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Okay, welcome back. And let us continue the discussion on the mixture fraction kind of model. 

So, we have looked at the Burke Schumann kind of flame and what happens when we have 

single step reversible and irreversible chemistry and whether we have an infinitely fast 

chemistry or finite rate of it. We have seen how it changes and we establish and simple equation 

for mixture, mass fraction, and species mass fraction and the temperature as a function of z. 
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And then finally we got the relationship between the enthalpy and mixture fraction. Now look 

at the mixture fraction in turbulent flame. Let say we start with an RANS kind of framework. 

So, we have mixture fraction or other this is our instantaneous which is sort of affected due to 

the turbulence and then you divide that into 2 components. One is the mean and one is the 

fluctuation.  

 

So, this is mean + fluctuation. And the mean value, one can find out it could be ensemble 

average. This is a Reynolds average for number of sample and Zn, this we have repeatedly 

discussed again and again that how we can obtain the mean values and all these things. So, 

now, when you talk about the reacting system, one of the important aspect is that we have to 

consider the density weighted mean.  



And the density weighted mean for mixture fraction and would look like <ρZ>/<ρ> and then 

the fluctuation in density weighted average would be 𝑍 − 𝑍̅. So, this is what we will be using 

for density weighted system. 
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Now, once we use this density weighted average in RANS framework, our mixture fraction 

equation will look like that we have convection term, ancillary term, convection term and 

diffusion term. And as we have already seen mixture fraction equation is free from any 

chemical source term, but due to these emerging we come across a term which is the scalar 

flux term and that remains unclosed.  

 

So, this term is sort of unclosed and this is one of the term what requires to be closed and using 

ready and diffusion assumption. The simplest way one can close is that it is a: 

−𝜌̅𝐷𝑡
𝜕

𝜕𝑥
𝑍 

So, this is one of the best ways and as long as there is no counter diffusion present, this works 

for large number of flows. So there is no issue associated with that kind of situation. Now then 

when you use this, the closure approximation in this particular equation, this will come down 

to this equation under RANS framework, uncertain term, and convection term. This is the total 

diffusivity. So this D + Dt is effectively the effective diffusivity. So, these molecular and Dt is 

the turbulent diffusivity which is closed from using the eddy viscosity and the turbulent 

Schmidt number.  

 



So, then this equations in RANS framework looks completely close, and we can now solve this 

transport equation, and then find out the evolution of z which in turn allowed to calculate the 

species and temperature profile inside the domain. 
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Now, how do you obtain this mean property? So that is an important question, because we have 

transformed our system from the local space to mixture fraction space. So, these for example, 

this is our flame front. Let us say this is our flame front and this is flame normal analysis. So, 

our transport equation is in physical space, this is z equation, but our and is free from source 

term and we are not solving mass fraction and all these things.  

 

So those equations, the equation for the mass fractions and temperature they are solved in this 

normal space, which is essentially the mixture fraction space. That means they are taken as a 

function of z and they are solved there were individual mass transfer equation and that variance 

and in one dimensional front is calculated. And it is done at the pre-processing stage or pre-

computed and store those information in a form of table.  

 

Now, while we are solving in the physical space this evolution of the mixture fraction using 

that information we can use that table to find out a particular species and temperature. This is 

similar to the approach that we have discussed for premixed flame like and progress variable 

kind of approach and what it allows that you require some probability density function, which 

is again and shape of the distribution would be assumed which is called presumed, which we 

have seen in the BML model another model presumed PDF. So, one can now look at that the 



probability density function approach also has 2 different categories. One is the presume shape 

PDF and which is also applied in both laminar premixed flame and non-premixed flame. And 

that is another one is the transported PDF approach. Transported PDF is also theoretically 

applicable to both the regime, but it is more reliable or it requires tuning for each of this regime 

to use properly. 

 

But dimensional wise transported PDF expenses are quite expensive. It is a heavy dimensional 

and that is why you solve in a hybrid approach where you solve mean profile in the Eulerian 

framework. And the transport equations of the problem density function is solved in the 

Lagrangian framework. Compared to that when you look at this presumed PDF, it is much 

simpler, much easy to implement and it is quite faster.  

 

Now, what happens? So, our mean species mass fraction will be integrated over equilibrium 

mass fraction, which is a function of z as I explained here, and that probability distribution 

function or density function fz dz. And favre averages mass fraction would be equilibrium mass 

fraction, which is a function of z and favre average density function. So, the favre average 

distribution function would be 
𝜌(𝑧)

𝜌̅
𝑓𝑧(𝑧). 

