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Lecture - 09

Good morning students, welcome to the course on Foundations of Cognitive Robotics. In
the last class, | have told you about the mathematical modeling of a neuron, | told you that
how with the help of the classical Hodgkin-Huxley model we can actually mathematically

model the action potential of a neuron.

Now, today we will go beyond this, today we will talk about how we can have some of the
most recent theories to explain these kind of you know propagation of action potential. So,

let us look into that what will be the outline of today’s lecture.
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Today, we are first going to talk about the Hodgkin-Huxley model summary. So, that you
can summarize and then we will talk about that, what are the properties which is still
unexplained by the Hodgkin-Huxley model and then we will talk about the development

of a new model.

We will then talk about the wave equations the development of solitons and the

significance of the bilipid layer membrane, piezoelectric modeling and a co-propagation



model. So, these are the things that we will discuss today. So, first of all let us try to

summarize the Huxley-Hodgkin’s model.
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HH Model in a nutshell

Key equations:
1. Membrane Current Equation
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The HH model in a nutshell it starts with some of the key equations, the first equation that
| told you is that is the membrane current equation. So, here the neurons are considered as
you know kind of an assembly of capacitors and resistors. So, in that neuronal circuit and

also the cell itself as a kind of a source of potential or a battery.

So, the neuronal current which is actually the membrane current is I,,,(t) and Cn is the
membrane capacitance and 1}, is the membrane voltage. Now, gy, is the conductance with
respect to sodium channel, gy is the conductance with respect to potassium channel and

g, takes care of the leakage current which is mainly with chloride and other ion channels.

av,
Im(t) = Cm d_;n + gNa(Vm - ENa) + gK(Vm - EK) + gL(Vm - EL)

Ina = Ina,m>h,
Ik = 91(0"4

So, one thing we have to keep in our mind here that we are representing the resistance in
terms of conductance g which is actually 1 over the R. So, it is the reciprocal of the

resistance that we have to keep in our mind, ok.



So, just like we write say for example, when in terms of current if we have to write then it
will help us, because we write usually current as what? Current we write as V/R and in
this case we will write it the current as what we will write it as gxV conductance times the

voltage. So, that is the difference that we have to keep in our mind.

And of course, the other part of the current that is related to the capacitor that is remaining
the same, because it is in relation to the capacitance and that is C dV/dt. Now, the other
important thing that | had discussed in the last class is that, this conductance like the
conductance of sodium, conductance of potassium, it is found experimentally by Huxley-
Hodgkin’s is that they actually vary with respect to certain gate opening and they found
out that there are essentially three types of gates, for sodium it is three types of m gate and

one type of h gate.

So, three m type of three type of m and one h gate; this actually controls the conductance
and for potassium this is actually four types of n gates which actually control the

conductance of the potassium.

Now, if there are three of the m gates and if each one of them is having a probability of m,
then it will be (m x m x m) which is the m®h, that is the probability of opening up of the

gates permitting the current to flow.

And similarly, in since there are four types of n gates. So, it is n into n into n into n. So, it
is n*. So, that is what is the gna and gk. Now, m, h, n these are having their own rate

constant.
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HH Model contd.

Stage 2: Gate Kinetics
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So, they have a simple kinetics which will be covered in the second equation, that is the
gate kinetics equation in which we will be talking about dm dt, that is the rate of change
of this gate type m, then dn/dt and dh/dt.

dm

dt = a,, (VA —m) — B (V)m,

Now, I told you also earlier that this depends on two things, one is what one for let us say
for the first gate kinetics for the opening up of the m type of gates it will depend on

a,Which is of course, intrinsically a function of the voltage itself.

So, it is a,,, where a,, will be the typical rate constant corresponding to m and (1 — m).
So, (1 —m) is the probability that this n gates will be opened and then the opposite

probability that it will be closed will be related to 8,,,(V)m, where S, also is intrinsically
a function of V.

dh
—= a1 = 1) = ok

dn

E =a,(VN(A —n)—-,(V)n



So, similarly there for n gate you need «,,, 5,, and similarly for the h gate you need ay, Sy,
which means in order to solve these you need to have the six sets of coefficients. So, these

are three pairs.

So, you need these six constants and these six constants are actually experimentally
determined. So, this is something we have to keep in our mind.
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HH Model in a nutshell

Key equations:
1. Membrane Current Equation
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So, once we know these six constants, then we can go back to this equation and we can
find out that what is gna, because then we know gna is 0; m h we can find out and similarly,
we can find out gk and we can put it back to this equation in order to get the membrane
current. So, this is first of all the electrical part of the equation.
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HH Model: Cable Equation

Following Cable Equation for Action Potential for
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If we now look into the HH model cable equation, then you can see here that in the cable
equation we can actually keep the special variation of the membrane voltage. So, we can
equate the special rate of change of the special variation of the membrane voltage with the
membrane current by using the cable equation.

