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Hello and welcome to the 10th lecture of the Machining Science course. In our last 

session we were discussing the sliding friction and we said that when the two solid 

bodies meet each other, normally they meet on the asperities. Since, there are asperities 

on the surfaces and solid surfaces never come with absolutely smooth surface if you look 

under the microscope, therefore, the real area of contact, which is the area of those 

asperities on which they are resting differs from the apparent area. Apparent area is the 

same as the geometrical area of meeting. 
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Now, as shown in the above figure, the two surfaces are meeting on the asperities. 

Initially when the normal force is not very high these asperities will be deformed 

elastically, because of the normal force acting. As the normal force is increasing, then 

these asperities will be deformed plastically. Since the solid surfaces have asperities, the 

real area of contact or the area of the asperities on which the two surfaces are meeting, 

differs from the apparent area. Apparent area is the geometrical meeting area that 

depends on the size of the parts. In case when the load increases, the asperity 



deformation becomes fully plastic, then the real area of contact is a direct function of the 

applied load. 

So, when the force is increasing, then we can write that the real area of contact is equal 

to 
y

N
σ

. yσ  is the yield stress of the softer material (as the area is equal to force by 

stress). Here it is normal stress. Now, during the sliding when they start sliding on each 

other, the welded asperities will be broken. The mechanism is then described by the 

adhesion theory of friction, which gives rise to a formula of the friction force, which is 

determined by the product of τ , shear stress and the real area of contact between the 

surfaces. 

We have the normal force equal to r yAσ  and the friction force equal to rAτ × . In both 

cases we are considering the real area of contact. µ , which is coefficient of friction is 

equal to the friction force upon normal force. The friction force is given as the rAτ × and 

we can get normal force is equal to r yAσ , where yσ  as I said is the yield stress of the 

softer material. 

The ratio of F and N will be r

y r

A
A

τ
σ
×
×

; rA  getting cancelled, and the ratio is equal to 
y

τ
σ

. 

This equation shows that µ  is independent of the apparent area of contact, this is very 

important. The coefficient of friction when the two bodies slide on each other, the 

coefficient of friction does not depend on the apparent area of contact. 

In fact, there is no area of contact mentioned here. The ratio of 
y

τ
σ

 reasonably remains 

constant for a wide range of material. Therefore, for a given metal µ  remains constant; 

that means, F is proportional to N or F
N

 is constant, which is µ . 

This is what happens in the case of the natural or a normal sliding friction, when the two 

bodies are moving on each other and the normal pressure is not very high so that the 

apparent area of contact and the real area of contact does not become the same. It does 

not become the same because asperities although they get plastically deformed, they do 



not get plastically deformed to that extent that the real area of contact becomes equal to 

the apparent area of contact or geometrical area of contact. 
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What happens in metal cutting ? In metal cutting the coefficient of friction can vary 

considerably. Here we have seen, that in sliding friction, F
N

, which is µ , is constant, 

because F
N

 is actually the ratio of the shear stress and the normal stress, which for a 

given metal remains constant. 

Therefore, µ  remains constant and in the case of metal cutting, the coefficient of friction 

can vary considerably. It varies because the normal pressure applied by the tool on to the 

work piece is very high. Particularly it is maximum when the tool tip is in contact with 

the work piece and along the chip tool contact length it gets decreased. 

Therefore, this variance of µ  results from the very high normal pressure, that exists at 

the chip tool interface, when the chip is moving along the rake surface of the tool, 

causing the real area of contact to become equal to the apparent or the geometrical area 

of contact over a portion of the chip tool interface. Referring to the above figure, 

consider the workpiece, tool and the chip. In the chip tool contact length, we said that the 

coefficient of friction varies considerably. Let us say h be the chip tool contact length. At 

the tip of the tool, the pressure is maximum because at this point the real area of contact 



becomes almost equal to the apparent area of contact or geometrical area of contact. As it 

goes towards the point where the chip loses contact with the tool, then it decreases. 

