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Lecture – 20 

Simple Expansion Chamber Analysis Using Transfer Matrix Method 
 

Welcome to, lecture 5 of week 4 on this NPTEL course on Muffler Acoustics. We will 

do things.  

 Simple Expansion  

 Chamber which is really the most fundamental muffler element that is used.  

 

So, basically as you can now guess that a simple expansion chamber something like this 

you have your thing like this and you have and here you have a thing like this. So, the 

section can be elliptical this section it can be elliptical or a circular thing pressures are of 

circular cross section. They can also be elliptical, but circular other ones that are more 

preferred because they have less break out noise have more rigidity like I was 

mentioning. 

And this is the inlet port and this is the outlet port I will call this as this point as 1 just at 

the interface, but within the inlet pipe and there is the point 2 which is just in the 

chamber, but at the interface of the port in the chamber this is point 3, this is point 4 inlet 

outlet ok. 

So, now what is our job and of course, I forgot to mention the length is L the diameter let 

say the diameter is d and let say this dimension or diameter is d0 and this is D0  small d 

naught big D0. So, what is our job then? To analyze a simple expansion chamber muffler, 



it is called simple because there is really nothing in the chamber it is an empty chamber it 

works on the principle of reflecting a significant portion or part of the acoustic energy 

back into the system. 

So, when a wave is incident somewhere in here some part is reflected back A1,B1 here it 

gets to A2 and here it is B2 and some part is A3 and here there will be some part that will 

be we let it back of course, if we have anechoic termination this will not be the case. So, 

let us assume that this is discharging into an anechoic termination. So, I will kind of rub 

this thing. 

 

And what I am going to do is that put a anechoic termination as we discussed. So, things 

like this anechoic termination. Now what do we do? If you recall from the last weeks 

lecture. We wish to combine the sudden expansion plus the sudden contraction 

considering the finite length effects of a chamber this no longer infinite. 

And at least a chamber and we are trying to determine how the transmission of 

performance will be. That is to say if a certain amount of acoustic power is incident on 

the muffler from here and certain amount is going towards anechoic termination, what is 

the performance of the muffler look like across the frequency spectrum?  

To answer this question I guess it is time that we, now start talking about the field 

continuity conditions at the point 1 and 2 and 3 and 4 and relate it with the standing or 

the progressive wave variable.  

𝑝ଵ = 𝐴ଵ𝑒ିబ௫ + 𝐵ଵ𝑒బ௫   



𝑉ଵ =
𝐴ଵ𝑒ିబ௫ − 𝐵ଵ𝑒బ௫

𝑌ଵ
 

So, pressure at 1 is given by we will fix the coordinate system So, this is characteristic 

impedance Y1,Y2 and Y3. So, of course, putting x is equal to 0 we get this and we get 

this, we get, 

𝑝ଵ = 𝐴ଵ + 𝐵ଵ 

𝑉෨ଵ =
𝐴ଵ − 𝐵ଵ

𝑌ଵ
 

So, this is what we going to get and similar,  

𝑝ଶ = 𝐴ଶ + 𝐵ଶ 

𝑉෨ଶ =
𝐴ଶ − 𝐵ଶ

𝑌ଶ
 

So,  

𝑎𝑡             𝑥 = 0              

Now,  

𝑝ଵ =  𝑝ଶ 

𝑉෨ଵ = 𝑉෨ଶ
                 (1) 

And mass velocities if you recall they are also the same what we derived in the last 

lecture. So, what do we do after this? We start putting well the entire idea then is to 

actually formulate a set of equation then eventually we would need everything in terms 

of A1. So, there will be A1 A2, A1 B1, A2 B2, A3 and B3 will be 0, if you assume anechoic 

termination nothing is coming back. So, all the parameters that is to say let, 

𝐴ଵ +  𝐵ଵ =  𝐴ଶ + 𝐵ଶ               (1) 

we will get this, but it will be pretty cumbersome we can sure form the formulate the 

equations, if we get  equation let,  

𝐴ଵ +  𝐵ଵ

𝑌ଵ
=  

𝐴ଶ +  𝐵ଶ    

𝑌ଵ
                   (2)           



So, we have got this equation and then we will keep this thing aside here and we will 

probably have to worry about the things that happen somewhere here at the section 3 and 

4the same field continuity conditions will apply. So, what are that let us figure out that 

part.  