02V, 2R,

ax2  a ™

So, essentially what this cable equation does is that, let us say we have a soma and which
has some dendrites let us say and that is the soma and from that soma let us say we have

the action. So, let us say this is the action going and which will be ending to some synapse.

Now, this action is essentially modeled like a cable and the radius of this cable. So,
essentially this part it is this part which is modeled like a cable of some radius a. So, this
is the cable. So, let us see this is the cable and the radius of the cable is modeled as a, that
is one thing and the other thing here is this internal resistance. So, this internal resistance
is the resistance inside this cytoplasm of these axon.

0%V 2R; (CrdVp,
ax2  a

dt + gNa(Vm - ENa) + gk(Vm - Ek))

So, this internal resistance let us say that is denoted as R;. So, if the internal resistance is
Ri and these cable radius is a, then the cable equation which essentially considers that there



is this continuous membrane which is continuously between different points of nodes of
ranvier, this can be actually segmented in terms of what you call a kind of a electronic

systems.

So, in terms of let us say some voltage and this resistance and the capacitance of the i
cell. So, then if any one of this this system can be modeled separately and then you know
if you actually get the differential of it, then you will be coming to this particular equation

which will equate between the membrane current and the voltage of the membrane.

Now, membrane current already we know that the membrane current itself can be written
in terms of the current across the capacitance and then the across the sodium channels and

across the potassium channels.

The leakage part is not considered it is just neglected here, but you can improve that. So,
this is what you know if you substitute the I from the earlier relationship; that means, that

we have done in equation 1.
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HH Model in a nutshell
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So, if you substitute it, here you are going to get this complete relationship which is giving
you the relationship between the special rate of change of the voltage membrane voltage
with respect to the temporal rate of change of the membrane voltage.



So, the special versus temporal, but yet you can see here that, we still have the spatial
variable and the temporal variable here. Ideally speaking, we would actually like to get

equation which will be completely in terms of the temporal variable.
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Now, that can be done of course, so that is what we will be talking about in the next
equation where we talk about the unified action for the action potential and here what we
do is that, we acknowledge the fact that the pulse is the action pulse can be actually

modeled in terms of a wave equation.

So, essentially if you remember that the action pulse if we try to model it is something like
this that there is this time t and then there is this membrane voltage which will be basically
starting say for example, from a negative state across the threshold go to a peak and then

it will again come down come down and then it goes back.

So, that is something like this and this is the part which you remember is the depolarization

part that is the depolarization part of it.

And, this is the part which is the repolarization part; that is the repolarization | am just
abbreviating it as RP and this is the part which is the hyperpolarization part of it right. So,
this kind of a signal now if you look at the action, so let us say this is what is my action

which is model like a cable and then, this action at different points if you look at it you



will see that this signal is actually the nature of the signal and also the amplitude is

remaining the same.

So, there are these loads of engaging between, which actually contain set of the intensity
losses, but this is how it happens and this is the way the signal will propagate and the

velocity of this wave velocity is what is theta here, ok.

So, then you know you can actually correlate between the voltage variation with respect

to type and the voltage variation V is special variation of the voltage.

So, once we have this relationship all we need to do is to replace the left side as where it

0%V,
dx2

was by 1/ 62 a;%. So, this part of it and also from the left hand side of the earlier

equation we have just taken that 2 R; by a, and we brought it in the left hand side.

0%V _ 0%V
ot2 0x?

a (0%, dv,
= o (2) + IwalVn = Ena) + gk CUhn = Ei)

2R;62% \ 0t? dt
. a [(0%Vy . . . AV
So, it becomes T ( o2 ) which equals to these current part of it that is C,, (F) then

the conductance related that sodium and the potassium current.

So, this is what you will get the final cable equation, by solving this as you can see now
that this equation, it has been possible to bring everything with respect to the time domain

variation.

Of course, it is a non-linear equation because the gna itself depends on m and m itself has
a rate dependence etcetera, but you can still get the entire equation with respect to the
temporal variation and that is a good point. So, it is easier to solve this kind of equation in

order to get the action potential of the system.
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Properties unexplained by H-H Model

* Why nerves display thickness and length variations
under the influence of the action potential?

* Why the action potential can be excited by a
mechanical stimulus?

* Why during the first phase of the nerve pulse, heat is
released from the membrane, while it is reabsorbed
during the second phase

* It seems as if the mechanical and the heat
signatures rather indicate that the nerve pulse is an
adiabatic and reversible phenomenon such as the
propagation of a mechanical wave.

