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Lecture - 23 

Extended - Inlet and Extended - Outlet Muffler Analysis (Continued) 
 

Welcome back. This is lecture 3 of week 5 of our NPTEL course on Muffler Acoustics.  

So, as we promised that we are going to analyze, look at the same system extended inlet 

and extended outlet muffler in which the ports are concentric and the section can be 

anything; circular section, elliptical section or things like that because we are really 

assuming a planar wave propagation. So, we are going to look at the transfer matrices 

between the points 1 and 6. So, the system is now well-known to us. We have discussed 

it at length in the last lecture, lecture 2.  

 

So, in this lecture 3, our aim would be to basically derive transfer matrices or transfer 

matrix for the overall extended inlet and extend outlet system and then, use the derived 

transfer matrix between the inlet and outlet ports to obtain the transmission loss 

performance based on the planar wave propagation theory. So, what we will do? In this 

lecture, after deriving the overall transfer matrix, which I can tell you from now is going 

to be a bit algebraically tedious; unlike the simple expansion chamber because you have 

two quarter wave resonators, which are you know which are acting together.  

And so, the overall transfer matrix would be the terms would be a little bit algebraically 

tedious to evaluate. So, we will try to take we will try to do as much simplification as 

possible here and then, go to a symbolic package perhaps maple or something like that.  



And for the transmission loss parametric studies, it is very interesting to see how this 

simple tuning can actually help us to increase the overall performance. For doing that, 

for you know getting a feel for that, we will probably have to go to MATLAB.  

So, probably the later parts of this lecture, we will do some hands on or some practical 

examples by taking a realistic lens and cross-dimensions of the diameter D and things 

like that. So, we will do all these things, but before we do that, let us derive the transfer 

matrix.  

So, we will consider the system point 1 is just in on the upstream of the inlet pipe and 

you know it does not really matter. Just one thing I want to tell you here that the pipe the 

inlet pipe, inlet and outlet they are of equal diameters. So, there is no difference between 

the diameters and the uniform across the length that is a simple pipe, cylindrical pipe.  

So, the transmission loss of the pipe element itself is 0, because I mean that we can easily 

see from the expressions, analytical expressions expression for the transmission loss of a 

simple expansion chamber. If you put m is equal to 1, that is there is no expansion we 

will actually get tl is log of 1, that is 0.  

So, this reason why we choosing 1 here; just at the interface and 6 here. We could have 

derived the transfer matrix between this point, somewhere this point and point here. But 

it does not really matter as far as the if there is nothing upstream or downstream, no 

muffler element. If you just able to want to derive the transmission loss of between of 

this element, between this point 1 and 6 will be the same as the transmission loss 

between this point, let us me call it star and this point.  

So, there will be no issues; there will be no issues ok. So, this is what we are going to 

get, ok. So, we are going to get this overall system. Now, what are the relations that 

occur between point 1, 3, 2, 4, 5, 6? What exactly goes on? So, basically what goes on is 

that pressure at 1 is equal to pressure at 3 and is equal to the pressure at 2.  

𝑝෤ଵ = 𝑝෤ଷ = 𝑝෤ଶ 

𝑝෤ଵ = 𝑝෤ଶ = 𝑝෤ଷ 
               (1) 

𝑝෤ସ = 𝑝෤଺ = 𝑝෤ହ 

𝑝෤ସ = 𝑝෤ହ = 𝑝෤଺ 
               (2) 



So, this I should have written here at point 2. Why is that? Acoustic pressure at this point 

is equal to the total planar wave pressure and is equal to the pressure of the section 2. So, 

this is one of the assumptions of plane wave theory, that the wave comes it is expanding 

into a larger thing and over the entire cross section, the pressure is equal. So, basically 

over this cross section, over the cross section, where I am pointing and over this thing 

and everything is equal. So, it is a same phase, same magnitude, everything is the same.  