𝐵ଶ , 𝐴ଶ, 𝐵ଵ, 𝐴ଷ = 𝑓 (𝐵𝐴ଵ) 

So, here,  

       
𝑝ଵ =  𝑝ଶ 

𝑉෨ଵ = 𝑉෨ଶ
൨   𝑥 = 𝐿 

𝐴ଶ𝑒ିబ௫ + 𝐵ଶ𝑒బ௫ = 𝐴ଷ                                      (3) 

𝐴ଶ𝑒ିబ − 𝐵ଶ𝑒బ

𝑌ଶ
 =

𝐴ଷ

𝑌ଷ
                                  (4) 

Now the thing is that here you will have L why because it is the pressure field. 

So, the idea is that what you have to put if you are putting your coordinate system 

somewhere here x is equal to 0 here it will be x is equal to L. 

And you will get things like this thing. So, this will happen and then you will get and for 

other chamber you can just put it the coordinate system again translate it for this port you 

can define the local coordinate system somewhere. So, equations  is 2, 3 and 4. 

Eventually like I said we want to figure out everything in terms of in terms of A1. So, we 

have got 4 equations 1 2, 1, 2, 3 and 4 and we want to find out things in terms of A1. 

So, it is going to be a little algebraically a bittious. So, I guess now it is a time to start 

working in terms of the transfer matrices which will make our life very convenient. So, 

let us do that you will soon see that why all these things that I am talking about is 

important. So, when we have this condition, we can write this set of equation something 

like here. 

ቄ
𝑝ଵ

𝑣ଵ
ቅ = ቂ

1 0
0 1

ቃ
ଶ×ଶ

 ቄ
𝑝ଶ

𝑣ଶ
ቅ

௫ୀ
 

ቄ
𝑝ଶ

𝑣ଶ
ቅ = ቂ

1 0
0 1

ቃ
ଶ×ଶ

 ቄ
𝑝ଷ

𝑣ଷ
ቅ

௫ୀ
 



Now, what happens between x is equal to 0 and x is equal to L, between the points here 2 

and 3 what happens? How do you relate A2 and B2? So, right now we are in terms of the 

standing wave variables that is p and v we are not use the progressive wave variables in 

the matrix presentation shown in the slide. We would want basically I guess it is time 

now to derive also the transfer matrix for a tube with planar wave propagation. 

And that would really help us relate things with point 2 and 3 here. So, to that end what 

we will probably do is we will probably relate use this set of equations as well as this set 

of equations and from that we will kind of eliminate A2 and B2 to relate things at section 

2 to section 3 and then we can just simply multiply the matrices. 

So, let us do that now that we have got the transfer matrix. We have written down the 

relation between the upstream and downstream state variables at the sudden area 

expansions and the contractions as we see in slide number 21 between 1, 2 , 3 and 4. 

Now, what remains is to derive basically relate the transfer the state variables between 

point 2 and point 3 that is pressure and velocity at point 2 with those at the point 3. So, 

how do we do it? 

Basically our objective should be to basically derive the relation a transfer matrix 

relation between the pressure and velocity at the dotted section here at the interface and I 

mean at this section to that at the section 3. So, how do we go about doing that? So, let us 

make use of this thing. So, we have here p at x is equal to L we have this kind of a thing. 

Now, this should be pretty straightforward because we know from the last equations that 

pressure 1 is equal to pressure at the point 2 and volume velocity at the point 1 is equal to 

the volume velocity at point 2. So, this is straightaway putting the argument of the 

complex of exponential to be 0. So, we get this now at x is equal to L it is the matter of 

just actually using the length of the chamber. 

So, we substitute that to get A2 into A2 exponential e- j k0t L+ B2 into e to the power jk0 L 

and so on for the acoustic pressure. So, basically we tend to use this thing for the 

acoustic pressure and the below expression for the volume velocity at the section 3.  

