecture and there 

will be that will be shared and it will create some noise ok.  

It will definitely create some separation noise, but then there will also be you know 

something like a head loss. There will be lost associated with sudden expansion of the 

flow. So that is going to probably aid in later automation, but then the main worrisome 

feature is the noise that will be occurring due to the free shear layers that are formed here 

in the after the collapse of the potential core. 

So that really is a culprit, and it is from our experimental observation that you never 

actually allow the flow to separate like this. You actually connected by a perforate bridge 

just like I was mentioning at the beginning of the last lecture. So, but nevertheless for the 

sake of completeness of this theoretical development and what is been usually classically 

taught, we do consider some loss factors.  

You know what we can get, basically they are like head the related to head loss when the 

flow expands suddenly from a pipe and that would actually like I said aid in that 

animation. So, let us first get that, but obviously one would never allow the flow to 

expand or constructionally, it sort of it is counter-productive.  

But we still derive some theoretical expression at it would you know sort of need much 

more comprehensive modern experimental validation. Let us begin our derivation for 

this thing. So, now, let us consider extended inlet element this is your extended outlet ok. 

So, let us focus on the figure a alright. What happens across this discontinuity?  

So, unlike in the case of static medium that is whether it is 0 mean flow where the 

pressure is constant like I mentioned in the vast mass velocity gets into two parts you 

know. Here, the stagnation pressure or the perturbation pressure pc decreases across an 

area discontinuity. So, the stagnation pressure the perturbation pressure the convective 

pressure pc not 𝑝෤௖that decreases across an area discontinuity.  
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And because as the flow passes certain change the part of the flow acoustic energies 

converted into heat or basically losses, so that increase that results in an increase in 

entropy. So, that entropy increase in an up only in an approximate manner can be 

accounted through a parameter which is again you know sort of measured or 

experimentally determined for loss stagnation pressure for incompressible flows. So 

basically, at such a point you have let us  

𝑝ௌ,ଷ = 𝑝ௌ,ଵ + 𝐾 ൬
1

𝜌଴
𝑈ଵ

ଶ൰  

that is a stagnation pressure at the point 3 which is just upstream is equal to the 

stagnation pressure at point 1, but you also have a loss, loss factor half into rho naught 

into let us say U1 is the velocity in the chamber. 

So, again continuity will apply we, but we will probably come to that later in a bit. So, 

here we have this, so K takes a certain form depending on whether a certain expansion or 

sudden contraction or say reversal cum expansion or a reversal cum contraction based on 

the elements that we discussed in week 3 I believe or towards the beginning of week 4.  

You know K is sort of known from that thing, and although only approximately through 

classically, but here this will hold when as, for highly subsonic flows. 

𝑀ଵ
ଶ < <  1  

𝑀ଷ
ଶ < <  1   

So, now if we get to expand this stagnation pressure into the pressure that plus you know 

your velocity contribution due to the velocity head. But here we have this because 

stagnation pressure.  

𝑝଴,ଷ +
1

2
𝜌଴𝑉ଷ

ଶ = 𝑝଴,ଵ +
1

2
𝜌଴𝑉ଵ

ଶ  

+𝐾 ൬
1

2
𝜌଴𝑉ଵ

ଶ൰                                 (1) 

So, now, this loss coefficient I will probably talk about that present a table later, but what 

we immediately need to do is that since we are doing acoustics, we need to do some you 

know apply some perturbation. So, this equation needs to be perturbed. 
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So, how do we do that, how do we exactly you know how about perturbing it? So, 

basically we get,  

𝑝଴,ଷ + 𝑝෤ଷ +
1

2
𝜌଴ ൫𝑈ଷ + 𝑈෩ଷ൯

ଶ
    

= 𝑝଴,ଵ + 𝑝෤ଵ +
1

2
𝜌଴ ൫𝑈ଵ + 𝑈෩ଵ൯

ଶ
 +

1

2
𝐾𝜌଴൫𝑈ଵ + 𝑈෩ଵ൯ ଶ           (2) 

So now what we need to do is that, let us say this equation (1), this guy is equation (2). 