 

Now, if you look at this z, which comes in this is your oxidizer z0, this is fuel z1 they come in. 

So at this particular location, if you look at the probability distribution function. At this 

location, this will look like this because this is more close to the oxidizer side. You can see 

some distribution of z. Here you can see some distribution this is a Caussian distribution. 

 

So, there are different probability distribution function in the field using these distribution 

function and the information of mass fraction which is a function of z one can find out the favre 

average mean mixture fraction. 
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So, if you go to the equilibrium flamelet model under turbulent condition, what one has to do 

at any location x, you can find out the mean values and then you can find out the mixture 

fraction or the using the information of the mixture fraction, you can find out the mass fraction 

or the favre average mass fraction using the equilibrium information of z and the probability 

distribution function. 

 

So, this is what you get as a final result in the turbulent flame. And similarly, favre average 

temperature which will be the temperature is a function of z so, it includes the effect of turbulent 

movements of flame position but not finite rate kinetics because our equilibrium information 

is like this our oxidizer comes to at z stoichiometric. This is fuel, this is oxidizer and our 

temperature can go like this. So, this is our temperature.  

 

Otherwise stoichiometric so, these are all Yfuel, Yoxidizer and T. There function of z only and z 

solved using that and probability density function we get this. And 
𝜌1

𝜌̅⁄  can be equated 0 to 1, 

1 by which is also a function of these which will be the connection between. 
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Now, this is called the assumed shape PDF method or presumed shape PDF method. So, in 

turbulent flow that z the mixture fraction which is in the physical space that is fluctuating under 

the effect of eddies. Now the probability density function of Z(x) has to be found. Now, once 

we assumed that PDF, the shape of the PDF is assumed but mean and variance have to be 

calculated. So, this is one important thing.  

 

So, the equation along with your mean mixture fraction, one has to look at the variance. It is a 

similar approach in a way one can think or correlate with the z equation or level set approach 

that we discussed in the frame of premixed flame. When you want to bring in this effect of 

turbulence and the interaction with the small scale structure and the large scale structure or 

different regime, you have to solve the variance of the G equation. 

 

Similarly, here we have to also solve the variance of the mixture fraction. So, you have 2 

system, one is the mean mixture fraction and the variance which is written as g. So, these are 

the 2 transport equation that we get, one for the mean mixture fraction, which is free from 

against source term and the D effective is D + Dt and for the variance equation, we get the 

similar up to this ancillary term, convection term and diffusion term but then we get an 

production of z variance and that dissipation.  

 

So, these are the 2 term which we come across when you derive the mixture fraction variance. 

And this guy is dependent on the mean mixture fraction and because this is a gradient of mean 

mixture fraction and that is square and the dissipation term depends on some timescale ratio 



Cφ and the turbulent isolation that allow some sort of a ratio between these 2 that. So, that is 

what one can get. 
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Now, it comes to the point how you define your PDF function or probability density function, 

which is in presumed shape. So, the one which is quite popular in literature, the definition is in 

gamma function. So, the fz(z) is defined as: 

𝑓𝑧(𝑧) =
ɼ(𝑎 + 𝑏)

ɼ(𝑎)ɼ(𝑏)
𝑧𝑎−1(1 − 𝑧)𝑏−1 

Now here we use the value of mean mixture fraction and the variance b is defined by (
𝑎

𝑍̃
− 𝑎) 

and a is: 

𝑎 = 𝑍̃ [
𝑍̃(1 − 𝑍̃)

𝑔
− 1] 

So, we need information of both Z and Z variance, which we get from the transport equation 

or other in the physical plane physical space solution of transport equation. 
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And now you can see in the physical space as these guys are evolving, because they have 

answered the effect they have convection. They have diffusion and G also has some source 

term. So, their evolution is not going to be very unique, they would be quite scattered there 

would be effect of turbulence and once you find or get that evolution pattern using that you can 

find out this b at every location in the flow field.  
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And then you can estimate that probability density function for that value of Z and Z variance 

and then using that you can find out the mean things. So, this is one of the example which has 

been taken from a delta burner where it is a laboratory scale natural gas burner. This is where 

CH4 is burning and you can see these and beta function and the gamma (𝛾) is: 



𝛾 =
𝑎

𝑍̃
=
𝑍̃(1 − 𝑍̃)

𝑔
− 1 

And it is a different shapes of the mixture fraction PDF found in different region of the flame. 

