
Turbulent Combustion: Theory and Modelling 

Prof. Ashoke De 

Department of Aerospace Engineering 

Indian Institute of Technology – Kanpur 

 

Lecture – 45 

Turbulence –Chemistry Interaction (contd…) 

 

Welcome back. So, let us continue the discussion on this different combustion model, we have 

looked at the Eddy break up model and discussed about its issues, advantages and disadvantages, 

then the modification to the  Eddy break up model also been discussed. Now, we will look at the 

Finite Rate Chemistry Model. 
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So, this is more or less detailed. So, this particular one important thing we have previously looked 

at when we talked about the EBU or EDM they are more or less mixing controlled, but this guy is 

kinetically controlled. So, it means the chemistry actually controls the whole physics. So, now, 

here there is approximate in the chemistry time is more than the mixing time.  

 

So, that means it becomes a laminar or laminar-turbulent interaction kind of situation. So, one can 

think about the applicability. So, it can be used in non-premixed mode laminar case or the turbulent 

case either of the situations this is applicable and the source term it is kind of using the Arrhenius 

expression this is we use the mean values for the temperature in Arrhenius expression, but 



importantly here now, this case the effect of turbulent fluctuations are ignored. So, this is one thing 

which would be missing when we actually close the source term.  

 

So, and also when you look at the local temperature that is also quite low. So, these are again I 

mean compared to the previous models, these are some of the issues that are going to come up here 

that it does not account for those things. And also I am in the consideration of the non-equilibrium 

effects and all these things, which are also sort of missing. So, we have looked at the issues of 

EBU and EDM and now, EDM is more mixing controlled. FRCM is kinetically controlled.  

 

So, these 2 are sort of contradicting to each other, or if one actually combines these 2, that would 

be probably the best possible combination and then that can be used for the application. 
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So, that is where we talk about this combination of EDM and FRCM. So, then we can use it for 

turbulent flow with high turbulence and intense mixing and also if you have a laminar structure 

that can be handled easily because now, we are trying to take that advantage of both these 2 models. 

So, essentially the advantages of these 2 models are going to be used to somehow get these 

individuals 2, now when you combined these things.  

 

So, for each cell, the computation of both the reaction rates is done that means, one is the reaction 

rate using EDM and the reaction rate using FRCM, then we look at the smaller one to determine 



the reaction rate. To determine the reaction rate, we pick the minimum of the smaller of between 

the EDM and FRCM. And then we look at the local chemistry and mixing controlled situation 

which allows to choose what is supposed to be added along with this reaction source term to take 

the advantage of whether it is a kinetically controlled situation or it is a mixing control situation. 

So, there you get some advantages, and obviously, you also pay some price. So, there is a large 

range of applicability, so this is one of the biggest advantages that one is the applicability range or 

application range increases that will be one of the best things one would expect to have. 

 

But the other disadvantage is that there is no turbulence chemistry interaction. So, though we are 

coupling these 2 models, then taking the advantage of these 2, but there are still some issues.  
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So, then the further modification which was proposed the Eddy Dissipation Concept, which is by 

extension of the EDM, where it does not take into account the detailed chemistry, but now, EDC 

can considers detailed reaction kinetics. So, that means, it can consider multi-step reaction 

chemistry. So, what it does that if you have a competition cell like this, then you divide that into a 

small section, this is your sort of a reaction zone and this is your mixing area.  

 

So, the cell is divided into two segments, one is the reaction zone which is the fine-scale structure 

and these reactions happen on the small scale which is called the fine-scale and that is the estimated 

like this 



𝜉∗ = 𝐶𝜉 (
𝜈𝜀̃

𝑘̃2
)

1/4

 

And the volume of the cell would be 𝜉∗3. So, reaction rates are determined by obviously Arrhenius 

reaction because that takes into account all the detailed chemistry and then the timescale of the 

reaction. It is also estimated as 𝜏∗, which is  

𝜏∗ = 𝐶𝜏 (
𝜐

𝜀̃
)

1/2

 

So, these are the constants which are default model constant which is proposed originally by the 

EDC model. But, later on, it has been shown by different researchers that this requires some tuning 

depending on the particular application. So, I mean more or less these constants work well for a 

large range of applications, but at the same time, this can fail for the small I mean the particular or 

rather specific application that you want has to delete.  
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Now, once you have this, so, you need the boundary and initial condition for the reactions. So, one 

of the assumptions is that you have a pressure constant situation that means, it is sort of isobaric 

combustion and then you need some initial condition which is quite important that is for 

temperature and the species mass fraction or molar concentration whatever it is, then we need a 

reaction time scale and then the numerical integration that means one of the algorithms which were 

proposed by Pope is that I said algorithm which is quite efficient. 

 



Then you get these numerical, then we close the source term the reaction system this is my 

chemical source term. So, this is for individual species here, since, we are solving individual 

species mass fraction equation. So, each mass species will have a source terms in terms of a 

chemical source term and that is closed like 

𝑆𝑖̃ =
𝜉∗2

𝜏∗[1 − 𝜉∗3]
(𝑌𝑖

∗̃ −  𝑌𝑖̃) 

 

So, this is a mass fraction on a small scale of species after having a reaction over τ. So, that means, 

the mass fraction one has to find out that these things still this is quite. 