So, if you subtract equation (1) from (2) and since look we have a lot of ground to cover, 

so I will start avoiding the complex simplifications that is there and directly present you 

the summarized sort of result. So, the idea is there to subtract this entire guy from this 

particular thing ok. So, 2 - 1 ok. 

We will do that, and when you do that and simplify matters do the algebra, so what you 

will get, 

𝑝෤ଷ + 𝜌଴𝑈ଷ 𝑈෩ଷ =  𝑝෤ଵ +  𝜌଴𝑈ଵ 𝑈෩ଵ +  𝐾 𝜌଴ 𝑈ଵ 𝑈෩ଵ 

 And then once we simplify this thing these guys further, we get,  

= 𝑝෤ଷ + 𝑀ଷ𝑌ଷ𝑉ଷ  =   𝑝෤ଵ + 𝑀ଵ𝑌ଵ𝑉ଵ + 𝐾𝑀𝑌ଵ𝑉ଵ 

Clearly, we can write you know these quantities in terms of the aero-acoustic state 

variables. So, we need to bring into knowledge or into application, all our things that 

were doing in the last couple of lectures.  

𝑝෤௖,ଷ =  𝑝෤௖,ଵ + 𝐾𝑀ଵ𝑌ଵ     
𝑉෨௖,ଵ − 𝑀ଵ𝑝෤௖,ଵ/𝑌ଵ

1 − 𝑀ଵ
ଶ  

So, this happens because you need to basically sort of replace some other classical 

variables that we have here in terms of the aero-acoustic state variables. So, once we do 

that we get this particular thing. So all the details you know you can work it out because, 

let us go back to some of the last slide, where did we define the relation between the 

classical and the aero-acoustic state variable. 
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൜
𝑝෤௖

𝑉෨௖
ൠ =  ቎

1 𝑀଴𝑌଴

𝑀଴

𝑌଴
1

቏ ൜
𝑝෤

𝑉෨
ൠ       

𝑝෤ = 𝐴 + 𝐵⃖ሬ,   𝑉෨ =  
𝐴 − 𝐵

𝑌଴
     

    𝑝௖ = 𝑝෤ +  𝑀଴𝑌଴𝑉෨   𝐴(1 + 𝑀଴) 

+𝐵(1 + 𝑀଴) 

So, it was I guess all written somewhere here, pc is equal to 𝑝෤ plus 𝑀଴ 𝑌଴ Vc, so clearly 

this is the guy that we are using. There was yet another one which is basically your 

velocity was this one ok v tilde plus 𝑝෤ 𝑀଴ 𝑌଴. 

𝑀′ = 𝜌଴𝑆𝑈෩ +  𝜌෤ 𝑆𝑈଴  

= 𝑉෨ +  
𝑝෤

𝐶଴
ଶ  𝑆𝑈଴ 

= 𝑉෨ + 𝑝෤ 
𝑆

𝐶଴
  

𝑈଴

𝐶଴
    

 

     = 𝑉෨ + 𝑝෤  
𝑀଴

𝑌଴
    

𝑀′ = 𝑉 ෩ + 𝑝෤ 
𝑀଴

𝑌଴
                    (1) 

 

𝐽′ =
𝑝଴ + 𝑝෤

𝜌଴
  

+ 
(𝑉଴ + 𝑈)ଶ

2
 

 

− ቆ
𝜌଴

𝜌଴
+

𝑉଴
ଶ

2
ቇ  

 =
𝑝෤

𝜌଴
+ 𝑈଴𝑈෩ 

So, you know you just need to get the proper relation using the appropriate subscript and 

sort of get back. So, once we do all the math’s behind it, what we will do is basically put 
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in all the relation in terms of the convective state variables, then simplify the math’s and 

to finally, end up with the following relation,  

𝑝෤௖,ଷ = ቆ1 −
𝐾𝑀ଵ

ଶ

1 − 𝑀ଵ
ଶቇ 𝑝௖,ଵ +

𝐾𝑀ଵ𝑌ଵ

1 − 𝑀ଵ
ଶ  𝑉௖,ଵ 

So, we get this sort of a relation. So now, like I said for all practical purposes  

𝑀ଵ ~  0.15,   𝑀ଵ
ଶ ≪ 1, 

 and said can be neglected with respect to unity or bit other terms which are of first order. 