We now we will talk about the properties, which are actually unexplained by the HH
model. For example, we know that as the action potential actually crosses the action, there
is a change in the thickness and in the change in the length variation; in the length variation,
under the influence of the action potential.

Also, we know that the mechanical stimulus can actually actuate the action potential, how

whereas, the electrical model cannot explain that.

Also, during the first phase of the nerve pulse, heat is released from the membrane and it
is reabsorbed during the second phase. Now, if these entire you know neuronal system is
like a resistor then it will only dissipate the energy it will not you know release the heat
and reabsorb it just like an adiabatic and reversible phenomena. So, that is something that

also is not possible.

So, these are the some of the important things, which are not explained by the HH model

and hence this drives us to think of a better model towards explaining these facts as well.
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Development of a new model

Consider the well-known Euler wave equation for area density Ap” as:

a? a a
{ApA :—(L'Z—A A\
972 F daz 2z )
However, close to the melting transition, the velocity of sound, ¢ is not
constant and it may be written as follows (‘p’, ‘q" are material parameters).
Also, considering dispersion of sound wave into account.

c? = c§ + pApt + q(Bp*)? + -
92 b E] a*
—A:_ "2 AA AA2 —A"—h—AA
2P =5 (c§ + pAp® + q(Bp”)° + )0z P PPl
Here,

Ap”= change in lateral density of the membrane
p? = lateral density of the membrane
co=velocity of small-amplitude sound

Now, when we will talk about the development of a new model consider first of all that it
is based on the wave equation, because we already know that the wave equation is there

in place.

However, in this case the wave velocity is ¢ that is fine, and the x that we had earlier
discussed is actually z here. So, z or X they are similar. So, this is the longitudinal direction
of the action that we are talking about; so that is what, is the z direction. Please keep in

mind just the symbols vary, but that part is the same.

Whereas, now these variation actually depends on something called Ap4 and what is this
Ap4? That is the change in the lateral density of the membrane. This is something that is
experimentally observed, that the membrane density that is if you consider that the neuron

itself is like a membrane there are this that is the up some thickness, ok.

And, then 1 also told you that this membrane changes in the thickness direction as the
action wave propagate. Now, let us say that that change is creating a change in terms of

the variation of the area density and that variation of area density is Ap4, then the wave
2

equation I can write in a different way here now as %Apf‘ and that is if provided if this

¢ does not vary, of course it varies along the length because of some other chemical

changes inside the system, but it is essentially c? %Apf‘.



02 d d
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So, you look at it carefully that in the last an expression, what was it? It was with respect
to the membrane voltage right. So, the last equation was the wave equation was with

respect to the membrane voltage.

Now, we say no, we are going to go to something more fundamental and we are going to
look into it in terms of the membrane you know change of the area density of the membrane
and in terms of that we are defining the wave equation that is the change a we have to keep

in our mind.
¢ =c§ +pAp? + q(Ap*)* + -

a_zAPA -2 (C2+pApA+q(ApA)2+--~)iApA —ha—4ApA
dt? az\ 0z dz*
Secondly, in the last equation we said that 8 is not varying with respect to the length, but

now we are telling no, this c is actually varying with respect to z, it is not constant.

In fact, the c itself has a kind of a dispersion relationship; that means, ¢? is something like
cé + it so, it is a; it varies with the density and some constant of it and it is a non-linear

variation with respect to the area density.

So, if I put our model like this, then I can actually put this expression of ¢ in this entire
thing. So, we get this final model and what we will see is that, in this final model because
of the dispersion we will get an additional dispersion term here.

This is very very important ok, that is we get in addition to that the c is variation because
of the dispersion we get an extra variation here and this extra variation will be very

important we will look into it so.

(Refer Slide Time: 21:24)



Development of a new model

Non-dimensionalisation of the wave equation:
Ap? ¢ s P s
u=—, x=—oz, t=—=1, B, =—3p, Bz=—.‘fq
s h vh cz cz
Here, p(,‘ =equilibrium lateral density of the membrane in the fluid phase

p and g are the parameters determined from density dependence of the
sound velocity. These two constants parameterize the experimental shape
of the melting transition of the membrane

h is a parameter describing the frequency dependence of the speed of
sound, that is, the dispersion

*u) 9 B du 0*u
3z~ ax B3 ox*
B(u) = 1+ Byu + Bu?

C, is approximately 176.6m/s

Now, certain non-dimensionalization let us do for the model; which means, that for the
you know Ap# we can actually with respect to the equilibrium lateral density, let us have

a variable u.

