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Good morning students, welcome to the course on Foundations of Cognitive Robotics. In 

the last class, I have told you about the mathematical modeling of a neuron, I told you that 

how with the help of the classical Hodgkin-Huxley model we can actually mathematically 

model the action potential of a neuron. 

Now, today we will go beyond this, today we will talk about how we can have some of the 

most recent theories to explain these kind of you know propagation of action potential. So, 

let us look into that what will be the outline of today’s lecture. 
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Today, we are first going to talk about the Hodgkin-Huxley model summary. So, that you 

can summarize and then we will talk about that, what are the properties which is still 

unexplained by the Hodgkin-Huxley model and then we will talk about the development 

of a new model. 

We will then talk about the wave equations the development of solitons and the 

significance of the bilipid layer membrane, piezoelectric modeling and a co-propagation 



model. So, these are the things that we will discuss today. So, first of all let us try to 

summarize the Huxley-Hodgkin’s model. 
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The HH model in a nutshell it starts with some of the key equations, the first equation that 

I told you is that is the membrane current equation. So, here the neurons are considered as 

you know kind of an assembly of capacitors and resistors. So, in that neuronal circuit and 

also the cell itself as a kind of a source of potential or a battery.  

So, the neuronal current which is actually the membrane current is 𝐼𝑚(𝑡) and Cm is the 

membrane capacitance and 𝑉𝑚 is the membrane voltage. Now, 𝑔𝑁𝑎 is the conductance with 

respect to sodium channel, 𝑔𝐾 is the conductance with respect to potassium channel and 

𝑔𝐿 takes care of the leakage current which is mainly with chloride and other ion channels. 

𝐼𝑚(𝑡) = 𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
+ 𝑔𝑁𝑎(𝑉𝑚 − 𝐸𝑁𝑎) + 𝑔𝐾(𝑉𝑚 − 𝐸𝐾) + 𝑔𝐿(𝑉𝑚 − 𝐸𝐿) 

𝑔𝑁𝑎 = 𝑔𝑁𝑎0
𝑚3ℎ, 

 𝑔𝐾 = 𝑔𝐾0
𝑛4 

So, one thing we have to keep in our mind here that we are representing the resistance in 

terms of conductance g which is actually 1 over the R. So, it is the reciprocal of the 

resistance that we have to keep in our mind, ok.  



So, just like we write say for example, when in terms of current if we have to write then it 

will help us, because we write usually current as what? Current we write as V/R and in 

this case we will write it the current as what we will write it as gxV conductance times the 

voltage. So, that is the difference that we have to keep in our mind. 

And of course, the other part of the current that is related to the capacitor that is remaining 

the same, because it is in relation to the capacitance and that is Cm dV/dt. Now, the other 

important thing that I had discussed in the last class is that, this conductance like the 

conductance of sodium, conductance of potassium, it is found experimentally by Huxley-

Hodgkin’s is that they actually vary with respect to certain gate opening and they found 

out that there are essentially three types of gates, for sodium it is three types of m gate and 

one type of h gate.  

So, three m type of three type of m and one h gate; this actually controls the conductance 

and for potassium this is actually four types of n gates which actually control the 

conductance of the potassium. 

Now, if there are three of the m gates and if each one of them is having a probability of m, 

then it will be (m x m x m) which is the m3h, that is the probability of opening up of the 

gates permitting the current to flow.  

And similarly, in since there are four types of n gates. So, it is n into n into n into n. So, it 

is n4. So, that is what is the gNa and gK. Now, m, h, n these are having their own rate 

constant. 
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So, they have a simple kinetics which will be covered in the second equation, that is the 

gate kinetics equation in which we will be talking about dm dt, that is the rate of change 

of this gate type m, then dn/dt and dh/dt. 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(𝑉)(1 − 𝑚) − 𝛽𝑚(𝑉)𝑚, 

Now, I told you also earlier that this depends on two things, one is what one for let us say 

for the first gate kinetics for the opening up of the m type of gates it will depend on 

𝛼𝑚which is of course, intrinsically a function of the voltage itself.  