𝑝௫ୀ = 𝐴ଶ + 𝐴ଶ 



𝑉෨௫ୀ =
𝐴ଶ − 𝐴ଶ

𝑌ଶ
 

So, what happens now is that this is something that we are aware of, we are aware of 

these things and we now introduce because the to simplify the algebra. Let us introduce 

the convention that complex exponential that is Euler’s formula. 

𝑒ఏ = 𝐶 + 𝑗𝑆 = 𝑐𝑜𝑠𝜃 + 𝑗𝑠𝑖𝑛𝜃 

𝑝௫ୀ   =   𝐴ଶ𝑒ିబ + 𝐵ଶ𝑒బ 

People who have some background in engineering mathematics would immediately 

recognize this is the Euler’s formula. So, very convenient to write cosine and sine 

functions together. So, here we have p acoustic pressure at section x is equal to L is 

given by this relation. So, now, we simplify we kind of expand using the Euler formula.  

= 𝐴ଶ (𝐶 − 𝑗𝑠) + 𝐵ଶ(𝐶 + 𝑗𝑠) 

= 𝐶 (𝐴ଶ + 𝐵ଶ) − 𝑗𝑠 (𝐴ଶ + 𝐵ଶ) 

Now, what we do is regroup the terms. So, basically what happens is that your this thing 

is the pressure and we immediately recognize that this would be the velocity thing.  

𝑝௫ୀ = 𝐶𝑝௫ୀ − 𝑗𝑠 𝑌ଶ 𝑣௫ୀ 

𝑣௫ୀ =
1

𝑌ଶ
(𝐴ଶ𝑒ିబ − 𝐵ଶ𝑒బ) 

𝑣௫ୀ𝑌ଶ =  𝐴ଶ(𝐶 − 𝑗𝑠) − 𝐵ଶ(𝐶 + 𝑗𝑠) 

= 𝐶(𝐴ଶ − 𝐵ଶ) − 𝑗𝑠 (𝐴ଶ +  𝐵ଶ) 

So, what happens is pressure at the section x. So, in place of that we are using this thing 

here. And we using this part here. So, once we do that we immediately recognize that p 

acoustic pressure within the chamber right at x = L section, is cosine times the acoustic 

pressure  

𝑣௫ୀ𝑌ଶ =  𝐶𝑌ଶ𝑣௫ୀ − 𝑗𝑠𝑝௫ୀ 



Now volume velocity similarly can be expressed as 1 by Y2 times A2 into complex 

exponential minus B2 times another complex exponential. As usual we go about 

multiplying just to simplify terms we multiply both sides by Y2 and expand the Euler 

formula expand these terms using Euler formula. 

And once we do that we will rearrange the terms A2 into j times sin k0L. Similarly for the 

terms underlined here and then we regroup the terms A2 - B2 minus j sin k naught L A2 

plus B2 and this is nothing but your pressure at x is equal to 0 and this is nothing but 

velocity at x is equal to 0. So, we get another relation this one and this one.  

𝑣௫ୀ −  𝐶𝑣௫ୀ −
−𝑗𝑠

𝑌ଶ
 𝑝௫ୀ 

൜
𝑝௫ୀ

𝑣௫ୀ
ൠ = 

𝐶 −𝑗𝑠𝑌ଶ

−𝑗𝑠

𝑌ଶ
𝐶



ଶ×ଶ

 ൜
𝑝௫ୀ

𝑣௫ୀ
ൠ 

𝑌ଶ =
𝐶

𝑆
 

So, now we can clearly very easily write that in the matrix form, but hang on just before 

that what we will probably do is, obviously divide both sides by Y2 and so, in the end we 

will get something like volume velocity at x = L is equal to cosine times volume velocity 

at x is equal to 0 minus j sin k0 L divide by Y2 into acoustic pressure at x = 0. 

Where obviously, Y2 is your characteristic impedance of the chamber which is given by 

C0 times the cross sectional area of the chamber. So, when you write this entire thing in a 

compact nice 2 by 2 matrix form, what are we going to get? 