So, you have this region and other region and you can see the difference shape. So, that means 

this distribution function since this is a strictly a function of Z variance and 𝑍̃ they are evolution 

will dictate how this object is going to look like. 
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So, this is an important information one can have now, to complete this part of the discussion 

on the equilibrium flamelet model. So, what you can see this is a case for infinitely fast one 

step reaction that means, Fuel + oxidizer to get product. This is infinitely fast reaction. So, this 

whole thing will give you a complete idea about how the whole things are handled in RANS 

framework.  

 

So, in Eulerian phase or framework you saw pressure, velocity component, mixture fraction 

and variance, and which also in connection with turbulence variables with the k, epsilon and 

omega. So, all these mean proves you solve in the Eulerian field. Now, using this information 

of Z and Z variance, you can find out the probability density function which will look 

something like that, which is essentially a gamma function.  

 

So, that gamma function you can estimate and you get in for a particular location, particular 

instant of the time and this would look like this. Now, from our equilibrium calculations, we 

have a local flame structure, where oxidizer becomes 0 at Z stoichiometric, fuel will become 



0, because this will vary from 1 to 0 oxidizer rule. Well, so, this is a profile of oxidizer. This is 

a profile of fuel and this is a profile of temperature which is strict function of Z. 

Now, we use this information of local flame structure and probability density function we get 

the mixture temperature. Also we can find out YF and Yu. Using this, we estimate the mean 

density. Now, these mean density has an impact or effect of the temperature due to reacting 

system and that is fed to the Eulerian framework. Now again the Eulerian system is solved and 

next instant of time depending on these values we do the same thing. So, these goes in a loop. 

So, that means that coupling between these so you can think about there are 2 stages of the 

whole business or 2 system this split into 2 parts. One is this mixing part and this is the reaction 

or equilibrium kinetic part and they are connected between these to the mean density. Because 

mean density is the term which actually connects these Eulerian mean profit calculations 

because that has all these density and other side is the local flame structure.  

 

So, that is fairly give you an idea how your equilibrium assumption or equilibrium flamelet 

model works and that is simple enough to be implemented.  
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Now, coming back to this picture, this is what our flamelet model where it belongs, it is a flame 

normal analysis that means you actually convert these things along these normal space. Now, 

we are discussing about system of non-premixed flame.  
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So, that is what one can use. Now, something more about this mixture fraction this we have 

already that fraction of the mass present locally. And this is how the equation looks and fuel 

inlet of the air and fuel. Now, the question here is that can it be expressed in terms of measurable 

quantities? 
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That is what is quiet important that how do you estimate these things in terms of some quantities 

which are miserable. Now, we use the definition of the Lewis number. So, the Lewis number 

for individual species would be: 

𝐿𝑒𝑖 =
𝐷ℎ
𝐷𝑖𝑚

 

This 𝐷𝑖𝑚 is mixture thermal diffusivity, species diffusivity with respect to mixture. Now, it is: 



𝐷𝑖𝑚 =
1

𝐿𝑒𝑖

𝜆

𝜌𝐶𝑃
 

Now, this will be the species mass fraction equation on steady term, convection diffusion 

source term. Now convert that thing and use the information of the Lewis number we get this. 

So, it is basically these particular term is kind of replace to it this. 
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Now, once we do that, what happens? So it taken situation again that single step kinetics with 

irreversible reaction, fuel, oxidizer and product. Now we find out the scalar without the source 

term. So that means, Zun which is defined as: 

𝑍𝑢𝑛 = 𝜈𝑂𝑊𝑂𝑌𝐹 − 𝜈𝐹𝑊𝐹𝑌𝑂 

This is how it is defined. What we can see now.  
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We multiplied this particular equation this is what we got using the Lewis number you 

multiplied with first 𝜈𝑂𝑊𝑂 and this is the fuel mass fraction or mass transfer equation and the 



second one which is the oxidizer mass transfer equation. So, we multiply this one with the fuel 

𝜈𝐹𝑊𝐹 this is 𝜈𝑂𝑊𝑂 from this one to this one if we subtract. So, you get: 

𝜕𝜌𝑍𝑢𝑛
𝜕𝑡

+ ∇̅. (𝜌𝜈̅𝑍𝑢𝑛) = ∇̅. (
1

𝐿𝑒

𝜆

𝐶𝑃
∇̅. 𝑍𝑢𝑛) 

So, that the diffusivity of the fuel and oxidizer are equal stoichiometric values are. So, this case, 

we are assuming that DF and DO are same. 
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Now we construct the mixture fraction. So, this is a normalization to ensure the boundary 

condition now, this is the oxidizer side, this is the fuel side up to stream and this would be: 

𝑍 =
𝑍𝑢𝑛 − 𝑍𝑢𝑛,2
𝑍𝑢𝑛,1 − 𝑍𝑢𝑛,2

 