So, it is 𝛼𝑚, where 𝛼𝑚 will be the typical rate constant corresponding to m and (1 − 𝑚). 

So, (1 − 𝑚) is the probability that this n gates will be opened and then the opposite 

probability that it will be closed will be related to 𝛽𝑚(𝑉)𝑚, where 𝛽𝑚 also is intrinsically 

a function of Vm. 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(𝑉)(1 − ℎ) − 𝛽ℎ(𝑉)ℎ, 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(𝑉)(1 − 𝑛) − 𝛽𝑛(𝑉)𝑛 



So, similarly there for n gate you need 𝛼𝑛, 𝛽𝑛 and similarly for the h gate you need 𝛼ℎ, 𝛽ℎ, 

which means in order to solve these you need to have the six sets of coefficients. So, these 

are three pairs.  

So, you need these six constants and these six constants are actually experimentally 

determined. So, this is something we have to keep in our mind. 
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So, once we know these six constants, then we can go back to this equation and we can 

find out that what is gNa, because then we know gNa is 0; m h we can find out and similarly, 

we can find out gK and we can put it back to this equation in order to get the membrane 

current. So, this is first of all the electrical part of the equation. 
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If we now look into the HH model cable equation, then you can see here that in the cable 

equation we can actually keep the special variation of the membrane voltage. So, we can 

equate the special rate of change of the special variation of the membrane voltage with the 

membrane current by using the cable equation.  

𝜕2𝑉𝑚

𝜕𝑥2
=

2𝑅𝑖

𝑎
𝐼𝑚 

So, essentially what this cable equation does is that, let us say we have a soma and which 

has some dendrites let us say and that is the soma and from that soma let us say we have 

the action. So, let us say this is the action going and which will be ending to some synapse. 

Now, this action is essentially modeled like a cable and the radius of this cable. So, 

essentially this part it is this part which is modeled like a cable of some radius a. So, this 

is the cable. So, let us see this is the cable and the radius of the cable is modeled as a, that 

is one thing and the other thing here is this internal resistance. So, this internal resistance 

is the resistance inside this cytoplasm of these axon. 

𝜕2𝑉𝑚

𝜕𝑥2
=

2𝑅𝑖

𝑎
(

𝐶𝑚𝑑𝑉𝑚

𝑑𝑡
+ 𝑔𝑁𝑎(𝑉𝑚 − 𝐸𝑁𝑎) + 𝑔𝑘(𝑉𝑚 − 𝐸𝑘)) 

So, this internal resistance let us say that is denoted as Ri. So, if the internal resistance is 

Ri and these cable radius is a, then the cable equation which essentially considers that there 



is this continuous membrane which is continuously between different points of nodes of 

ranvier, this can be actually segmented in terms of what you call a kind of a electronic 

systems. 

So, in terms of let us say some voltage and this resistance and the capacitance of the ith 

cell. So, then if any one of this this system can be modeled separately and then you know 

if you actually get the differential of it, then you will be coming to this particular equation 

which will equate between the membrane current and the voltage of the membrane. 

Now, membrane current already we know that the membrane current itself can be written 

in terms of the current across the capacitance and then the across the sodium channels and 

across the potassium channels.  

The leakage part is not considered it is just neglected here, but you can improve that. So, 

this is what you know if you substitute the Im from the earlier relationship; that means, that 

we have done in equation 1. 
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So, if you substitute it, here you are going to get this complete relationship which is giving 

you the relationship between the special rate of change of the voltage membrane voltage 

with respect to the temporal rate of change of the membrane voltage.  



So, the special versus temporal, but yet you can see here that, we still have the spatial 

variable and the temporal variable here. Ideally speaking, we would actually like to get 

equation which will be completely in terms of the temporal variable. 
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Now, that can be done of course, so that is what we will be talking about in the next 

equation where we talk about the unified action for the action potential and here what we 

do is that, we acknowledge the fact that the pulse is the action pulse can be actually 

modeled in terms of a wave equation. 