So, whatever pressure value is there just at the interface between the inlet port and the 

chamber; but right within the chamber, the same pressure we are seeing within the 

chamber. So, that is there and the same pressure occurs in the interface at the annular 

cavity thing here.  

So, basically what the resulting thing then is p1 is equal to p3 is equal to p2; where, p1 like 

I said is the acoustic pressure field in the inlet pipe. But at the interface or the inlet pipe 

in the chamber, p3 is the planar wave acoustic pressure field within the chamber circular 

chamber or elliptical chamber or something like that, but not in the annular region and 

point 2, 𝑝෤2 that is the acoustic pressure field in the annular cavity, right in the at the 

interface. 

So, this is actually a beautiful analogy between acoustics and electrical circuits. So, we 

will soon discover that as well and try to draw some electrical equivalent acoustic 

circuits for this muffler configuration; obviously, by assuming planar wave theory and 

velocity V1, the acoustic mass velocity that has to be conserved.  

So, whatever pressure field that you are seeing here, V1 whatever it enters, it gets split 

into two parts. We assume that based on the plane wave theory that V1 is equal to V3 plus 

V2. So, basically what happens is that the velocity that enters the chamber here, it is 

basically split into two parts that is acoustic mass velocity that goes in the cavity here, it 

gets split here and then here.  

So, some part of that is basically being taken away in the chamber and the some other 

portion of that goes within the annular cavity. So, as a result, what we can do is that we 

can split V1 in two parts, V2 and V3 acoustic mass velocity that enters the annular cavity 

region, at the acoustic mass velocity that goes downstream.  



And pressure p4 is equal to pressure again at the outlet, we are I am talking about, the 

same planar wave propagation fronts are taken. p4 is equal to p5 is equal to p6. So, this is 

equal to p5 that is there; p4 is equal to p6 is equal to p5 and volume velocity or mass 

velocity again gets split into two parts; V4 is equal to V5 plus V6, V4 gets split into two 

parts; V5 and V6 that happens. So, now, the question that I am asking is that what do we 

do with these equations? We eventually, have to worry about the variables with suffixes 

1 and 6; is not it? Let us start the process of relating that.  

So, p 1 if we write this in the transfer matrix form, we are relating the discontinuity. But 

now, we also have an extension. So, we have to worry about the impedance of the 

annular cavity also. So, let me write it down a little bit more cleanly perhaps.  

−𝑗𝑌௔௡௡𝑐𝑜𝑡𝑘଴𝑙ଵ 

𝑉෨ଵ =
𝑝෤ଶ

𝑍௔௡௡ଵ
+ 𝑉෨ଷ 

𝑉෨ଶ + 𝑉෨ଷ 

൜
𝑝෤ଵ

𝑉෨ଵ
ൠ = ൥

1 0
1

𝑍௔௡௡
1൩ ൜

𝑝෤ଷ

𝑉෨ଷ
ൠ 

𝑍௔௡௡ଵ =
𝑝෤ଶ

𝑉෨ଶ

 

Why? Because based on the above transfer matrix, and you know from this thing, 

impedance of the cavity that we are discussing at the entrance of the cavity or at the 

beginning of the cavity as we were discussing in the last lecture is given by this 

expression.  

So, V2 then of course, V2 is p2 by Zann1. So, this is just another way of writing. So, this is 

actually V2; this is nothing but V2 you know and so, that basically gives us the flexibility 

of writing this like this 1 by Zann1. So, we get this transfer matrix and another of course, 

we now, we basically need to worry about the things that happen from 3 to 4. 

           ൜
𝑝෤ଷ

𝑉෨ଷ
ൠ = ൥

𝑐𝑜𝑠𝑘଴𝑙ଷ 𝑗𝑌௖𝑠𝑖𝑛𝑘଴𝑙ଷ
௝

௒೎
𝑠𝑖𝑛𝑘଴𝑙ଷ 𝑐𝑜𝑠𝑘଴𝑙ଷ

൩ ൜
𝑝෤ସ

𝑉෨ସ
ൠ                         (2) 



So, now let us go sequentially. Now, we will invoke the relation the transfer matrix 

relation between two points of a uniform pipe. So, what is that? That is p6 is there, p3 and 

4; I am sorry sorry, not 6, 3 and 4. So, if we go with 4 here and V4 is here, it is something 

like this.  