So what does it really mean? It basically means that here we have quadratic terms in this 

equation, so can we sort of neglect this thing.  

Because here you have if you neglect this guy you still have a second order term in the 

numerator, which should be much sort of smaller than the unity term because K 

ultimately is a loss factor, it is sort of you know it is small it is less than unity. So, 

basically this entire term is much smaller than 1, provide that 𝑀ଵ
ଶ ≪ 1. That is what we 

do and then we also ignore or neglect the 𝑀ଵ
ଶ the numerator. So, what we get is basically, 

𝑝෤௖,ଷ =  𝑝෤௖,ଵ +  𝐾𝑀ଵ𝑌ଵ𝑉௖,ଵ 

So we get this relation. So now after this, we probably would also like to note: that 

density perturbation we have your quantities like 𝜌෤ଶ, that is related to the acoustic 

pressure fluctuations by your isotropicity relation.  

You know the relation basically what happens between the upstream and downstream 

variable? So, this is always there, and at a downstream  

𝜌෤ଶ =
𝑝෤ଷ

𝐶଴
ଶ         𝜌෤ଵ =

𝑝෤ଵ − 𝑆ଵ𝜌଴

𝐶଴
ଶ        

So, what are all these quantities these probably are these quantities that we are looking at 

the first time.  Well, S1 is the entropy S1 is not the cross sectional area here it is the 

entropy term in the chamber, because it is an extended inlet element as we sort of see 

here. Now, this is what we get, p0 is ambient pressure and cV is the specific heat at 

constant volume. 
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So, these are all sort of thermodynamic relations, I probably would not go deep into this 

part or just say that well you know this is what we get when we have entropy term 

generation in the downstream. But you know it is been fortunately is been found out that 

the entropy contribution is only of the older 𝑀ଵ
ଶ that is you know all this entire term the 

one circled here, this has is of the order 𝑀ଵ
ଶ. 

So, basically does not contribute that much as the this term, so we would sort of 

neglected one is sort of referred to the previous papers by Panicker and Munjal published 

long time back probably in the journal of Indian science published 1981 I believe where 

they where they did all these thermodynamic derivation ensured that these quantities are 

of order  𝑀ଵ
ଶ. 

𝜌෤ଵ =
𝑝෤ଵ

𝐶଴
ଶ     

So eventually, what is the purpose of all this thing is that we are going to have this, and 

our thing isotropicity relation between p 3 rho 3 and p 3 and rho 1 and p 1 ok. So, we 

will keep this handy, now another thing that comes to our mind while doing all this is the 

continuity relation. 

So, we have rho naught, basically whatever mass flux goes here it has to come out of 1. 

So, continuity is I mean it is very important, so it has to be maintained. Now, as usual we 

go about a business of doing perturbation, 

  =  𝜌଴𝑆ଷ𝑈ଷ = 𝜌଴𝑆ଵ𝑉ଵ                             (1) 

(𝜌଴ + 𝜌෤ଷ )𝑆ଶ ൫𝑈ଷ + 𝑈෩ଷ൯ =  (𝜌଴ + 𝜌෤ଵ )𝑆ଵ൫𝑈ଵ + 𝑈෩ଵ൯                      (2) 

so this is what we get? 

So, again we drop the second order term like 𝜌෤ଷ  and 𝑈෩ଷ and the first order terms cancels 

out, because you know again, the equation (1) equation (2) subtract expand the equation 