So, essentially if you remember that the action pulse if we try to model it is something like 

this that there is this time t and then there is this membrane voltage which will be basically 

starting say for example, from a negative state across the threshold go to a peak and then 

it will again come down come down and then it goes back.  

So, that is something like this and this is the part which you remember is the depolarization 

part that is the depolarization part of it. 

And, this is the part which is the repolarization part; that is the repolarization I am just 

abbreviating it as RP and this is the part which is the hyperpolarization part of it right. So, 

this kind of a signal now if you look at the action, so let us say this is what is my action 

which is model like a cable and then, this action at different points if you look at it you 



will see that this signal is actually the nature of the signal and also the amplitude is 

remaining the same. 

So, there are these loads of engaging between, which actually contain set of the intensity 

losses, but this is how it happens and this is the way the signal will propagate and the 

velocity of this wave velocity is what is theta here, ok.  

So, then you know you can actually correlate between the voltage variation with respect 

to type and the voltage variation V is special variation of the voltage. 

So, once we have this relationship all we need to do is to replace the left side as where it 

was 
𝜕2𝑉𝑚

𝜕𝑥2  by 1/ 𝜃2 
𝜕2𝑉𝑚

𝜕𝑡2 . So, this part of it and also from the left hand side of the earlier 

equation we have just taken that 2 Ri by a, and we brought it in the left hand side.  

𝜕2𝑉𝑚

𝜕𝑡2
= 𝜃2

𝜕2𝑉𝑚

𝜕𝑥2
 

𝑎

2𝑅𝑖𝜃2
(

𝜕2𝑉𝑚

𝜕𝑡2
) = 𝐶𝑚 (

𝑑𝑉𝑚

𝑑𝑡
) + 𝑔𝑁𝑎(𝑉𝑚 − 𝐸𝑁𝑎) + 𝑔𝐾(𝑉𝑚 − 𝐸𝐾)  

So, it becomes 
𝑎

2𝑅𝑖𝜃2 (
𝜕2𝑉𝑚

𝜕𝑡2 ) which equals to these current part of it that is 𝐶𝑚 (
𝑑𝑉𝑚

𝑑𝑡
) then 

the conductance related that sodium and the potassium current. 

So, this is what you will get the final cable equation, by solving this as you can see now 

that this equation, it has been possible to bring everything with respect to the time domain 

variation.  

Of course, it is a non-linear equation because the gNa itself depends on m and m itself has 

a rate dependence etcetera, but you can still get the entire equation with respect to the 

temporal variation and that is a good point. So, it is easier to solve this kind of equation in 

order to get the action potential of the system. 
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We now we will talk about the properties, which are actually unexplained by the HH 

model. For example, we know that as the action potential actually crosses the action, there 

is a change in the thickness and in the change in the length variation; in the length variation, 

under the influence of the action potential.  

Also, we know that the mechanical stimulus can actually actuate the action potential, how 

whereas, the electrical model cannot explain that. 

Also, during the first phase of the nerve pulse, heat is released from the membrane and it 

is reabsorbed during the second phase. Now, if these entire you know neuronal system is 

like a resistor then it will only dissipate the energy it will not you know release the heat 

and reabsorb it just like an adiabatic and reversible phenomena. So, that is something that 

also is not possible. 

So, these are the some of the important things, which are not explained by the HH model 

and hence this drives us to think of a better model towards explaining these facts as well. 
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Now, when we will talk about the development of a new model consider first of all that it 

is based on the wave equation, because we already know that the wave equation is there 

in place. 

However, in this case the wave velocity is c that is fine, and the x that we had earlier 

discussed is actually z here. So, z or x they are similar. So, this is the longitudinal direction 

of the action that we are talking about; so that is what, is the z direction. Please keep in 

mind just the symbols vary, but that part is the same.  