Therefore, over a portion of the chip tool interface the normal pressure remains 

sufficiently high so that the real area of contact becomes equal to the apparent area of 

contact. Because the pressure is so high that the asperities get plastically deformed. The 

asperities have been maximally deformed and the real area of contact is almost equal to 

the apparent area of contact.  

Let F be the friction force. Then friction force is equal to a fA τ  where fτ  is the shear 

stress and aA  is apparent area of contact. Here the real area of contact is equal to 

apparent area of contact. Draw the curve between normal force N versus friction force F. 

This can be explained in the following way that as the normal force is increasing then up 

to a certain point the real area of contact is not equal to the apparent area of contact. In 

this region, the rules of sliding friction apply. µ  remains sufficiently constant, because 

the real area of contact is still less than the apparent area of contact. Now, as the normal 

force increases, after a certain point the normal force becomes so high that real area of 

contact is becoming equal to apparent area of contact like it is shown in the above figure 

representing contacting surfaces. And, the normal rules of the sliding friction do not 

apply there, then the µ  does not remain constant or F is not proportional to N anymore. 

Initially, up to a certain point, F is proportional to N and the µ  remains constant. 

Beyond that point, when the normal force is very high or normal pressure is very high, 

µ  does not remain constant and the curve become horizontal. So, there F does not 

depend on the N or F is not proportional to N. F is now independent of N and the 

ordinary law of friction no longer apply under these conditions; the shearing action is no 

longer confined to those asperities and it happens inside the softer material. 

So far we have seen in sliding friction that the normal force is not sufficiently high. 

Although, the asperities get plastically deformed, but when the shearing happens those 

asperities or welded asperities get sheared off. In the sticking region, the real area of 

contact rA  and the apparent area of contact aA  are same and the shearing happens not 

along the asperities, but from the softer material. So, within the body of the softer metal 

the shearing action will take place. 
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This has been explained in a scientific way through a model explained by Professor 

Zorev. He is a Russian scientist. The model says that if you have the metal cutting 

process represented by the chip flowing over the rake face of the tool. Let fl  be the chip 

tool contact length. Within this chip tool contact length, let us say from the tip where the 

normal force is maximum up to a certain point, the normal force remains high and the 

shear stress is maximum which is given as stτ ;  stτ  because this zone is called the 

sticking zone.  

Here, the shear stress τ  remains constant. It becomes maximum and constant because, 

the normal force is very high in this region. As it goes beyond the point at the end of 

sticking region towards the point where the chip loses contact with the tool, then the 

normal force decreases. And, therefore, the F remains proportional to N, like in the case 

of the normal sliding friction and then the µ  is constant. 

The zone from the end of sticking region up to the point where the chip loses contact 

with the tool is called the sliding zone and from the point of the tool tip to the point from 

where the sliding zone starts is called the sticking zone. Professor Zorev’s model says, 

that the normal stress distribution on the tool face is maximum at the tool tip and, as it 

goes towards the point where the chip loses contact to the tool the stress becomes less. 



The axis perpendicular to the tool rake face is represented by stress. Normal stress is 

maximum at the tool tip and is given as maxfσ . The curve can be described as the 

y
f qXσ =  where q and y are constants, X is the distance starting from the point where 

the chip loses contact with the tool. 0X =  at the point where the chip loses contact with 

the tool . As we move towards the tip of the tool, the length increases along the fl  and at 

tool tip fX l= . So, X value varies from 0 to fl . Now, the length of the sliding zone will 

be f stl l−  if the stl  is considered to be the length of the sticking zone, where the τ  

remains constant and the τ  remains maximum. 

Overall the distribution of the normal stress and the distribution of the shear stress will 

be as it is shown in the above diagram. Now, X is the distance along the tool face from 

the point where chip loses contact with the tool. And, q and y are constants. Now, the 

normal stress, fσ  will be maximum when fX l= . Therefore, maxfσ  can be determined if 

we put the value of X equal to fl . 

So, it will be y
fql . From here we can find out the constant q, which will be max

y
f flσ − . 

From here we can find out fσ  by putting the value of q into the expression of fσ . We 

get, max

y

f f
f

X
l

σ σ
 

=   
 

. 