2 2

Ap*? Co c6 Po I
u=——,x=—z,t=—1,B;=—=p B, =—
ot TR TR T g T g

Then, let us have x as a non-dimensional variable now, with respect to this thickness and
then let us have the time itself as another non-dimensional variable and we have these two
constants B 1 and B 2. So, this is the thing that will require to non-dimensionalize the last

equation.

So, if 1 do that and here, the h is a parameter which describes the frequency dependence of
the speed of sound ok. So, if I do that we are going to get that last equation in a much more

neat and clean form, which is that the non-dimensional variation of area density is now u.

2
So, that is ZTZ will be aa_x of these velocity itself is with respect to a new non-dimensional

quantity B.

ou d*u
Jdx O0x*

’u 0
7 = o PW)

B(u) = 1+ B;u + B,u?



So, it is like %(B(u))‘;—z and then that h factor is accommodated here in we get this

4
relationship the dispersion part of is as — ZTZ and the B(u) you can take up to two terms as

1+ B;u + Byu?. So, this is how we can actually get this whole expression in a non-

dimensionalized mode.
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Development of a new model

Modified equation considering the propagation of density pulse:

Consider the propagation of the density pulse ‘u’ with a constant velocity.
We can use a coordinate transformation { =x — B t, where f is the
dimensionless propagation of velocity which gives us the modified equation
as:
2 ﬂ = .0_ (B (_)E) g5 &
ez~ 2t \BW57)C 55

The analytical solution of the density propagation equation becomes:

© 2a.a._
u(é) = —
(ay +a.) + (ay —a)cosh(é{1 - p?)

B2 — B2
fi(/%> p<ipi<1
0

The value of non-dimensional velocity, 8 generally lies between 0.6 to 1.

Now, if | get this whole expression in a non-dimensionalized mode the only thing now is
that, we can actually you know apply another parameterization in terms of the density
pulse we can use a coordinate transformation now and we can put a new coordinate ¢ =
x — Bt, where B will be the dimensionless propagation of velocity.

ou _

So, we can get the new equation in terms of not in terms of x, but in terms of 52 257 =

0 ou 0*u L. . . . .

7 (B(u) 5) ~ o which is what is the dispersion part again.

We have to keep in your mind; that this dispersion if it is not there, then the system will
be a conservative system and it will not give you the relationship which is very important

for us in terms of the propagation of the wave.

2a,a_

(ay +a_)+ (a, —a_)cosh(éy1 —B?)

u(§) =



So, the analytical solution of this density propagation if you solve this equation you will
get it, in this u(¢) in terms of two constants-a, one a, and a_where a, and a_ can be

expressed in terms of the B 1 B 2’s 3, fgs.

1 B? — B§
ai:_B_z 1+ 1_—550 Bo < 1Pl <1

So, we will get it and the g itself please keep in mind that it is a non-dimensional velocity,

which generally varies between 0.6 to 1.

Now, we will see something very interesting in terms of the behavior of the 8, we will see
that this solution actually takes us to a very well-known wave solution which is in terms

of solitons.
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The solution to the density propagation
equation gives->

A soliton is a self-reinforcing solitary wave
packet that maintains its shape while it
propagates at a constant velocity.
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These are caused by a cancellation of
nonlinear and dispersive effects in a medium.

Solitons are the solutions of a widespread
class of weakly nonlinear dispersive partial
differential equations describing physical
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systems. lateral position calculated using experimental
parameters for a synthetic membrane. The pulse
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The soliton phenomenon was first described o -
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Well, the solution in that last equation will actually give you what | was just telling you
that is soliton, ok. And, what is the soliton? It is a self-reinforcing solitary wave packet
and which will maintain its shape, remember the action potential maintaining same. While
it propagates at a constant velocity imagine that, this is what is the direction of the, action

potential.



So, there is a soliton that is propagating if that wave equation if we solve that will give us
a soliton and these are caused how by a cancellation of non-linear and dispersive effects

in the medium.

That is why 1 said that the dispersive effect is important because it is going to cancel out
the non-linear part. Now, solitons are the solutions of a wide spread class of weekly non-

linear dispersive PDEs describing the physical system.

As far as in 1834, John Scott Russell observed first a solitary wave in a canal in Scotland.
And, it is only late and you know the researchers like Heimburgs, Jacksons they have
found out that you know in terms of the neuronal voltage such a solution actually matters.