Whereas, now these variation actually depends on something called ∆𝜌𝐴 and what is this 

∆𝜌𝐴? That is the change in the lateral density of the membrane. This is something that is 

experimentally observed, that the membrane density that is if you consider that the neuron 

itself is like a membrane there are this that is the up some thickness, ok. 

And, then I also told you that this membrane changes in the thickness direction as the 

action wave propagate. Now, let us say that that change is creating a change in terms of 

the variation of the area density and that variation of area density is ∆𝜌𝐴, then the wave 

equation I can write in a different way here now as 
𝜕2

𝜕𝜏2 ∆𝜌𝐴 and that is if provided if this 

c2 does not vary, of course it varies along the length because of some other chemical 

changes inside the system, but it is essentially 𝑐2 𝜕

𝜕𝑧
∆𝜌𝐴. 



𝜕2

𝜕𝜏2
∆𝜌𝐴 =

𝜕

𝜕𝑧
(𝑐2

𝜕

𝜕𝑧
∆𝜌𝐴) 

So, you look at it carefully that in the last an expression, what was it? It was with respect 

to the membrane voltage right. So, the last equation was the wave equation was with 

respect to the membrane voltage.  

Now, we say no, we are going to go to something more fundamental and we are going to 

look into it in terms of the membrane you know change of the area density of the membrane 

and in terms of that we are defining the wave equation that is the change a we have to keep 

in our mind. 

𝑐2 = 𝑐0
2 + 𝑝∆𝜌𝐴 + 𝑞(∆𝜌𝐴)2 + ⋯ 

𝜕2

𝜕𝜏2
∆𝜌𝐴 =

𝜕

𝜕𝑧
((𝑐0

2 + 𝑝∆𝜌𝐴 + 𝑞(∆𝜌𝐴)2 + ⋯ )
𝜕

𝜕𝑧
∆𝜌𝐴) − ℎ

𝜕4

𝜕𝑧4
∆𝜌𝐴 

Secondly, in the last equation we said that 𝜃 is not varying with respect to the length, but 

now we are telling no, this c is actually varying with respect to z, it is not constant.  

In fact, the c itself has a kind of a dispersion relationship; that means, c2 is something like 

𝑐0
2 + it so, it is a; it varies with the density and some constant of it and it is a non-linear 

variation with respect to the area density. 

So, if I put our model like this, then I can actually put this expression of c in this entire 

thing. So, we get this final model and what we will see is that, in this final model because 

of the dispersion we will get an additional dispersion term here.  

This is very very important ok, that is we get in addition to that the c is variation because 

of the dispersion we get an extra variation here and this extra variation will be very 

important we will look into it so. 
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Now, certain non-dimensionalization let us do for the model; which means, that for the 

you know ∆𝜌𝐴 we can actually with respect to the equilibrium lateral density, let us have 

a variable u.  

𝑢 =
∆𝜌𝐴

𝜌𝑜
𝐴

, 𝑥 =
𝑐0

ℎ
𝑧, 𝑡 =

𝑐0
2

√ℎ
𝜏, 𝐵1 =

𝜌0

𝑐0
2 𝑝, 𝐵2 =

𝜌0
2

𝑐0
2 𝑞 

Then, let us have x as a non-dimensional variable now, with respect to this thickness and 

then let us have the time itself as another non-dimensional variable and we have these two 

constants B 1 and B 2. So, this is the thing that will require to non-dimensionalize the last 

equation. 

So, if I do that and here, the h is a parameter which describes the frequency dependence of 

the speed of sound ok. So, if I do that we are going to get that last equation in a much more 

neat and clean form, which is that the non-dimensional variation of area density is now u. 

So, that is 
𝜕2𝑢

𝜕𝑡2
 will be 

𝜕

𝜕𝑥
 of these velocity itself is with respect to a new non-dimensional 

quantity B.  