So, this is equal to cos of actually one thing that probably I should have mentioned. This 

is l1, this l2. So, let me call this as l3, the distance right from the interface of the inlet 

extended inlet and right to the interface of the extended outlet. So, l3 obviously, that is 

simple  𝑙ଷ = 𝐿 − (𝑙ଵ + 𝑙ଶ) know this is important. 

So, once you fixed up l1 and l2, l3 is obviously, once you determined l1 and l2, l3 

automatically is fixed. So, I would simply write this as cos of k0 times l3 times. So, this is 

the T11 parameter and this is j into y c. Remember y c was a chamber, c naught by cross 

section area of the chamber.  

And by the way, this the thing that you are seeing here was nothing but minus well, I 

should I can probably write it here. Zann1 or probably just Z ann cot k 0 l 1 because this we 

saw in the last class. The entire principles of tuning or double tuning the muffler was 

based on that.  

So, because we are trying to cancel out the two troughs in the last lecture; the first trough 

and the second trough by means of cleverly choosing the extensions, the length of the 

extensions at the inlet and the outlet. So, it is also called double tuning and these are l 1 

and l 2 are general lengths. If they are not equal to l / 2 or l / 4 respectively, then the 

chamber are then the extended inlet and outlet chamber is not tuned or if you have just a 

tuning of the inlet and not of the outlet is called singly tuned muffler or single tuned 

muffler.  

So, all this we can actually appreciate when we do some parametric studies shortly. But 

before that, let us quickly complete this part; So, recall the last week’s lecture, when we 

derive the transfer matrices of the simple tube. So, there was a detailed derivation.  

So, probably I guess is a good idea to like this. So, this is what it is. So, we have got let 

us say let us name this as 1, this relation this is 2, equation 2 and obviously, the relation 

between the variables at the outlet is the following. It is easy to guess this V6. So, this 

becomes p 6, this becomes V 6. So, what do we get actually?  



  ൜
𝑝෤ସ

𝑉෨ସ
ൠ =   ൥

1 0
1

𝑍௔௡௡
1൩ ൜

𝑝෤଺

𝑉෨଺
ൠ                                    (3) 

So, this is, this obviously, follows because you get your V4 is equal to V6. So, that is 

what you are going to get and p6 by Zann2 is nothing but p5 by Zann and p by Zann2 is 

nothing but V5.  

So, we are actually able to retrieve this relation or in other words, this relation the one 

that is underlined here that forms the basis for the occurrence of this term. So, what 

happens now is that let me get rid of this part and so, we have got three transfer matrix 

relation. This is let me call it 2 and this is 3 and here, you get relation 1, transfer matrix 

relation 1, 2 and 3.  

Well, this course is designed in such a manner that the way that I carry out thing is that 

take some practical examples and introduce certain concepts using them. So, what is the 

concept that I am going to use now? Because remember we want to relate the points 1 

and 6, that is relate the variables at point 1 with those at point 6.  

So, now what we need to do is that sequentially multiply the transfer matrices. So, what 

is that called? That is called Cascading or sequential multiplication of transfer matrices. 

So, what happens now is that in order to relate point the 1, p1 V1 with p6 V6, we just need 

to simply multiply the wave.  

Let me reiterate because we will be coming to cases, where the energy propagation, 

acoustic power propagation does not follow a unique path. There, could be multiple path. 

So, sequential or cascading of transfer matrices or sequentially multiplying transfer 

matrices will probably just that thing would not help you.  

You need to do something else, we will worry about that much later. But for now, we 

can just understand that the energy propagates in this direction. So, what do we do now?.  

Cascading or sequential multiplication of T matrix or transfer matrices ok, this we 

will do.  