 

I mean, if you look at globally, this is a huge advantage from the application point of view, it can 

be applied to a premixed case or non-premixed case or partially premixed case, but it has problems 

if someone applies for using detailed kinetics and all these things. So, when you use the more 

detailed kinetics, your computation power will go up. So, the resource requirement becomes quite 

high and at the same time, this integration of the reaction source term or there that will lead to 

some stiff differential equation, when we try to integrate these species mass fraction. 

 

So, these are the things but there are ways to handle it because these days the computational power 

are quite handy due to the advancement of the architecture and all these things, but the differential 

equation solver, which is another area of concern where the  ISAT-Algorithm has been found to 

be quite effective.  
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Now if we pull up the discussion of this fast part where we first look at the laminar finite rate. This 

is where the issue here is that bigger issues that turbulence is not considered and the reaction source 

term, the calculation is made by the Arrhenius equation and if you go to finite rate of eddy 

dissipation. So, there again we use the Arrhenius expression to the calculation of the source term 

and we calculate the mixing rate and this is a local choice with a laminar or turbulent depending 

on what is used.  

 

That means primarily there is in now the eddy dissipation. This is solely calculation of mixing rate 

here the kinetics is not considered that means, it is more or less, so this case is mixing control and 

then finally we get eddy dissipation concept for the actual interaction between turbulence and 

chemistry these are taken into consideration and then detailed chemistry can be used.  

 

So, all said and done this looks and quite advantages in that way, and the applicability is also quite 

high because one can use this particular model to irrespective of mode of combustion, the reason 

is, it solves for individual mass transport equation. So, that gives you the simple models. 
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Now, then we can look at a slightly advanced model that is based on statistical methods so that 

would be also quite handy. See, so this set of models, what we discussed here can be theoretically 

applied to any mode of combustion, but obviously, with some advantages and disadvantages, and 

then these are the ones which are very specific to this particular mode of combustion. 
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Now we move to the statistical methods where we can see what are the sample spaces. What are 

going to be the probability, cumulative distribution function, probability density function, then 

moments of a PDF, joint statistics, conditional statistics? So, some of these terminologies, these 

things are required for a statistical-based model and this is primarily adapted from Pope.  
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So, now we can look at the probability of an event. So, the probability of an event probability in a 

sample space. So, what is sample space? Sample space is nothing but a set of all possible events. 

Now, for the velocity field, you think about there will be a random variable of U and then the 

sample space variable V which is independent of the variable. Now, for example, if you take this 

is my sample variable V and this is let us say event a then this is where you can say that  

𝐴 = {𝑈 < 𝑉𝑎} 

Similarly, one can look at the event B where again in the sample space, this could be  

𝐵 = {𝑉𝑎 ≤ 𝑈 < 𝑉𝑏} 
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Now, the probability of the event A would be U when it is less than Va .So, that means  

𝑝 = 𝑝(𝐴) = 𝑝{𝑈 < 𝑉𝑎} 

and the probability P which is lies between 0 to 1 when it is 0 which means, it is an impossible 

event and when it is 1, it is a sure event.  
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Now we look at the CDF or cumulative distribution function. Now, one can look at the probability 

of any event which can be determined from the CDF. So, let us say  

𝐹(𝑉) = 𝑃{𝑈 < 𝑉} 

This is my A where U<Va then  

𝑃(𝐴) = 𝑃{𝑈 < 𝑉𝑎} = 𝐹(𝑉𝑎) 

 

For event B , 

𝑃(𝐵) = 𝑃{𝑉𝑎 ≤ 𝑈 ≤ 𝑉𝑏} 

                                                                  = 𝑃{𝑈 < 𝑉𝑏} − 𝑃{𝑈 < 𝑉𝑎} 

= 𝐹(𝑉𝑏) − 𝐹(𝑉𝑎) 
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So, there are some basic properties of CDF. So, let us say occurring of an event which is U less 

than -∞ is impossible. For which one can say if -∞ is 0 then occurring of event either U less than 

+∞ is sure for which one can write this is 1 and third F is a non-decreasing function for which one 

can write F(Vb) greater than equals to F(Va) for Vb greater than Va and one can write 

 

𝐹(𝑉𝑏) − 𝐹(𝑉𝑎) = 𝑃{𝑉𝑎 ≤ 𝑈 ≤ 𝑉𝑏} ≥ 0 

 

So, I can look at this is let us say 1, 2, 3, 4 this is V and let us say this is F(V) -1, -2, -3  -1, -2, -3. 