𝜕2𝑢

𝜕𝑡2
=

𝜕

𝜕𝑥
(𝐵(𝑢))

𝜕𝑢

𝜕𝑥
−

𝜕4𝑢

𝜕𝑥4
 

𝐵(𝑢) = 1 + 𝐵1𝑢 + 𝐵2𝑢2 



So, it is like 
𝜕

𝜕𝑥
(𝐵(𝑢))

𝜕𝑢

𝜕𝑥
 and then that h factor is accommodated here in we get this 

relationship the dispersion part of is as −
𝜕4𝑢

𝜕𝑥4 and the B(u) you can take up to two terms as 

1 + 𝐵1𝑢 + 𝐵2𝑢2. So, this is how we can actually get this whole expression in a non-

dimensionalized mode.  
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Now, if I get this whole expression in a non-dimensionalized mode the only thing now is 

that, we can actually you know apply another parameterization in terms of the density 

pulse we can use a coordinate transformation now and we can put a new coordinate 𝜉 =

𝑥 − 𝛽𝑡, where 𝛽 will be the dimensionless propagation of velocity. 

So, we can get the new equation in terms of not in terms of x, but in terms of 𝛽2 𝜕2𝑢

𝜕𝜉2 =

𝜕

𝜕𝜉
(𝐵(𝑢) 

𝜕𝑢

𝜕𝜉
 ) −

𝜕4𝑢

𝜕𝜉4, which is what is the dispersion part again.  

We have to keep in your mind; that this dispersion if it is not there, then the system will 

be a conservative system and it will not give you the relationship which is very important 

for us in terms of the propagation of the wave. 

𝑢(𝜉) =
2𝑎+𝑎−

(𝑎+ + 𝑎−) + (𝑎+ − 𝑎−)cosh (𝜉√1 − 𝛽2)
 

 



So, the analytical solution of this density propagation if you solve this equation you will 

get it, in this 𝑢(𝜉) in terms of two constants-a, one 𝑎+ 𝑎𝑛𝑑 𝑎−where 𝑎+ 𝑎𝑛𝑑 𝑎− can be 

expressed in terms of the B 1 B 2’s 𝛽, 𝛽0𝑠.  

𝑎± = −
𝐵1

𝐵2
(1 ± √

𝛽2 − 𝛽0
2

1 − 𝛽0
2  ) , 𝛽0 < |𝛽| < 1 

So, we will get it and the 𝛽 itself please keep in mind that it is a non-dimensional velocity, 

which generally varies between 0.6 to 1. 

Now, we will see something very interesting in terms of the behavior of the 𝛽, we will see 

that this solution actually takes us to a very well-known wave solution which is in terms 

of solitons. 
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Well, the solution in that last equation will actually give you what I was just telling you 

that is soliton, ok. And, what is the soliton? It is a self-reinforcing solitary wave packet 

and which will maintain its shape, remember the action potential maintaining same. While 

it propagates at a constant velocity imagine that, this is what is the direction of the, action 

potential. 



So, there is a soliton that is propagating if that wave equation if we solve that will give us 

a soliton and these are caused how by a cancellation of non-linear and dispersive effects 

in the medium.  

That is why I said that the dispersive effect is important because it is going to cancel out 

the non-linear part. Now, solitons are the solutions of a wide spread class of weekly non-

linear dispersive PDEs describing the physical system. 

As far as in 1834, John Scott Russell observed first a solitary wave in a canal in Scotland. 

And, it is only late and you know the researchers like Heimburgs, Jacksons they have 

found out that you know in terms of the neuronal voltage such a solution actually matters. 

Now, let us look into that, how does a soliton actually behaves? 
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I will take you through a small animation from University of Tasmania and of its Scott 

Forrest, I will show you the video which will explain you beautifully that, how does a 

soliton propagates? Let us look into the soliton wave. . 
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Now, of course, there is one point that, what happens when two solitons will collide from 

the opposite direction? Then, in such a case it actually any you know this there is a 

blocking of heat that you can see that as this is what is the before the collision these two 

waves are approaching you can see. 

This is something that is still is to be actually checked with respect to the normal pulse and 

you can see what is happening you know if post collision and that is what is the post 

collision part of it. So, you cannot see either of the solitons here.  