We are going to get a 2 cross 2 matrix pressure, but hang on we are able to relate in a 

matrix form pressure at the section x is equal to L with the pressure and volume velocity 

at x = 0. That is this is the D downstream, down stream variable this is the upstream 

variable, upstream variable. 

So, once we do that what we are going to get is basically relation between this point and 

this point, this point and this point. So, now, what we would transfer matrix means 

something like if you recall our last lectures we would be trying to relate the upstream 

variable to the downstream variable that is.  



The variables at the point x is equal to 2 or point 2 or x is equal to 0 to the variables that 

x is equal to L right now it is just the inverse. So, let us focus on how do we go about 

doing that we just need to the idea is fairly simple, we just need to take the matrix 

inverse that is let say this is the matrix say T 1. 

൜
𝑝௫ୀ

𝑣௫ୀ
ൠ = 

𝐶 𝑗𝑠𝑌ଶ

𝑗𝑠

𝑌ଶ
𝐶



ଶ×ଶ

 ൜
𝑝௫ୀ

𝑣௫ୀ
ൠ, 

 𝐶 = 𝑐𝑜𝑠𝑘𝐿,              𝑌ଶ =
బ

ௌ
 

𝑆 = 𝑠𝑖𝑛𝑘𝐿, 

So, if you just invert the matrix that is   

[𝑇] = [𝑇ଵ]ିଵ 

So, we will get this form we can actually multiply this matrix the one underline with the 

matrix somewhere here and you see that we will get an identity matrix its fairly simple to 

see. So, I am not going to derive it here this is left as an exercise for the students here, 

basically the idea is that try to invert this matrix. So, when you invert this matrix 

whatever matrix you are getting is shown here. 

Now, the upstream variables, upstream variables and downstream variables are related 

by a nice clean transfer matrix which is your this thing. So, this is nothing, but let me 

simplify things for you or make it more clear. 

This is cos so is this and yourj into sin of k0 L by Y2 j into sin of k0 L by Y2. So, well we 

have our 2 cross 2 matrix which relates upstream variables to the downstream variables. 

So, we will see this is the probably one of the very important fundamental results in 

muffler acoustics and we probably had to wait till the last lecture of week 4 to arrive at 

this. 

But this was all we kind of building momentum, building enough background to arrive at 

this fundamental result. So, you can pause the screen reflect and have a look at this 

transfer matrix in a perhaps in a more with a much more attention, there are lots of 

properties what can be revealed just by looking at this like. I will probably not be 



discussing all those things, but probably something about conservative system reciprocal 

systems and symmetric systems and those details are there lot of things can be done. 

Determinant one thing one couple of things that I would like to point out determinant of 

such a transfer matrix is always unity, that is determinant of T is unity read more about 

what does it mean in terms of energy conservation or reciprocity of the stuff. So, since 

there is one more thing that because the element is really symmetric. 

We have a uniform tube like this we are relating 1 to 2 or whatever terminology you are 

using. So, if we were to invert the matrix like we have seen here apart from the 

difference in the minus sign everything else is the same. And actually by changing the 

sin conventions of mass velocity, we can actually see that the inverse would be the same 

as the T matrix. So, that is characteristics of the fact that this is a it is a uniform tube. So, 

if you even if you reverse the element the transfer matrix would be the same 

Probably later in the course we will come up with a thing like impedance matrix not 

now, but later on when we dealing with the network analysis and then again try to 

correlate this, but for now let us would be the transfer matrix. Now, that we have derived 

the transfer matrix for uniform tube. Now this is valid whether it is a chamber of 

diameter capital d naught big diameter or a small diameter as long as plane wave 

propagation is there. 

 

So, this transfer matrix is there. So, what is the limit if you recall the lectures from week 

2 what for a duct of radius R0 or diameter D0 the cut on frequency for the 1 0 mode 1 0. 

You know if you recall our discussion this was the plane wave mode, this was the first 



circumferential mode and so on. Then this was the first radial mode second radial mode 

and so on. So, like this there will be a cross mode plus minus, minus plus and so on. 

So, we are talking here about the cut on frequency of this mode that is a lowest first 

higher order mode to propagate. This is the, this is the planar wave mode always 

propagates for a rigid duct, this is the cut on frequency of the first higher order mode also 

known as the 1 0 mode.  