Now, let us look into that, how does a soliton actually behaves?
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Soliton

Generating soliton in real life

% UNIVERSITY of AMC%

TASMANIA Asiaon Markme Cotege

Video

SOLITON WAVES

Scott Forrest: B.Eng (Naval Architecture)
Honours JEE418/419 Thesis

I will take you through a small animation from University of Tasmania and of its Scott
Forrest, | will show you the video which will explain you beautifully that, how does a

soliton propagates? Let us look into the soliton wave.
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Soliton

Generating soliton in real life
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Generating soliton in real life
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Soliton

Generating soliton in real life
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Soliton

Generating soliton in real life
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Generating soliton in real life
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Soliton

Generating soliton in real life
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Generating soliton in real life
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Generating soliton in real life
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Generating soliton in real life
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Soliton

What happens when the Solitons collide:

* It has been shown by Tasaki that Nerve pulses are
blocked upon collision.

* According to HH model, propagation of a nerve
pulse generate a refractory period which is
governed by the relaxation times of the protein
conductance.

* Asimulation of HH model shows the blocking -->

Ref: Revati Appali et. Al, A Comparison of the Hodgkin-Huxley Model and
the Soliton Theory for the Action Potential in Nerves, Advances in Planar
Lipid Bilayers and Liposomes, Volume 16

Now, of course, there is one point that, what happens when two solitons will collide from
the opposite direction? Then, in such a case it actually any you know this there is a

blocking of heat that you can see that as this is what is the before the collision these two

waves are approaching you can see.

This is something that is still is to be actually checked with respect to the normal pulse and

you can see what is happening you know if post collision and that is what is the post

Potential (dimensionless)

0 001 002 003 004 005 006 007
X (dmensionless)

[— Before colision _ —— Post collision

Collision of nerve pulses calculated with
the FitzHugh-Nagumo equations. Two
pulses traveling in opposite directions
are shown before (black) and after the
collision (blue). The pulses are
annihilated-after-the collision.
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collision part of it. So, you cannot see either of the solitons here.

Now, if you use on the other hand a simpler form of collision which is a Hodgkin-Huxley
equation, which is Fitzhugh-Nagumo equation. Then, two pulses traveling in opposite

directions before and after you can see that you may see that the pulses are going to

annihilate after the collision.

Whereas, for these kind of a system this kind of annihilation does not actually happen,

they can actually pass through each other.
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Soliton

However, for a Soliton based propagation there is no annihilation but a repulsion
accompanied by speed dependent noise generation.

Collision of two solitons before (top
- panels) and after collision (bottom
; panels) for two different velocities
¢ - (left and right panels). Left: soliton
t velocity of B = 0.8. Small-amplitude
w @ | T e @ nojse s traveling ahead of the post-

’ collision pulses. This indicates some

asl sl dissipation during the collision.

- . — — | - Right: soliton velocity B =
s | ol [ 0.649850822 (close to maximum
¢ | e e < amplitude).

pe0s s} p=0s4ses1

Ref: B. Lautrup, R. Appali, A.D. Jackson, T. Heimburg, The stability of solitons in bio-membranes and
nerves, Eur. Phys. ). E 34 (6) (2011) 1-9
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So, that is something that is still you know not explainable through the soliton model. So,
you can see that this is what is happening for a soliton that two solitons are approaching
and you can see that after they are collision; they are actually with a lesser much lesser
amplitude, but they are just going back to both the directions.

So, this is something that does not happen in this particular case whereas, in the case of
the you know simpler version of the HH model that is the Hodgkin that is the Fitzhugh-
Nagumo model you can see that there is a complete annihilation that is happening. So, the
point is that these Hodgkin-Huxley model predicts a complete annihilation of two waves

whereas, for soliton collision this does not happening.

Now, in reality; that means, the action you know a potentials in terms of waves if it reflects
back from the synapse, then it will once again pass through without this you know this
proceeding directions the propagation direction of the action wave we and both of them

will come down, but there will be no annihilation.

On the other hand, in the last model we have seen that there will be an annihilation. So,

that disparity is still existing in the system.
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Soliton

Does Soliton model support anesthesia?

¢ It is known that all general anesthetics lowers the melting point of lipid
membrane.

* Reduction of melting point implies increase of required pressure to generate
the density wave (as it only propagates in a liquid crystal phase of the lipid
membrane) .

« In the presence of anesthesia, free energy requirement increases which inhibits
the soliton formation (remember: the soliton formation is possible only within
a range of propagation velocity).

* In fact by increasing the ambient pressure level one-can_restart the nerve
impulse. This is well known from a Tadpole experiment where about 50 bar
pressure allowed the tadpoles to overcome the effect of ethanol-based
anesthesia. -

* The soliton model provides a mechanism for general anesthesig.

Does soliton model support anesthesia? Well, that is another point that, it is known that
well known that general anesthetics actually lowers the melting point of the lipid

membrane and you know that the neuronal membranes are actually of lipid membrane.