Now, if you use on the other hand a simpler form of collision which is a Hodgkin-Huxley 

equation, which is Fitzhugh-Nagumo equation. Then, two pulses traveling in opposite 

directions before and after you can see that you may see that the pulses are going to 

annihilate after the collision. 

Whereas, for these kind of a system this kind of annihilation does not actually happen, 

they can actually pass through each other. 
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So, that is something that is still you know not explainable through the soliton model. So, 

you can see that this is what is happening for a soliton that two solitons are approaching 

and you can see that after they are collision; they are actually with a lesser much lesser 

amplitude, but they are just going back to both the directions. 

So, this is something that does not happen in this particular case whereas, in the case of 

the you know simpler version of the HH model that is the Hodgkin that is the Fitzhugh-

Nagumo model you can see that there is a complete annihilation that is happening. So, the 

point is that these Hodgkin-Huxley model predicts a complete annihilation of two waves 

whereas, for soliton collision this does not happening. 

Now, in reality; that means, the action you know a potentials in terms of waves if it reflects 

back from the synapse, then it will once again pass through without this you know this 

proceeding directions the propagation direction of the action wave we and both of them 

will come down, but there will be no annihilation.  

On the other hand, in the last model we have seen that there will be an annihilation. So, 

that disparity is still existing in the system. 
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Does soliton model support anesthesia? Well, that is another point that, it is known that 

well known that general anesthetics actually lowers the melting point of the lipid 

membrane and you know that the neuronal membranes are actually of lipid membrane. 

So, reduction of melting point because of these drugs or anesthetics; that means, that there 

has to be a increase of the required pressure to generate the density wave. And, that means 

that, you know these density waves will not be able to get generated so easily. So, in the 

presence of anesthesia, the free energy requirement will increase which will inhibit the 

soliton formation and that explains that why an anesthesia would work.  

In fact, there is an experiment that Heimburg’s group have carried out, where the ambient 

pressure level of a of tadpole which is under anesthesia that is increased to about 50 bar 

pressure and they found that the effect of anesthesia is overcome and these tadpole is able 

to move again. So, thus the soliton model provides a mechanism for general anesthesia 

that is something that happens in terms of the soliton model. 

Let us now carry out a brief summary between the Hodgkin-Huxley model and the soliton 

model and let us try to see that where we are with respect to both the models, as I told you 

that both the models are partially successful in explaining something and in not explaining 

something. So, which may actually generate further scope of research in this field. 
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In the HH model, we can see that the action potential is based on the electrical cable theory 

in which the pulse is the consequence of voltage and time dependent changes of the 

conductance of sodium and potassium.  

So, it is purely electrical in nature. The model is consistent with quantized ion currents that 

is proved. It is consistent with the channel-blocking effects also of several poisons, such 

as tetrodotoxin. 

This model is based on ion currents through resistors that is a problem because it is 

therefore dissipative in nature. The reversible changes in heat and mechanical changes are 

not explicitly addressed, but heat generation would be expected, but why the heat is 

reabsorbed that is not explained. And, the model generates a refractory period. 

On the other hand for the soliton model, which is a newer model the nerve impulse is 

considered to be an outcome of electromechanical soliton wave that is coupled to the lipid 

transition in the membrane.  

And, the solitary character is considered to be a consequence of the non-linearity of the 

elastic constants. It of course, does not contain an explicit role of poison’s and protein ion 

channel. So, that is something that is to be checked state. 



And, the theory is consistent with channel-like pore formation in lipid membranes that part 

is consistent. And, the temperature part and it is it does not dissipate heat, but it actually 

shows the whole model as an adiabatic process.  

So, that is something that happens of course, it still does not explain, the change in terms 

of the thickness for which possibly we need a more refined model. 
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In order to look into a more refined model, we have to first know that the bilayer lipid 

membrane that is you know basically they are in the neuronal walls. So, if you consider 

the neuronal wall each wall of this neuronal wall is actually consists of bilayer lipid 

membranes. 