The lectures from week 2 the reason that I am telling you is this because if the frequency  

2𝜋𝑓

𝐶
=

1.8412

𝑅
 

𝑓 =
𝐶 × 1.8412

𝜋𝐷
 

𝑓 =
𝐶

𝐷
 ൬

1.8412

𝐷
൰ 

So, I guess we discussed this briefly, but it is probably worthwhile to mention this thing 

again here it is probably,  

𝑓 ≃ 0.5861
𝐶

𝐷
 

𝑓 ≤ 0.5861
𝐶

𝐷
 

So, point I am trying to make is that this transfer matrix is the valid one if you are well 

within or probably less than the frequency gained by this thing because at the such 

frequency is only the planar waves that propagate. So, this cut on frequency obviously, 

will change for an elliptical duct. 

Something that we again discussed long time back and for a rectangular duct it will be a 

different expression, but so the idea is find out the propagation frequencies of the lowest 

order mode. And then check if you are above or below that frequency if you are below 

then the transfer matrix for uniform tube will apply. 



Now quickly getting back to our, I guess we digressed quite a bit, but that was important. 

We will use this thing this matrix here along with what we saw probably in the slide here 

and gradually kind of multiply. 

So, the thing is that we can comfortably now see that if you are considering the muffler 

system like what we discussed in slide number this one. So, we know relation between 1 

and 2,2 and 3 is was just derived that transfer matrix 3 and 4 we know. So, we can relate 

what happens to 1 and 4 ok.  

൜
𝑝ଵ

𝑣ଵ
ൠ = [𝐼] ൜

𝑝ଶ

𝑣ଶ
ൠ    ൜

𝑝ଷ

𝑣ଷ
ൠ = [𝐼] ൜

𝑝ସ

𝑣ସ
ൠ   

൜
𝑝ଶ

𝑣ଶ
ൠ = 

𝐶 𝑗𝑠𝑌
𝑗𝑠

𝑌
𝐶

൩ ൜
𝑝ଷ

𝑣ଷ
ൠ      𝐼 = ቂ

1 0
0 1

ቃ
ଶ×ଶ

 

So, once we do that, So, now, it is just a matter of sequentially multiplying the elements.

  

 

So, let me write it down like this p1. So, identity matrix times this thing is just matrix and 

again this matrix times identity matrix  

൜
𝑝ଵ

𝑣ଵ
ൠ = 

𝑐𝑜𝑠𝑘𝐿 𝑗𝑠𝑖𝑛𝑘𝐿 𝑌ଶ

𝑗

𝑌ଶ
𝑠𝑖𝑛𝑘𝐿 𝑐𝑜𝑠𝑘𝐿

 ൜
𝑝ସ

𝑣ସ
ൠ      

So, we get finally, when we have such a muffler. So, pay attention to the fact that the 

point 1 is just in this pipe outside the chamber and point 4 is just outside the chamber in 

the outlet pipe. 

So, we know all those things and now what do we do? We would basically want to 

basically relate further relate the incident wave variables at the inlet port to the thing that 

was transmitted remember we have an anechoic termination. So, we know it is A1 here 



and we know it is A4 here or what was it? I guess it was probably let me just recall was it 

A3 or just the point was 4.  

So, A4, but it is A3 the point obviously is 4 but it is A3. So, what we would probably be 

doing is that let me just go back and verify my algebraic simplifications and now what 

we would probably be doing is that  

  𝑝ଵ = 𝐴ଵ + 𝐵ଵ

𝑌ଵ𝑣ଵ = 𝐴 − 𝐵ଵ
ฬ

య

 
𝑝ସ = 𝐴ଷ

𝑣ସ = 𝐴ଷ
 

 Let us assume the diameter of inlet and outlet ports are the same. So, we will put those 

things in here and proceed further.  