So, you see why is this happening? Why could we do all the algebra that we are trying to 

do here? Because obviously, unidirectional propagation of acoustic wave will allow you 

to relate the upstream variables with the downstream.  



So, in a way we are trying to eliminate

eventually systems of linear

we have got only 4 variables

in terms of the remaining 2. So, 

equations, trying to form Ax is equal to 

But clever technique is the cascading of transfer matrices which works well in this case 

and we just trying to relate

with this one and then, post multiply this matrix with this

what happens, a little consideration will show you why this is there

get. Let me sort of write it down a bit more

൜
𝑝෤ଵ

𝑉෨ଵ
ൠ =

𝑍௔௡௡ଵ

This is going to be a bit tedious

symbolic computational packa

is just a matter of multiplying the matrices which can be very easily accomplished there

Let us get to that.  

in a way we are trying to eliminate, very cleverly eliminate because you see these are 

eventually systems of linear equations. We have got 6 unknowns p1 to p6; 

variables. So, we can express, obviously the remaining 4 

. So, we could actually end-up solving that using some linear 

x is equal to V system.  

clever technique is the cascading of transfer matrices which works well in this case 

and we just trying to relate p3, V3 we know. So, we just pre multiply the other ma

post multiply this matrix with this one to relate p

a little consideration will show you why this is there. So, this is what we 

et me sort of write it down a bit more clearly;  

෨ ൠ = ൥

1 0
1

𝑍௔௡௡ଵ
1൩  ቎

𝑐𝑜𝑠𝑘଴𝑙ଷ 𝑗𝑌ଷ𝑠𝑖𝑛𝑘଴𝑙ଷ

𝑗

𝑌ଷ
𝑠𝑖𝑛𝑘଴𝑙ଷ 𝑐𝑜𝑠𝑘଴𝑙ଷ

቏ 

ଵ = −𝑗𝑌௔௡௡𝑐𝑜𝑡𝑘଴𝑙ଵ     ൥

1 0
1

𝑍௔௡௡ଵ
1൩ ൜

𝑝෤଺

𝑉෨଺
ൠ 

𝑍௔௡௡ଶ = −𝑗𝑌௔௡௡𝑐𝑜𝑡𝑘଴𝑙ଶ 

his is going to be a bit tedious. So, what we probably could do is that perhaps use

symbolic computational package named as Maple to further simplify things

is just a matter of multiplying the matrices which can be very easily accomplished there

 

you see these are 

 V1 to V6 and 

4 or 4 of them 

olving that using some linear 

clever technique is the cascading of transfer matrices which works well in this case 

we just pre multiply the other matrix 

to relate p6. So, that is 

this is what we 

that perhaps use a 

aple to further simplify things. And then, it 

is just a matter of multiplying the matrices which can be very easily accomplished there. 

 



Let us use maple. So, what we will do now is that we will probably go to symbolic 

package maple like I was saying. So, maple is used by academicians and also, people 

who work in industry to work with computer algebra. It really helps in efficiently 

simplifying algebraic expressions which are otherwise sort of quite tedious. So, what we 

do is that? We can just go to maple. 

And classic window or something like that would open and you can hit this button here, 

will open new worksheet. So, we have already opened one worksheet in which some 

commands were written.  

Restart means starting from fresh, none of the variables are defined, you have to define it 

a fresh and linear algebra package is something that will invoke lot of linear algebra 

commands like matrices and how to multiply matrices and so on. If you and this is the 

one that is highlighted is a colon. So, if you do not do it and just put a semicolon here. 

 

So, all these things will pop up and in order to suppress that we use a colon. Now, T1 

very quickly is the matrix is how you define a matrix; T1 is a variable. This is a symbol 

to define anything and matrix is something that you write. So, matrix is 1 0 1 / Z1 and 1. 

So, these are the first row elements; these are the second row elements.  



So, Z1 is the impedance. So, the annular cavity. Now, remember, let me go back to the 

presentation slides, where this encircled boxed expressions are your impedances for the 

annular cavity.  