𝑍𝑢𝑛 is: 

𝑍𝑢𝑛 = 𝜈𝑂𝑊𝑂𝑌𝐹 − 𝜈𝐹𝑊𝐹𝑌𝑂 

 

So which you can write: 

𝑍𝑢𝑛 = 𝜈𝐹𝑊𝐹(𝑠𝑌𝐹 − 𝑌𝑂) 

𝑍𝑢𝑛,1 is: 

𝑍𝑢𝑛,1 = 𝜈𝐹𝑊𝐹(𝑠𝑌𝐹,1 − 𝑌𝑂,1) 

And, 

𝑍𝑢𝑛,2 = 𝜈𝐹𝑊𝐹(𝑠𝑌𝐹,2 − 𝑌𝑂,2) 

So what we get: 

𝑍 =
𝑠𝑌𝐹 − 𝑌𝑂 + 𝑌𝑂,2
𝑠𝑌𝐹,1 + 𝑌𝑂,2

 



When inlet is 1 is fixed to fuel inlet that is other one side is oxidiser inlet. So get an expression 

for Z which uses the mass stoichiometric ratio, which is: 

𝑠 =
𝜈𝑂𝑊𝑂

𝜈𝐹𝑊𝐹
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Now, if you have detailed chemistry, then how do actually construct this mixture fraction. So, 

this is a very known formula or it was derived by professor Bilger. This is a scalar without 

source term, but the species molecules which are component or has elements of atoms C, O, H 

and N. Let 𝜇𝑘𝑗 denotes the number of atoms of element k in molecule of species j. So, we go 

by the element mass fraction definition which is for a element k of a mixture of species is given 

by: 

𝑍𝑒,𝑘 =∑𝜇𝑘𝑗
𝑊𝑒,𝑘

𝑊𝑗
𝑌𝑗

𝑛𝑖

𝑗−1

 

Now, the whole idea is that elements are not destroyed by chemical reactions. Therefore, the 

element mass fractions are scalar quantities without chemical source term. Now in the diffusion 

species is described by the diffusion coefficients relative to the mixture and the diffusivity of 

all contributing species are equal, the element mass fraction also has the same Lewis number. 

So this is an important observation. In general case of non-equality Lewis number of the 

element mass fraction has more complex diffusion properties dependent on species gradients. 

So, that is what it has.  
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Now, we can have a stream. Stream 1 and stream 2, and we can normalize that thing. So, Zk is 

an elemental k – at second stream the elemental k by the first stream to the second stream, now 

in the diffusivity of all species same. So, the mixture fraction based on different elements are 

also become identical. So, that is another thing that would happen.  

 

(Refer Slide Time: 26:41) 

 
Now, thing is that how do we extract the mixture faction from the experimental data set. So, 

there are Raman - Rayleigh measurements which provide the simultaneous data on major 

species, but that is not sufficient for a good approximation of the element mass fraction. So, 

what happens that, one linear combustion of element mass fraction can be used like that 

unnormalized mixture fraction: 

𝑍𝑢𝑛 = 𝛾𝐶𝑍𝑒,𝐶 + 𝛾𝐻𝑍𝑒,𝐻 + 𝛾𝑂𝑍𝑒,𝑂 + 𝛾𝑁𝑍𝑒,𝑁 



And then we can normalize this Z unnormalized at second stream to unnormalized at the first 

stream to second stream. So this is at the stream 1 and stream 2. So, this should be Zun,1, this is 

Zun,2. So one can define the stoichiometric conditions for hydrocarbon combustion and inlet 

nitrogen. So it would be: 

𝑍𝑒,𝑂
𝑊𝑒,𝑂

= 2
𝑍𝑒,𝐶
𝑊𝑒,𝐶

+
1

2

𝑍𝑒,𝐻
𝑊𝑒,𝐻

 

And the proposition the Bilger proposed these different things. So, 𝛾𝐶 is 
2

𝑊𝑒,𝐶
, 𝛾𝐻 is this is as 

per Bilgers definition. There is a nice article on this how you can find out this mixture fraction 

or elemental mixture fraction like this. 𝛾𝑂 would be 
−1

𝑊𝑒,𝐶
,  𝛾𝑁 is 0. 

 

Now, once you use these information here, you finally get unnormalized stoichiometric Z is 0 

even in the presence of differential diffusion. So, you can see not necessarily you have to 

actually assume that equal diffusivity even for non equal diffusivity, you get these things to be 

0. So, we will stop the discussion here today and continue these mixture fraction based things 

in details in the next lecture. 