ቐ
𝐴ଵ + 𝐵ଵ

భିభ

భ

ቑ = 

𝐶 𝑗𝑆 𝑌ଶ

𝑗𝑆

𝑌ଶ
𝐶

 ቐ
𝐴ଷ
య

భ

ቑ 

𝐴ଵ + 𝐵ଵ = 𝐶𝐴ଷ + 𝑗𝑆𝑌ଶ

𝐴ଷ

𝑌ଷ
 

𝐴ଵ − 𝐵ଵ =
𝑗𝑆

𝑌ଶ
𝑌ଵ𝐴ଷ + 𝐶𝑌ଵ

𝐴ଷ

𝑌ଷ
 

This is what we are going to get assuming anechoic termination. Of course, now things 

should be relatively much more simple. So, A1 plus B1 let us expand this thing let us 

consider the first equation of the matrix thing. 

𝐴ଵ − 𝐵ଵ =
𝑗𝑆

𝑌ଶ
𝑌ଵ𝐴ଷ + 𝐶𝐴ଵ 

And. So, I will rather not write this term and just bother with writing A3 ok. 

Now, I guess you guys should be able to figure out just adding these two equations, that 

is your equation star and double star. So, if we add these two equations what will we get 

2 A1 is equal to we will take A3 common throughout, throughout. So, let me write this A3 

somewhere here assuming that we needs that much space. we will get contribution from 

cos k0 again here. 



                  2𝐴ଵ = ቐ

2𝑐𝑜𝑠𝑘𝐿   

            +𝑗𝑠𝑖𝑛𝑘𝐿 
𝑌ଶ

𝑌ଵ

     

                                                                    + 𝑗𝑠𝑖𝑛𝑘𝐿 
𝑌ଵ

𝑌ଶ
ൠ 𝐴ଷ 

𝐴ଵ

𝐴ଷ
= ൜𝑐𝑜𝑠𝑘𝐿 +

1

2
𝑗𝑠𝑖𝑛𝑘𝐿 ൬

𝑌ଶ

𝑌ଵ
+

𝑌ଵ

𝑌ଶ
൰ൠ 

𝑌ଶ

𝑌ଵ
=

𝑆ଵ

𝑆ଶ
=

1

𝑀
 𝑌ଵ =

𝐶

𝑆ଶ
, 𝑌ଵ

𝐶

𝑆ଵ
  

𝑌ଵ

𝑌ଶ
= 𝑀 

So, we get this form. So, now, let us see what happens after this we need to worry about 

that as well we need to worry about that.  

𝑇𝐿 = 10 𝑙𝑜𝑔ଵ ฬ
𝐴

𝐴௪௩
ฬ

ଶ

 

= 20 𝑙𝑜𝑔ଵ ฬ𝑐𝑜𝑠𝑘𝐿 +
𝑗𝑠𝑖𝑛𝑘𝐿

2
൬

1

𝑀
+ 𝑀൰ฬ 

𝑎 + 𝑗𝑏 

𝑐𝑜𝑠ଶ𝑘𝐿 +
𝑠𝑖𝑛𝑘𝐿

4
൬𝑀 +

1

𝑀
൰

ଶ

 

𝑎ଶ + 𝑏ଶ 

Now, transmission loss if you recall was defined as 20 log 10 by A1 incident wave by 

transmitted wave, is not it?  

So, it will pretty much convenient to write it like this. So, then it will be Y2 by Y1 we just 

derived its 1 / m + m, we get this and it will be like this. So, we could possibly simplify 

the terms and probably worry about that. So, let us do the simplification now we need to 

simplify this thing. So, we immediately recognize that like well this is of the form,  

𝑍 = 𝑎 + 𝑗𝑏      

 |𝑍| =  ඥ𝑎ଶ + 𝑏ଶ 



So, that is what we are going to get. Now they are clearly of the form a square plus b 

square.  

1 − 𝑠𝑖𝑛ଶ𝑘𝐿 +  
𝑠𝑖𝑛ଶ𝑘𝐿

4
 ൬𝑀 +

1

𝑀
൰

ଶ

 

1 + 𝑠𝑖𝑛ଶ𝑘𝐿 ൜
1

4
 ൬𝑀ଶ +

1

𝑀ଶ
൰ +

2

4
− 1ൠ 

1 + 𝑠𝑖𝑛ଶ𝑘𝐿 ൜
1

4
 ൬𝑀ଶ +

1

𝑀ଶ
൰ −

1

2 × 2
ൠ 

Now, it is the simple fairly straightaway straightforward algebraic trigonometric 

simplification is one we expressed cos in terms of sin and you know rearrange the terms 

sin k naught square L is taken common. 