Similarly, So, this is what you get using the derivations that we have done so far.  

Now, entire thing I am clubbing in as Z1 or Z2 as this thing. So, before we move ahead, 

let me just take the liberty of defining another few symbols which will actually help us in 

simplifying things. So, inlet and outlet are assumed to be the same here. So, that is the 

characteristic impedance.  

𝑌଴ =
𝐶଴

𝑆௣
   

So, let us say that is it is so for both inlet and outlet. Now, for the chamber, what is it? 

For the chambers YC is C0 by S chamber, keep this aside and for the annular cavity, since 

annular cavity characteristic impedance of annular cavity 1 and 2 are the same. We get, 

𝑆௖

𝑆௣
= ൬

𝜌଴

𝑑଴
൰

ଶ

  𝑌௖ =
𝐶଴

𝑆஼
  →  

𝐶଴

𝑆௣𝑆஼

𝑆௣

=
𝑌଴

𝑀
    

= 𝑀 

So, remember, we calling this as M. So, this becomes M - 1, for this thing right and is 

there any way that we can possibly express the chambers impedance? So, this becomes.  

𝑌௔௡௡ =
𝐶଴

𝑆஼ − 𝑆௣
   →    

𝐶଴

𝑆௣ ൬
𝐶଴

𝑆௣
− 1൰

 

𝑌௔௡௡ =
𝑌଴

𝑚 − 1
 

So, Y naught divided by M will be your characteristic impedance of the chamber. So, we 

can possibly substitute all these things here. So, let me just invokes these thing. Now, let 

us go back to our maple and let us begin to simplify things. Now, j is square root of 

minus 1 imaginary number and T 1, now we substitute Z 1 is equal to minus j into y of 

annular cavity.  



So, that we just saw it is Y naught divided by M minus 1 into cot of k0 l 1 and we 

substitute this in T1. Well, the idea of this brief digression is not just to not to teach you, 

not to introduce here a tutorial in maple; but possibly we will it is a more like an ad hoc 

approach or you know introducing some symbols as we need them. 

So, what we do is basically let me just begin again with linear algebra package and this is 

square root minus 1 and once we simplify, we get this. Now, this is the matrix for this T2 

is the matrix for the part which is of uniform cross section. So, here we put l3; remember 

l3 was capital L chamber length minus l1 plus l2. So, that is what we get cos of k naught 

now. 

 

Here, there is a small change here it is m. Let me write it as m and m would probably go 

into the numerator. So, we get this sort of an expression, where m is nothing but the 

expansion ratio. So, m is nothing but Sc by Sp and it is the square of the ratio of the 

diameters of the chamber to that of the port.  

So, m that is why it comes in the denominator and here, it comes in the numerator. So, 

you get this expression for T2 and then, T3 will become this particular thing Z2. So, 

now, similarly, if we substitute an expression for Z2, what we get is this particular thing. 



 

T3 matrix is this and we once we substitute this, we will get the this particular 

expression. For now, just let me suppress all the outputs and show you all the things one 

at a time. 

 

Because that way it is probably easy to comprehend things. Now, T1, T2, T3 matrices we 

have got just like we got in our derivation, the long hand derivation that we did. Now, T4 

matrix how is it obtained by multiplying T1 into T2. So, matrix, matrix multiply so that 

you get T1 into T2. Once we that is basically you multiply, the sudden area discontinuity 

matrix, where you have a protrusion inside the cavity extended inlet with that of the 

section with uniform cross section. 



 

So, once we do that, we get T4 and then, once we multiply T4 with T3, what do we get? 

So, T4 matrix is the combination of this and this is what we get here. So, now, T 5 matrix 

is the final transmission loss matrix that we obtain. Now, if the things can become even 

more complicated, if we were to substitute l3 is equal to L minus l1 plus l2. So, I have 

just suppressed the output. 

 

But if I do not, I get this. So, you know it is just a matter of substituting this expression. 