Now, these bilayer lipid membranes they are known to be piezoelectric in nature. Now, 

the ionic motion whether the piezoelectricity is happening due to electro-active polymer 

or due to ionic motion that is something we need to still focus on. I have already told you 

about the characteristics of electronic EAPs and ionic EAPs when we have discussed about 

this kind of things in terms of active muscles. 

So, in electronic EAP like dielectric EAPs, electrostrictive papers, ferroelectric polymers 

or liquid crystal elastomers these are all electronic EAPs and they are capable of actually 

these kind of motions, but it is slightly slower.  



On the other hand ionic EAPs like ionic polymer gels, IPMCs, conductive polymers or 

CNTs they are actually faster. So, they are faster and these are slightly slower. So, because 

this nerve impulse is happening in the millisecond region so, this is millisecond region. 

So, that kind of tells that it could be because of these thing. 

So, well, this I need to change. So, this is ionic EAP. So, this part is slower. So, ionic EAPs 

are slower and this is faster the electronic EAPs this is faster. So, because of these you 

know millisecond region this actually sort of tells us that maybe this phenomenon is 

because of the electronic EAPs, which are actually faster in nature. It is also possible that 

this kind of a thing is actually happening because of an electro-thermal mechanical system. 
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If you consider the bi lipid layer people, have shown through experiments that the lipid 

layer can be actually modeled in terms of piezoelectric system. So, then it will be you 

know electro thermo mechanical system because any piezoelectric system consists of three 

things together. So, there is this piezoelectric effect and there is this pyroelectric effect and 

there is the mechanical effect. 

So, that is why you know there is the temperature comes in the pyroelectric effect and the 

voltage comes in the piezoelectric effect and the mechanical force occur. So, all the three 

things together can be actually observed in this type of phospholipid layers. So, that may 

actually verify the piezoelectric nature of the liquid crystal. 
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Now, this kind of piezoelectric nature will also show that there is a frequency dependent 

and a temperature dependent variation. As you can see here that, the electric polarization 

P is actually vary with respect to the frequency of propagation and with respect to 

temperature both. 
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So, this is something like a bilayer system lipid system with a potassium channel protein 

and you can see the lipid layer and you can see the potassium channel proteins. So, this is 

something that, these is still to be explained that how this entire dynamics of the movement 



of the potassium through the bilayer you know lipid layer happens with the help of the 

piezoelectricity. 
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Now, as I told you about the piezoelectricity that the electronic polarization in 

piezoelectricity is very fast in terms of the frequency 1012 hertz, ionic is about 109 hertz, 

dipolar is 106 and space charge is even slower 103hertz or 1000 hertz or in the kilo hertz 

level.  

So, accordingly the response time is going to be varying the response time will be more 

here. So, this will be more here the response time and the response time will be very very 

less here. 

Now, depending on what type of a polarization is happening in the lipid layer we will be 

able to actually say that, what type of polarization is happening in the lipid layer. 



(Refer Slide Time: 41:29) 

 

So, if we consider an action to have this kind of you know kind of a patches of piezoelectric 

patch then, what will that motion predict? So, here is an equation of motion as you can see 

which is different from the earlier two equations that we have seen because, now we have 

the longitudinal displacement 𝑈(𝑥) the spatial variation of it with respect to the wave 

number and we can get the equation and this longitudinal displacement and similarly you 

can also get for thickness wise displacements, but these changes are happening because of 

the piezoelectricity that is there in the piezoelectric patches.  