This term is there and so what we do basically expand this thing out m square plus 1 by 

m square 1 by 4 factors always there and 1 by 4 into 2 by 4 and minus m is there. So, 

what happens this is now is that this is further a simplified half minus 1 that is minus 

half. So, once you multiply this by 2 and 2. 

1 + 𝑠𝑖𝑛ଶ𝑘𝐿 ൜
1

4
 ൬𝑀ଶ +

1

𝑀ଶ
൰ −

1

4
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 1 + 𝑠𝑖𝑛ଶ𝑘𝐿 ቄ 𝑀ଶ +
ଵ

ெమ − 2𝑀
ଵ

ெ
ቅ 

So, what we get is basically 4, so 2 times 4.  

So, we take we get the following m minus 1 by m whole square we get this. So, then the 

transmission loss can be written very conveniently in terms of the following expression  

= 1 + 𝑠𝑖𝑛ଶ𝑘𝐿  ൬𝑀 =
1

𝑀
൰

ଶ

 

Remember, 

𝑇𝐿 = 10𝑙𝑜𝑔ଵ  ቊ1 +
1

4
 ൬𝑀 −

1

𝑀ଶ
൰

ଶ

𝑠𝑖𝑛ଶ𝑘𝐿ቋ 



 So, this is the finally, the much co

this lecture 5 of week 4. It i

we will worry about the consequences of

the next lecture, that is week 

= 20

Fairly detailed, we can probably like to do a fairly detailed analysis of how the 

transmission loss varies with frequency

just as a teaser for a result just to keep your 

axis or non dimensional frequency axis non dimensional with respect to the length

and this is your transmission loss

𝑇𝐿 10

So, you will get domes at frequency 

that is expansion chamber ratio

the maximum or the transmission loss happens 

will see all these later, stay tune

Thanks a lot. 

𝑇𝐿 = 10 𝑙𝑜𝑔ଵ ฬ
𝐴

𝐴௪௩
ฬ

ଶ

 

the much coveted expression that we aim for at the beginning of 

is a, it is a nice beautiful compact relationship and

the consequences of or probably the implications of this relation in 

that is week 5, lecture 1. 

20 𝑙𝑜𝑔ଵ ฬ𝑐𝑜𝑠𝑘𝐿 +
𝑗𝑠𝑖𝑛𝑘𝐿

2
൬

1

𝑀
+ 𝑀൰ฬ

ଶ

 

𝑐𝑜𝑠ଶ𝑘𝐿 +  
𝑠𝑖𝑛𝑘𝐿

4
 ൬𝑀 +

1

𝑀
൰

ଶ

 

we can probably like to do a fairly detailed analysis of how the 

transmission loss varies with frequency for a simple expansion chamber. So, 

just as a teaser for a result just to keep your curiosity alive. So, if this is the

n dimensional frequency axis non dimensional with respect to the length

and this is your transmission loss. 

= 1 + 𝑠𝑖𝑛ଶ𝑘𝐿 ൬𝑀 −
1

𝑀
൰

ଶ

 

10 𝑙𝑜𝑔ଵ  ቊ1 +
1

4
 ൬𝑀 −

1

𝑀
൰

ଶ

𝑠𝑖𝑛ଶ𝑘𝐿ቋ 

you will get domes at frequency attenuation domes and how does this vary with

ratio. And what are the frequencies at which this your crest or 

the maximum or the transmission loss happens and where does your trough 

tay tuned. 

expression that we aim for at the beginning of 

s a nice beautiful compact relationship and probably, 

probably the implications of this relation in 

we can probably like to do a fairly detailed analysis of how the 

. So, basically 

the frequency 

n dimensional frequency axis non dimensional with respect to the length L k0 L 

 

domes and how does this vary with m, 

t which this your crest or 

 happens? We 