(2) out completely they will be 0 order term or the ambient terms first order term then 

second order term. Second order terms like 𝜌෤ଵ  into 𝑈෩ଵ that will be very small compared 

to the first order term, so ignore that, drop of that, alright, and retain only the first order 

terms. 
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It subtracts equation (1) from (2). So, the resultant equation would look something like 

this  

  =  𝜌଴𝑆ଷ𝑈෩ଷ + 𝜌෤ଷ𝑆ଷ𝑉ଷ =   𝜌଴𝑆ଵ𝑈෩ଵ + 𝜌෤ଵ𝑆ଵ𝑉ଵ + 𝜌෤ଵ𝑆ଶ𝑉ଶ    

Now, what we immediately realize this is nothing but the mass velocity,  

= 𝑉෨ଷ +   
𝑝෤ଷ

𝐶଴
ଶ   𝑆ଷ 𝑈ଷ = 𝑉෨ଵ +

𝑝෤ଵ

𝐶଴
ଶ   𝑆ଵ𝑈ଵ    +   𝑉෨ଶ 

 We get that kind of a thing. So, we get here the is the mean flow thing and this is 

nothing but 𝑉෨ଵ and you know here this is really your p1. So, here we get p1 by C0
2. S1 into 

U1 and perturbation of the acoustic mass velocity in the angular cavity. 

So, here we have you know this relation, again using your convective state variables 

what we figure out U3 by C0is nothing but M 0 or M3. A Mach number in the extend the 

tube and C0 by S3 is your Y, the same argument goes for this particular term and these 

two terms.  

So basically, we are in a good position to write these guys as,  

𝑉෨௖,ଷ =  𝑉෨௖,ଵ + 𝑉෨ଶ  ∗ 

 The convective state variables. So, you see we have got these guys, ok this one other 

equation was this one. Let us call this a star and let us call this is cross. So, we have got 

these star and cross equations. 

Look, what is our aim? Our aim is to first you know relate things between point 3 and 1, 

so we are we have got two equations. We have we now K depending on the kind of 

discontinuities whether it is an extended inlet discontinuity your extended outlet 

discontinuity and so on. 

So, here we in this equation pretty much there is no unknown here in the sense that there 

is no variable in for the annular cavity, we just have things in the point 3 and 1 and the 

loss factor, and here we have V2. Now, V; however, to eliminate a V2 you would need 

one more equation. So, how do we go about doing that? 
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So, here the momentum equation then comes in handy, and what we do is that for the 

extended inlet element like the one that is sort of seen here, 3 and 1, we must apply 

certain relations alright. So, what do we do? We basically put  

𝑝଴𝑆ଷ + 𝜌଴𝑆ଷ 𝑈ଷ
ଶ  

So we have got this thing,  

– (𝑝଴𝑆ଵ + 𝜌଴𝑆ଵ 𝑈ଵ
ଶ )  + 𝑝଴𝑆ଶ = 0  

(𝑝଴ + 𝑝෤ଷ)𝑆ଷ + (𝜌଴ + 𝜌෤ଷ)𝑆ଷ  ൫𝑈ଷ + 𝑈෩ଷ൯
ଶ
 

we have this momentum equation, now this minus sign here in the plus 1 I know that 

goes on here that is only for an extended inlet element.  

For an extended outlet you know here we will have minus. Let us a first deal with an 

extended inlet the figure that I had just drawn back in this slide the figure a, for figure b 

it will be minus. Anyhow, so what we will do that will perturb the equation as usual we 

go about doing a perturbation business,  

− ቄ(𝑝଴ + 𝑝෤ଵ)𝑆ଵ +  (𝜌଴ + 𝜌෤ଵ)𝑆ଵ ൫𝑈ଵ + 𝑈෩ଵ൯
ଶ

ቅ   

So, what you know as we usually we do, we I will skip some other algebraic 

simplification with the understanding that you guys would take it out take it up at some 

stage. So, this thing will be  

+(𝑝଴ + 𝑝෤ଶ)𝑆ଶ = 0 

So we get that. Now, again we will subtract the star mark equation from double star 

equation, and you know one can do the algebra to dropping second order terms and first 

order zero-th order term any ways cancel out. 