So, reduction of melting point because of these drugs or anesthetics; that means, that there
has to be a increase of the required pressure to generate the density wave. And, that means
that, you know these density waves will not be able to get generated so easily. So, in the
presence of anesthesia, the free energy requirement will increase which will inhibit the
soliton formation and that explains that why an anesthesia would work.

In fact, there is an experiment that Heimburg’s group have carried out, where the ambient
pressure level of a of tadpole which is under anesthesia that is increased to about 50 bar
pressure and they found that the effect of anesthesia is overcome and these tadpole is able
to move again. So, thus the soliton model provides a mechanism for general anesthesia

that is something that happens in terms of the soliton model.

Let us now carry out a brief summary between the Hodgkin-Huxley model and the soliton
model and let us try to see that where we are with respect to both the models, as I told you
that both the models are partially successful in explaining something and in not explaining

something. So, which may actually generate further scope of research in this field.
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Brief summary of H-H and Soliton model

In H-H model:

* The action potential is based on the electrical cable theory in which the pulse is the consequence
of voltage- and time-dependent changes of the conductance for sodium and potassium.

+ The model is consistent with quantized ion currents attributed to opening and closing of specific
channel proteins.

* Itis consistent with the channel-blocking effects of several poisons, such as tetrodotoxin.

* The HH model is based on ion currents through resistors (channel proteins) and is therefore of
dissipative nature. i -

* Reversible changes in heat and mechanical changes are not explicitly, addressed, but heat
generation would be expected.

* The HH model generates a refractory period.

In/Soliton.model:

* The nerve pulse is a solitary electromechanical soliton wave coupled to the lipid transition in the
membrane.

* The solitary character is a consequence of the nonlinearity of the elastic constants close to the
melting transition of the lipid membrane and of dispersion.

« It does not contain an explicit role of poisons and protein ion channels.

* However, the theory is consistent with channel-like pore formation in lipid membranes that is
indistinguishable from protein conductance traces

* In agreement with the experiment, the propagating pulse does not dissipate heat because it is
based on adiabatic processes,
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In the HH model, we can see that the action potential is based on the electrical cable theory
in which the pulse is the consequence of voltage and time dependent changes of the

conductance of sodium and potassium.

So, it is purely electrical in nature. The model is consistent with quantized ion currents that
is proved. It is consistent with the channel-blocking effects also of several poisons, such

as tetrodotoxin.

This model is based on ion currents through resistors that is a problem because it is
therefore dissipative in nature. The reversible changes in heat and mechanical changes are
not explicitly addressed, but heat generation would be expected, but why the heat is

reabsorbed that is not explained. And, the model generates a refractory period.

On the other hand for the soliton model, which is a newer model the nerve impulse is
considered to be an outcome of electromechanical soliton wave that is coupled to the lipid

transition in the membrane.

And, the solitary character is considered to be a consequence of the non-linearity of the
elastic constants. It of course, does not contain an explicit role of poison’s and protein ion

channel. So, that is something that is to be checked state.



And, the theory is consistent with channel-like pore formation in lipid membranes that part
is consistent. And, the temperature part and it is it does not dissipate heat, but it actually

shows the whole model as an adiabatic process.

So, that is something that happens of course, it still does not explain, the change in terms

of the thickness for which possibly we need a more refined model.
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Bilayer lipid membranes (BLM)

Are Bilaver lipid membranes (BLM) piezoelectric or electro-active?

* Response of the Neurons to Nerve impulses is generally in the millisecond region
which supports the existence of piezoelectricity.

* However, the ionic motion is more feasible due to the movement of Na and K
ions.

EAPs are broadly classified into two groups —/£lectronic EAP andtonic EAP e B

<

Dielectric EAP lonic Polymer Gels (IPG) 12
//\ 5 Electrostrictive Paper lonic Polymer Metal Composite
J/ " (IPMC) Nafion & Flemion
| 4 2 y
Ferroelectric Polymers Conducting Polymers Ppy, PA \

Liquid Crystal Elastomer Carbon Nanotubes (CNT)
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In order to look into a more refined model, we have to first know that the bilayer lipid
membrane that is you know basically they are in the neuronal walls. So, if you consider
the neuronal wall each wall of this neuronal wall is actually consists of bilayer lipid

membranes.

Now, these bilayer lipid membranes they are known to be piezoelectric in nature. Now,
the ionic motion whether the piezoelectricity is happening due to electro-active polymer
or due to ionic motion that is something we need to still focus on. | have already told you
about the characteristics of electronic EAPs and ionic EAPSs when we have discussed about

this kind of things in terms of active muscles.

So, in electronic EAP like dielectric EAPs, electrostrictive papers, ferroelectric polymers
or liquid crystal elastomers these are all electronic EAPs and they are capable of actually

these kind of motions, but it is slightly slower.