Now, in the sliding region i.e. from 0X =  to f stX l l= − , µ  is constant because it is a 

sliding zone and here the normal force is not very high. Therefore, the real area of 

contact is not equal to the apparent area of contact and the real area of contact remains 

less than the apparent area of contact. 

Therefore, µ  remains constant and the distribution of shear stress in this region can be 

represented by  the normal stress into µ .  
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Now, in the other region that is from f stX l l= −  to fX l= , the shear stress becomes 

maximum. The shear stress is equal to stτ  which is the maximum shear stress. The 

normal force, N is the area under the curve multiplied by the width of cut, aw. Area under 

the curve is the integration of max

y

f f
f

X
l

σ σ
 

=   
 

 from 0X =  to fX l= .  

So,  

max
max

0

. .
(1 )

f
yl

f w f
w f

f

a lXN a dx
l y

σ
σ

 
= =   + 

∫ . 

Now, the friction force, F is  

1
max

max
0

. .( )
(1 )

f st
yl l y

f w f st
w st st f w st st y

f f

a l lXF a l dx a l
l l y

µσ
τ µσ τ

− +   − = + = +   +   
∫  
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Now, at the point f stX l l= −  the normal stress is given by stτ
µ

, because earlier we have 

seen that normal stress into µ  is equal to shear stress. The normal stress can be given as 

stτ
µ

 at this point, but from other side we can find out that from equation (1), 

  

 max

y

f f
f

X
l

σ σ
 

=   
 

 (1) 

 
1

max . .( )
(1 )

y
f w f st

st w st y
f

a l l
F a l

l y
µσ

τ
+−

= +
+

 (2) 

If we put the value of f stX l l= − , then max

y

f st
f f

f

l l
l

σ σ
 −

=   
 

. 

Therefore, fµ σ×  at that point will be equal to stτ .  

 max

y

f st
f st

f

l l
l

µσ τ
 −

=  
 

 (3) 



Substituting equation (3) in equation (2), the expression of F will be 

. .( )
(1 )

st w f st
st w st

a l l
F a l

y
τ

τ
−

= +
+

 

Now, we can find out the µ  or the tan of the friction angle, λ  from the following 

expression:  

tan F
N

λ =  

Where, 

max
max

0

. .
(1 )

f
yl

f w f
w f

f

a lXN a dx
l y

σ
σ

 
= =   + 

∫  

And, 

. .( )
(1 )

st w f st
st w st

a l l
F a l

y
τ

τ
−

= +
+

 

Substituting the equations of F and N into tan F
N

λ =  we have, 

 
max

tan 1st st

f f

ly
l

τλ
σ

 
= +  

 
 (4) 
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Now, the mean normal stress on the tool phase is given by the normal force divided by 

the chip tool contact length multiplied by the width aw, as length into the width is the 

area. Average value of the normal stress we will get by dividing the normal force and the 

area for the whole chip contact. The area can be found out by w fa l .  

max

1
f

fav
w f

N
a l y

σ
σ

 
= =  + 

 

Therefore , 

max (1 )f fav yσ σ= +  

Now, substituting maxfσ  in the equation (4), we have 

1
arctan

(1 )

st
st

f

fav

ly
l
y

τ
λ

σ

  
+     =  + 

 
 

 



 Now, in experimental works it has been found that the term 
1

(1 )

st
st

f

ly
l

y

τ
 
+  

 
+

 remains 

sufficiently constant, for a given material over a wide range of unlubricated cutting 

condition. 

Therefore, the expression becomes  

arctan
fav

Kλ
σ
  =  
  

 

So, this is how we can actually express the friction angle or the coefficient of friction 

which are the same things. 

This has a significance that is the result of Professor Zorev’s model on the friction in the 

metal cutting. And, the consequence is that it means how the mean angle of friction 

depend on the normal stress. 

And, how it varies when normal rake angle changes, which is the working rake angle as 

we have seen earlier for example, we said that normal rake, orthogonal rake, and the side 

rake angle they influence the cutting force and the power. And, how we can conclude 

from this equation that how they vary, I will discuss it in the next class. 

Thank you for your attention. 