𝑆ଷ𝑝෤ଷ + 2 𝜌଴

𝑆ଷ

𝐶଴
 𝑀ଷ𝑈෩ଷ + 𝜌෤ଷ𝑆ଷ𝑈ଷ

ଶ  
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 − ൛𝑆ଵ𝑝෤ଵ + 2 𝜌଴𝑆ଵ𝑈ଵ𝑈෩ଵ + 𝜌ଵ 𝑆ଵ𝑈ଵ
ଶൟ     

+𝑆ଶ 𝑝෤ଶ = 0 

So we get that. Again, we sort of make use of the convective state variables and with the 

understanding that we had in the last few equations, what we eventually get,  

=> 𝑆ଷ൫𝑝௖,ଷ + 𝑀ଷ𝑌ଷ𝑉௖,ଷ൯   

−𝑆ଵ൛𝑝௖,ଵ + 𝑀ଷ𝑌ଷ𝑉௖,ଵൟ 

+𝑆ଶ 𝑝෤ଶ = 0 

Now,  

𝑝ଶ

𝑉ଶ
=

𝑍

2
 

 

 So, what do we do now? Z2 to that is the impedance seen at the right at the entrance of 

the annular cavity, and that we know is nothing, but – jY0 cotk0l2 in annular cavity there 

is no mean flow. So that is why we are getting k0. 

 

So after doing all these things and substituting you know making use of this relation, 

what we get after significant you know algebra is that Vc3, so you know the just let us go 

back just a little back and we see that Vc3 equal to Vc1 plus V2 ok, and we did all this 

algebra and finally after a significant you know sort of simplifications, we will get 

𝑉௖,ଷ =
1

𝑆ଶ𝑍ଶ + 𝑆ଷ𝑀ଷ𝑌ଷ
  ×   ൛𝑆ଶ𝑝௖,ଵ + (𝑆ଶ𝑍ଶ − 𝑀ଵ𝑌ଵ)൫−𝑆ଵ + 𝐾𝑆ଷ𝑉௖,ଷ൯ൟ 

We will get that. And this is multiplied by  

465



So, we get this relation, and once you put this in the convective state form it is a it is 

going to be a rather complicated thing. Because now you know we in this, by the time we 

arrive at this point we would have neglected the m square terms. 

Now, all these things can be further writing an approximate manner as  

 

൜
𝑝௖,ଷ

𝑉௖,ଷ
ൠ ≃  ቎

1 𝐾𝑀ଵ𝑌ଵ

𝑆ଶ

𝑆ଶ𝑍ଶ + 𝑆ଷ𝑀ଷ𝑌ଷ
    

𝑆ଶ𝑍ଶ − 𝑀ଵ𝑌ଵ(−𝑆ଵ + 𝐾𝑆ଷ)

𝑆ଶ𝑍ଶ + 𝑆ଷ𝑀ଷ𝑌ଷ

቏ ൜
𝑝௖,ଵ

𝑉௖,ଵ
ൠ 

And this thing will be eventually related to pc1 Vc1. This is a lot of algebra there are few 

important cases as or corollaries that we would like to probably note here. 

You know when this guy, we have this particular thing ok. Now, when what happens if 

your thing is flush mounted if you are inlet pipe flush mounted, so basically impedance 

right here that is called k0l, is 0, so cot at 0, that is your extending to infinity, is not it. 

This guy is going to infinity and this is tending to a very large number and all these terms 

are very small in comparison. So, basically the result will be, that this guy will be 0. 

What about the things here? Here also you have Z2 in the numerator in the denominator 

and these are all finite terms. So basically, you will be having sort of 1 here, is not it, you 

will be having 1 here. So, that is the case of a certain expansion ok. So, we are deriving 

the case of certain expansion in a very simple manner using this. So, you have 1 and  

൜
𝑝௖,ଷ

𝑉௖,ଷ
ൠ =  ቂ

1 𝐾𝑀ଵ𝑌ଵ

0 1
ቃ ൜

𝑝௖,ଵ

𝑉௖,ଵ
ൠ 

The relation between the convective variables across a sudden expansion incorporating 

the loss factor.  

 

0 
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So this loss factor will actually, what it will do? For a simple expansion chamber 

incidentally you know the loss factor for sudden you know contraction would be would 

be different from that of a certain expansion.  

But whatever it is you know this kind of a transmission loss you are getting for a case of 

a 0 mean flow. So, in case of non-zero mean flow the trough will be slightly lifted you 

know based on theoretical predictions, but and the peeks will be slightly lower this at 

derivation, but these are all theoretical things experimentally and pretty much the same 

thing you now will happen for a this thing. 