On the other hand ionic EAPs like ionic polymer gels, IPMCs, conductive polymers or
CNTs they are actually faster. So, they are faster and these are slightly slower. So, because
this nerve impulse is happening in the millisecond region so, this is millisecond region.

So, that kind of tells that it could be because of these thing.

So, well, this I need to change. So, this is ionic EAP. So, this part is slower. So, ionic EAPs
are slower and this is faster the electronic EAPs this is faster. So, because of these you
know millisecond region this actually sort of tells us that maybe this phenomenon is
because of the electronic EAPs, which are actually faster in nature. It is also possible that

this kind of a thing is actually happening because of an electro-thermal mechanical system.
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Bilayer lipid membranes (BLM)
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Illustration of the molecular structure of phospholipid L-a-Phosphatidylcholine and of the
piezoelectricity of a lipid bilayer. A tilt of the average molecular orientation (director) with
respect to the layer normal, induced by mechanical shear and/or layer compression,
leads to a SmC* configuration with polarization normal to the tilt (shear) plane.

The experiments claim to verify Piezoelectric nature of the liquid crystal,
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If you consider the bi lipid layer people, have shown through experiments that the lipid
layer can be actually modeled in terms of piezoelectric system. So, then it will be you
know electro thermo mechanical system because any piezoelectric system consists of three
things together. So, there is this piezoelectric effect and there is this pyroelectric effect and

there is the mechanical effect.

So, that is why you know there is the temperature comes in the pyroelectric effect and the
voltage comes in the piezoelectric effect and the mechanical force occur. So, all the three
things together can be actually observed in this type of phospholipid layers. So, that may

actually verify the piezoelectric nature of the liquid crystal.
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Bilayer lipid membranes (BLM)
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The frequency dependence of the induced electric polarization P calculated from the
piezo-current | as P=I/(A -w) , where A~0.6mm? is the area of the electrode and w is the
angular frequency.
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Now, this kind of piezoelectric nature will also show that there is a frequency dependent
and a temperature dependent variation. As you can see here that, the electric polarization
P is actually vary with respect to the frequency of propagation and with respect to

temperature both.
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Bilayer lipid membranes (BLM)

A Bi-layer Lipid System supporting a Potassmm Channel Protein
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Ref: T. Heimburg, Die Physik von Nerven, Phys. J. 8 (2009) 33-39. Note: English
translation: “The physics of nerves”. arXiv:1008.4279v1 [physics.bio-ph]

So, this is something like a bilayer system lipid system with a potassium channel protein
and you can see the lipid layer and you can see the potassium channel proteins. So, this is

something that, these is still to be explained that how this entire dynamics of the movement



of the potassium through the bilayer you know lipid layer happens with the help of the

piezoelectricity.
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Piezoelectricity

Origins of Polarization
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Now, as | told you about the piezoelectricity that the electronic polarization in
piezoelectricity is very fast in terms of the frequency 10'2 hertz, ionic is about 10° hertz,
dipolar is 10° and space charge is even slower 10%hertz or 1000 hertz or in the kilo hertz

level.

So, accordingly the response time is going to be varying the response time will be more
here. So, this will be more here the response time and the response time will be very very

less here.

Now, depending on what type of a polarization is happening in the lipid layer we will be

able to actually say that, what type of polarization is happening in the lipid layer.
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Piezoelectric Modelling

What does Piezoelectric modelling predict?

Consider a Piezoelectric periodic structure with impedance mismatch zones
I

(zone A with Piezo, zone B without Piezo) y
%U(x) ) Bafd, E; A,
e k?U(x)=0;.....i=A,B
A\ Z
Here, U(x)= Longitudinal displacement
k= wave number // 5 / // -
| :
7 S
Ln L A
Insert le—o}a—a] Base material

Ref: O Thor 1}
It ion in

So, if we consider an action to have this kind of you know kind of a patches of piezoelectric
patch then, what will that motion predict? So, here is an equation of motion as you can see
which is different from the earlier two equations that we have seen because, now we have
the longitudinal displacement U(x) the spatial variation of it with respect to the wave
number and we can get the equation and this longitudinal displacement and similarly you
can also get for thickness wise displacements, but these changes are happening because of
the piezoelectricity that is there in the piezoelectric patches.
02U (x)

W+ki2U(x) =0;...i =A,B

So, in every piezoelectric patch you will see this kind of a change that is happening in the

system and that can also generate a kind of a pulse in the system.
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Piezoelectric Modelling

Solution of the wave eguation:

State vector:
. T
Y, = [Us, i N, ]