So, this is how this guy will vary. So, this is the same CDF of Gaussian distributed random variable.  
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Now, if we take the derivative of CDF that will give you the probability density function. So, that 

means  

𝑃𝐷𝐹 ≡ 𝑓(𝑣) =
𝑑𝐹(𝑣)

𝑑𝑥
 

If that is what this is my probability density function which is represented the derivative of my 

CDF now also PDF will have some properties one of the properties is that CDF when the CDF is 

non decreasing. The PDF that is f(v) would be greater than 0 then it also satisfies the normalization 

condition that means, which is 

∫ 𝑓(𝑣)𝑑𝑣 = 1
+∞

−∞

 

 

Third for the infinite sample space variable you get  

𝑓(−∞) = 𝑓(+∞) = 0 

So, one can look at this 1, 2, 3 -1, -2, -3. So, this will go between like this. This is my v this is my 

F(v) (2π)-1/2, so again the PDF of Gaussian distributed random variable.  
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So, these are the function often now one can look at more specifically, let us say in the particular 

event for our event V which was occurring there in the sample space. So  

𝑃{𝑉𝑎 ≤ 𝑈 ≤ 𝑉𝑏} = 𝐹(𝑉𝑏) − 𝐹(𝑉𝑎) 

 



So, if I schematically look at it, this is 0 let us say Va, Vb and so the curve goes like that. That is 

one this is my F(V). 

 

So this is my distribution of this guy and the same thing when I put it back 0. This is my space V, 

this is Vb, this is Va, so this is the part which corresponds to, so the interval where Vb - Va tends to 

0 the probability will be 

𝑃{𝑉 ≤ 𝑈 ≤ 𝑉 + 𝑑𝑉} = 𝐹(𝑉 + 𝑑𝑉) − 𝐹(𝑉) 

                                                                              = 𝐹(𝑉)𝑑𝑉 

So that is how you get for the PDF. 
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Now, we can take some examples like this is a distribution of CDF and this is the probability 

distribution function. So, this is a uniform distribution where probability distribution will be 

between a to b to 1 by b - a otherwise 0. So, this is how it looks like this is how the CDF variation 

is there. 
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So, this is a uniform distribution, you can take an exponential distribution or this is how CDF looks 

like and this is how the PDF looks like. And when V is greater than 0, this is 
1

𝜆
exp (−

𝑉

𝜆
). 

 

 

So, that is to give you an idea from CDF and all this.  
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Now, this is a normal distribution, which already we have seen. This is the CDF variation and this 

you get. 
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And now, if you have, for example, δ function distribution that means the CDF is here applicable 

they are so, that means V less than a, 0; it would be p for a<V<b. So, that is my CDF. So, this can 

be written like a function. Now the probability distribution at this point there will be the peak. So, 

this is my probability distribution function of that. 
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Because now we can take the let us say PDF of U is known then we can find that nth moment. How 

do you find that nth moment would be  

𝑈𝑛̅̅ ̅̅ =  ∫ 𝑉𝑛𝑓(𝑣)𝑑𝑣
∝

−∝

 

 



And 

𝑄(𝑈𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∫ 𝑄(𝑉)𝑛𝑓(𝑣)𝑑𝑣
∝

−∝

 

 

. Now, you can take the first moment if n =1, then this will be 

𝑈̅ =  ∫ 𝑉𝑓(𝑣)𝑑𝑣
∝

−∝
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Similarly, you can find the nth central moment, which is let us say 

(𝑈 − 𝑈̅)𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∫ (𝑣 − 𝑢̅)𝑓(𝑣)𝑑𝑣
∝

−∝

 

 

 So, the n equals 2, which will give you the second central moment, which is essentially the 

variance of U, which give you  

𝑈′2̅̅ ̅̅ = (𝑈 − 𝑈̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∫ (𝑣 − 𝑢̅)2𝑓(𝑣)𝑑𝑣
∝

−∝
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So, from the PDF you can find out now, we can look at the joint cumulative density function. So, 

that is the joint CDF of random variable U1, U2 in general. So, the joint CDF would be written that  

𝐹1,2(𝑉1, 𝑉2) = 𝑃{𝑈1 < 𝑉1, 𝑈2 < 𝑉2} 

 

So, this is a distribution of V1, this is a distribution of V2. So, the joint CDF will belong in this 

particular space because this is more than V1 more than V2. So, this is the idea for this that means 

it is dependent on 2 spaces.  
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Now some properties of that this is non-decreasing function that means, 



𝐹1,2(𝑉1 + 𝛿𝑉1, 𝑉2 + 𝛿𝑉2) ≥ 𝐹1,2(𝑉1, 𝑉2)  𝑓𝑜𝑟 𝛿𝑉1, 𝛿𝑉2 ≥ 0 

 

 Now since U1 < -∞ is impossible, which gets you 

 

𝐹1,2(+∞, 𝑉2) = 𝑃{𝑈1 < +∞, 𝑈2 < 𝑉2 } = 0 

 Also U1 < +∞ is sure you get  

𝐹1,2(−∞, 𝑉2) = 𝑃{𝑈1 < −∞, 𝑈2 < 𝑉2 } = 𝑃{𝑈2 < 𝑉2} = 𝐹2(𝑉2) 

 

So, this is one can think about a marginal CDF which means, 

𝐹1(𝑉1) = 𝐹1,2(𝑉1, ∞) 

 So, these are some of the properties of the joint CDF. Now, we look at the other properties in the 

next class we will stop here today. 