𝜕2𝑈(𝑥)

𝜕𝑥2
+ 𝑘𝑖

2𝑈(𝑥) = 0 ; … . 𝑖 = 𝐴, 𝐵 

So, in every piezoelectric patch you will see this kind of a change that is happening in the 

system and that can also generate a kind of a pulse in the system. 
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𝑌𝑘𝑟
= [𝑈𝑘𝑟

⋮ 𝑁𝑘𝑟
]

𝑇
 

 𝑇𝑘 = 𝑇𝑘
(𝐵)

𝑇𝑘
(𝐴)

 

 𝑇𝑘
(𝑖)

[
cos(𝑘𝑖𝐿𝑖)

sin(𝑘𝑖𝐿𝑖)

𝑧𝑖𝜔

−𝑧𝑖𝜔 sin(𝑘𝑖𝐿𝑖) cos(𝑘𝑖𝐿𝑖)

] … 𝑖 = 𝐴, 𝐵 

𝑧𝐵 = √(𝜌𝐴𝐴𝐴 + 𝜌𝑃𝐴𝑃)(𝐸𝐴𝐴𝐴 + �̅�𝑗𝑗
𝑆𝑈𝐴𝑃)  

𝑘𝐵 = √(𝜌𝐴𝐴𝐴 + 𝜌𝑃𝐴𝑃)/(𝐸𝐴𝐴𝐴 + �̅�𝑗𝑗
𝑆𝑈𝐴𝑃) 

So, in order to solve this wave equation, I can actually use a traditional transfer function 

matrix. So, where you actually put all the longitudinal displacements in terms of a state 

vector and you can develop the transfer function and you can find out the impedance and 

the wave constants and you can actually solve this in terms of finding out the wave 

propagation of the system. 
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The interesting thing that you will note from these is that, there will be in such a system 

invariably certain bands where the wave constants will be actually real in nature whereas, 

certain bands where it will be imaginary in nature. So, these are the plot of the real and the 

imaginary parts.  

Now, real part of the propagation constant actually is telling that there is a kind of a pass 

band. So, this is a pass band and this is a pass band. So, there are two pass bands, there is 

a very small pass band here. 

Whereas, wherever the imaginary constant will come into picture then you may say that 

there are these stop bands which will be there. So, the creation of the pass band and the 

stop band is actually telling us that, only certain frequencies are allowed through these 

channels and certain frequencies are not allowed through these channels.  

Now, based on this piezoelectric model and our earlier knowledge there is a new model 

which is coming up which is called a co-propagation model. 
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I will just very briefly for your reference I will mention this model to you. In the case of a 

co-propagation model which is a something like you know an advanced version where the 

piezoelectricity is considered, you can see that it is considering a minimal mechanical 

model of the action, which has an elastic and a dielectric cube filled with viscous fluid. 

And, the action potential as it is passing, it changes the charge separation across the 

dielectric membrane, because the thickness change and that is altering the membranes 

geometry and that will create the electrical voltage.  

So, there is a co-propagation of displacement, because that voltage will again change the 

thickness. So, there is a co-propagation of displacement wave along with the electrical 

pulse. So, this theory is telling that there will be let us say with respect to time, there will 

be a voltage change, there will be a voltage pulse. 

So, there will be a voltage pulse and also with respect to time as well as with respect to 

you know the direction of propagation there will be something like a displacement change. 

So, that also will be happening and they will be actually co-propagating both the models.  

So, this is checked with the Garfish Olfactory Nerve, that there is this voltage propagation 

and the change in the membrane displacement, both are happening and you can also see 

that there is a mechanical heat that is happening and there is a change in the temperature 

increase and decrease. 



Similarly, the same thing is obtained from Squid Giant Axon, Hippocampal Neuron in all 

the cases they see that there is a membrane displacement and that is happening and there 

is a lateral displacement that is happening in the system. 
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I will now show you a typical simulation where you can see that how this wave can 

propagate, imagine this is what, is your action. 
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So, you can see first that how this radial propagation of wave is happening it is starting 

from one point how it is happening. 



And, similarly you can see that how in axial direction also the wave is propagating, this is 

where is axially it is propagating. So, thus it is actually possible to propagate the wave 

both in the radial and in the axial direction under two different frequency bands.  

Now, this is where we will put an end. In the next lecture, we will talk about different types 

of you know the ways experimentally how we can actually obtain the electrical signals 

from the brain, which is very important from the human robot interaction point of view. 

Thank you. 