So, for an extended inlet or extended outlet element what one would typically imagine is 

that for tuned thing that we are kind of thinking, the first order trough will be lifted, the 

second order trough will be lifted, third one will be lifted and so on. So, these flow what 

it will do? 

It will basically lower their troughs and these things will go up in basically wherever 

there is a trough will try to lift it up. So, it has a smoothing effect or leveling effect you 

know, but typically these are all predictions with how it really considering the flow and 

use noise at the expansion, that is here or you know at these points like I was mentioning. 

There will be water is being shred will which will be interacting with the duct create a lot 

of noise. So, all these things are sort of very classical ways of predicting the losses that 

will be generated but then one really has to you know develop newer expressions for the 

actual flow and you know actual situation when you have a non-zero mean flow the flow 

is allowed to expand suddenly.  

Actually we not be very productive, I will be counterproductive. Especially when your 

muffler shell is very thin and it radiates noise outside. And the transmission loss of 

course, will also come down because of this. We have some experimental proof for the 

recently conducted work, but you know the main thing this basically brings bring us to 

the premise of why we should go for a perforated system. 

467



 

So, we have typically you know, we would never allow the flow to expand so freely I 

mean. So, what we do is that, so this bring us to the topic of perforated mufflers and right 

now we are just going to discuss very briefly the next couple of minutes of 5 minutes 

about why do we need to have perforates, what purpose does it serve and maybe I show 

you some nice photos available in the internet. 

About some cool perforated mufflers chambers and, so basically what you have, what 

you do is that you connect the while you know we have tuned the chamber L / 2 and this 

is L / 4 for instance. So, we typically it will be higher order modes generate, so in the at 

later points in the course we will hopefully do some derivation of the high order modes 

for without the perforates, but the ideas that higher demotes be generated. 

So, you can tune this by slightly reducing the length here, the geometrical length and so 

on. Now, the perforated bridge length will increase ok. So when it does so, so I mean this 

is this gap will increase. So basically, what you need to do is that connect the inlet and 

outlet pipe with a perforated bridge, we will connect that.  

And, so we do not allow the flow to sort of expand, we never allow the flow to expand it 

just goes away and it interacts with the annular cavity. It interacts with the annular cavity 

ok. The waves interact the annular cavity and they have resonances here and resonances 

here, but the flow itself just goes smoothly.  

So will be a minimum pressure drop, and because there will be no free shear layers from 

there will be no that are found in the wave which would have which would otherwise 

form if the perforate bridge were not there. So, the flow and use noise, the 

counterproductive noise will not be there. 
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So, the flow can smoothly go away like this and leave the outlet here, but at the same 

time a highly perforated bridge, so you know we will discuss all the parameters that are 

relevant to discussion of perforate, especially when you talk about impedance one other 

important parameters is sigma or the porosity which typically you know sort of varies 

between you know 5 percent to about 30 percent, 30 percent porosity means it is 

basically the open area ratio. 

So, basically is nothing but a pipe in on the surface of which their holes, small small 

holes are there at some interval they have been different you know manners in which 

perforated things are drill. So, through these waves, I am sorry through these holes the 

waves are allowed to interact with the outer cavity. 

So, if this 30 percent then it is highly pore is virtually like it is a acoustically transparent, 

but the same time mechanically is allowing the flow to go through. So, these holes are 

very small about roughly 2 to 4 mm diameter and placed at a certain spacing. So, these 

series perforate things very commonly I show you some photographs of the perforated 

stuff that we did some time back. 

So, basically not allowing the flow to expand freely, but at the same time allowing the 

ways to interact with the cavity is what the perforate does and it really kills or does not 

does not bring into picture the a separation noise. On experimental evidence has it that 

you know this is much better than just allowing the flow to expand.  