SU .
T, = TOT® Note Ejj” is complex and
K= hence, the Eigen values of
Cell Transfer Matrix: the Transfer Matrix will be
) sin(k;L;) complex, where the real
TP = cos(kiLi) Zw |..i=AB part  indicates  wave
~zywsin(k;L;) cos(k;L;) attenuation and imaginary
¢ part indicates wave
Impedance: propagation.
20= [(oada + o) Exla + EVAr)

Ref: O Thorp et al. and
Wave Constant: of wave in_rods
=SU with periodic shunted piezoelectric patches,

kg = J(ﬂAAA +ppAp)/(EgAq + Ejj" Ap) {2001) Smart Mater Struct. 10 979
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Y, = [Uy, : Nkr]T

Ty = T T

Sin(kiLi)
Tk(l) cos(kiL) Ziw .i1=AB

—z;w sin(k;L;) cos(k;L;)

25 = [(oata + ppAp) (Exs + B} 4p)

kg = \/(pAAA + ppAp)/(Eada + EijUAP)

So, in order to solve this wave equation, I can actually use a traditional transfer function
matrix. So, where you actually put all the longitudinal displacements in terms of a state
vector and you can develop the transfer function and you can find out the impedance and
the wave constants and you can actually solve this in terms of finding out the wave
propagation of the system.
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Piezoelectric Modelling

Piezoelectric modelling predicts Stop Bands and Propagation:

The plot of Real and Imaginary parts of the Eigenvalue with frequency shows existence of
propagation and stop bands.
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Real part of the propagation constant for varying shunting inductance, it demonstrates
the flexibility in attenuating the propagation of waves over desired frequency bands.

Ref. O Thorp et al and
Smart Materials Structures and Systems of wave in _rods with periodic
. shunted piezoelectric patches, (2001) Smort

Maoter. Struct. 10979

The interesting thing that you will note from these is that, there will be in such a system
invariably certain bands where the wave constants will be actually real in nature whereas,

certain bands where it will be imaginary in nature. So, these are the plot of the real and the
imaginary parts.

Now, real part of the propagation constant actually is telling that there is a kind of a pass
band. So, this is a pass band and this is a pass band. So, there are two pass bands, there is
a very small pass band here.

Whereas, wherever the imaginary constant will come into picture then you may say that
there are these stop bands which will be there. So, the creation of the pass band and the
stop band is actually telling us that, only certain frequencies are allowed through these

channels and certain frequencies are not allowed through these channels.

Now, based on this piezoelectric model and our earlier knowledge there is a new model

which is coming up which is called a co-propagation model.
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Co-propagation model

* Consider a minimal _mechanical model of the axon as an elastic and
dielectric tube filled and surrounded with viscous fluid.

* As the AP (Action Potential) passes, changes in charge separation across
the dielectric membrane alter surface forces that act on the membrane’s
geometry.

* These forces lead to co- propagating displacements, which we call action

waves.
Garfish Olfactory Nerv x,ulnmm Hippo ;m
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I will just very briefly for your reference | will mention this model to you. In the case of a
co-propagation model which is a something like you know an advanced version where the
piezoelectricity is considered, you can see that it is considering a minimal mechanical
model of the action, which has an elastic and a dielectric cube filled with viscous fluid.

And, the action potential as it is passing, it changes the charge separation across the
dielectric membrane, because the thickness change and that is altering the membranes

geometry and that will create the electrical voltage.

So, there is a co-propagation of displacement, because that voltage will again change the
thickness. So, there is a co-propagation of displacement wave along with the electrical
pulse. So, this theory is telling that there will be let us say with respect to time, there will

be a voltage change, there will be a voltage pulse.

So, there will be a voltage pulse and also with respect to time as well as with respect to
you know the direction of propagation there will be something like a displacement change.

So, that also will be happening and they will be actually co-propagating both the models.

So, this is checked with the Garfish Olfactory Nerve, that there is this voltage propagation
and the change in the membrane displacement, both are happening and you can also see
that there is a mechanical heat that is happening and there is a change in the temperature

increase and decrease.



Similarly, the same thing is obtained from Squid Giant Axon, Hippocampal Neuron in all
the cases they see that there is a membrane displacement and that is happening and there

is a lateral displacement that is happening in the system.
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I will now show you a typical simulation where you can see that how this wave can

propagate, imagine this is what, is your action.
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So, you can see first that how this radial propagation of wave is happening it is starting
from one point how it is happening.



And, similarly you can see that how in axial direction also the wave is propagating, this is
where is axially it is propagating. So, thus it is actually possible to propagate the wave

both in the radial and in the axial direction under two different frequency bands.

Now, this is where we will put an end. In the next lecture, we will talk about different types
of you know the ways experimentally how we can actually obtain the electrical signals

from the brain, which is very important from the human robot interaction point of view.

Thank you.