So, I rather suppress the output here and you know just focus on this particular matrix 

here. And with understanding that l3 is equal to L minus l1 plus l2. This looks to be a 

little bit quite tedious expression.  



Because right now, you know when we derive the transmission loss expression for a 

simple expansion chamber, 

yeah 3 or 2 depending upon your

capital D0 by small d0 and 

expressed in terms of m and 

our slide somewhere here; m

= 1

𝑇𝐿 10

And frequency of course, is there

we saw as many as you know

variables; the chamber length capital 

course once you select the other

So, we have a bunch of variables to play around with and this looks to be a little bit 

complicated expression. So, 

expression for a general element

Suppose you have a general 

know the relation, 

you know when we derive the transmission loss expression for a 

 there was really only two variables, actually 3 

depending upon your conventions m, that is the area expansion ratio which is 

and L the length of the chamber. So, everything else was 

and L. There were actually only 2 variables, if you go back to 

m and L. 

1 + 𝑠𝑖𝑛ଶ𝑘଴𝐿 ൬𝑀 −
1

𝑀
൰

ଶ

 𝑀 = ൬
𝐷଴

𝑑଴
൰

ଶ

 

10 𝑙𝑜𝑔ଵ଴  ቊ1 +
1

4
 ൬𝑀 −

1

𝑀
൰

ଶ

𝑠𝑖𝑛ଶ𝑘଴𝐿ቋ 

is there. But in the maple expression that I just presented now

you know m is there, expansion ratio, then here you have

the chamber length capital L, extension length l 1 and l 2 and the 

other two and area expansion ratio m and Y0.  

have a bunch of variables to play around with and this looks to be a little bit 

So, the best practice then is to derive the transmission loss 

element. 

 

 element and you have inlet point here, outlet point here

you know when we derive the transmission loss expression for a 

3 or probably 

that is the area expansion ratio which is 

everything else was 

if you go back to 

 

just presented now, 

then here you have three other 

and the l 3 is fixed of 

have a bunch of variables to play around with and this looks to be a little bit 

the best practice then is to derive the transmission loss 

outlet point here. You 



൜
𝑝෤ଵ

𝑉෨ଵ
ൠ =  ൤

𝑇ଵଵ 𝑇ଵଶ

𝑇ଶଵ 𝑇ଶଶ
൨  ൜

𝑝෤ଶ

𝑉෨ଶ
ൠ 

once we have this relation, we can possibly obtain the transmission loss by assuming the 

anechoic termination, here for a generalized element.  

This is the general this could be any element. There could be perforates, linings and it 

need not just be a simple expansion chamber. So, we have a generalized transfer matrix 

parameters, also known as the four-pole parameters. 

[𝑇]    →     Four −  pole parameters 

[T] parameters are also called Four - pole parameters. So, what we intend to do now, is 

that derive a generalized expression for the transmission loss for a general element in 

terms of the four-pole or T matrix parameters T11, T12, T21, T22 for a stationary medium.  

And once we know the inlet and outlet diameters and then, based on these generalized 

expression, what we are going to do is that get a feel of some idea, where you can expect 

some peaks, resonance peaks or where transmission loss is will exhibit a resonance peak 

at animation peak there in the spectrum or where it can express a trough.  

And once, we know the generalized expression which should be straight forward to 

derive, we can use the transfer matrix for an extended inlet and outlet element and plug 

in all the parameters and obtain or the rather complicated or rather tedious expression for 

transmission loss and then, possibly draw some conclusions.  

We can actually explain using the tree matrix parameters, why is that by choosing 

appropriate lengths we that l by 2 or l by 4, we should be we are able to cancel out the 

troughs and all that sort of a thing.  

We should also be able to explain basically using the transfer matrix parameters, I mean 

basically using this thing we can carry out some parametric studies in MATLAB that I 

am going to present in the next lecture. So, using certain parameters and how do we 

choose certain things. So, till that time, we probably have to stop and I will see you in the 

next lecture. 

Thanks a lot.  