And in real life also no one really uses a bare extended inlet and outlet chamber you 

know people really need to use some perforate and that is why it is perforate element are 

studied a lot. And in all commercial vehicles I will show you couple of photographs they 

are there and there is other element also perforated thing, there something like this is 

here the flows graces the surface you know. 
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But there are other elements which something like let me just sort of draw it quickly for 

you guys. So, here we can have a solid pipe and we have a overlapping element and ok, 

so the flow has to go through this, flow has to go through this ok. So, basically such an 

element is called a cross flow expansion chamber.  

So here, cross expansion takes place is no longer a grazing flow, flow has to go through 

this. So, the perforate impedance expression sort of changes significantly so, hopefully 

we should be able to do that as well. Now, let me show you some nice photographs of 

the interiors of how the typical in a perforated element looks like. 

 

So, we see these perforated tube, so these are something that we fabricated sometime 

back, this is nothing but something like 2 and a half a 3 mm MS Steel pipes and a 

number of holes are drilled at regular intervals as you can see here about 2 mm, 3 mm 

holes and the regular regulated. This is definitely highly porous because you know 

porosity is about 28 to 30 percent somewhere between that and this is about only 12 

percent. 

So, you acoustical properties, the final thing that matters is transmission loss from 

muffler, which is highly dependent on the porosity. So, we did some experiment, some 

time back and figured out that this is highly porous and this is as good as you know 

acoustically this being not there. But, the presence of such a perforated thing is very 

crucial because this is what eventually will happen. 
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You know you see, this is the part and this connects of course, this is a you know let us 

say this inlet this is the outlet where my mouse is pointing, the flow comes in here and its 

smoothly guided by the perforated pipe and leaves outside, it does not allowed to 

expand. I mean not allow to freely expand the acoustic wave, nevertheless allowed to 

interact with the cavity and the cavity is not empty now. 

As you can see it is surrounded by some sort of a glass wool and mineral wool and all 

that, so these are nothing but dissipative materials they completely kill or dissipate the 

acoustic signal. So, basically the this is a completely fully perforated muffler, but it is 

also the annular areas will filled with absorptive sort of materials.  

So it is fully dissipative. So the crucial idea is that the perforated thing acts like a guide, 

it does not allow to the flow to expand out freely and it interacts with the annual cavity 

and then that is what happens. So, this is a straight through muffler with a least pressure 

drop and the flow noise that I was talking about will not be there. 
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And then, this is yet another more complicate mufflers hopefully we will be doing some 

plane wave analysis of this thing next week. So basically, you know the flow comes in 

here as it is shown somewhere here inlet and this is an outlet, but in the process it has to 

negotiate number of turns like the flow is reversed here is end chamber.  

We you know remember in your last assignments you dealt with propagation along these 

axis and, similarly along this axis because we have propagation is here. And in the 

annular area it is filled with absorbent materials. So, the idea behind all this is that the 

flow has to essentially you know crossover this thing, the flow has to basically bend 

around and some part of the flow kind of interacts with the material and interacted the 

annular cavity which is filled with absorbent material.  

But if it is not filled with absorbent material, it can still the flow necessarily has to also 

go through some part in here. And will be a number of passages through which the flow 

has to pass and then we will be a cross flow you know expansion chamber. So, different 

expressions will involve.  

So, you know this photo really tells you how complicated real time muffler can be. So, 

this involves multiple interactions with the annular cavity and produces the desired 

transmission loss. So, there is lots to be done; obviously, with this end this note I will 

have to end this today’s lecture, which is a bit large, but there is lots to be done there is 
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still lot of areas not quite explode and with so many dimensions perforated it really adds 

a lot of dimension to our thing. 

So, especially it with the number of more elements like shot and chambers and dissipate 

materials and all that. So, not everything can be covered in these scores, but only 

glimpses of these things probably can be given. So, tomorrow what we probably would 

be doing is for the first time we will be talking about concentric perforated expansion 

chamber in which only plane waves will propagate and get some equations.  

And finally, do some hopefully transmission loss calculations. But before that, we would 

also need to thoroughly have a decent idea of the different perforate impedance available 

in the literature. So, we will try to present that in the lecture 4 and lecture 5 of week 

lecture before moving on to the next week.  

So, thanks a lot, stay tune, I will see you in lecture 4. 
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