Turbulent Combustion: Theory and Modelling
Prof. Ashoke De
Department of Aerospace Engineering
Indian Institute of Technology - Kanpur

Lecture-36
Turbulence — (contd..)

Welcome back. So we are in the middle of the discussion of this scaling of the turbulent flow and

we are looking at wall bounded flows and shear flows. So we looked at the effect of the roughness

also, now we will continue from there.
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And what happens in the boundary layer and you have turbulent boundary layer over flat plate.

You have turbulent pipe or channel flow. You have wall roughness. So if you sort of combine that

together, they will get into 3 different

layers one is the inner layer there would be log-law their

overlap region and the outer region. So this is how the complete velocity profile in the boundary

layer, they and obviously you have a in a smooth wall. You have some viscous sub layer buffer

layer and viscous wall region. So in the inner layer, this is the law of the wall.

And when you come to the log region,

there will be log law plus with law of the wake. And then

you come to the outer layer where you have a velocity defect law and this is what it combines

everything together.
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Skin friction coeff- B.L. — zero press. gradient

Estimate from velocity-defect law the ratio U, 'u_:

. g 5 s
U, 1 o ). B4 211 transition around:
U, K v K US 400 = Re, =05510

Skin-friction coefficient in turbulent regime oo
(smooth wall): ¢

Cy T - 5
pUs/2 ~ .
1 e | 21
— —In| Re, |-£ [+B+—
= >

V2 [N
Skin-friction coefficient in laminar regime:
3.25 0.664

C, =

Re;  |Re

144

Now one important thing is that we can find out the skin friction coefficient of the boundary layer
for zero pressure gradient case. Now, we have the velocity defect law, which is

Uu, 1 /6u; 21
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and skin friction coefficient in the turbulent region for the smooth wall is defined as
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If you plot cf versus Rex this is how it moves and when it becomes turbulent, this is how now in

the laminar region.

It would be nicely one can find out it would be order of points Rex that is the curve which shows
that in the laminar but this is the zone where retrieves and then it becomes turbulent. Then it
follows like that.

(Refer Slide Time: 02:34)



Turbulence
K.E. of turbulent flows

Transport equation for kinetic energy of mean flow
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Now moving ahead we can look at the kinetic energy of turbulent flow what we can we have
already seen that there are large eddies which are actually at the energy containing eddies and the
energy transfer from the large eddy to the smaller eddy then from smaller eddy through dissipation
it dissipates. So this is how the energy cascading takes place so we can find out or estimate the
kinetic energy so transport equation for kinetic energy of the mean flow.

We can same transport equation for fluctuating flow and normal Reynolds stresses.
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So these things we can actually now we first look at mean kinetic energy budget. So mean kinetic
energy budget what we look at so this is we can derive the transport equation of mean kinetic

energy. Let us say E which is



F
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Now the diffusion term we can rewrite like
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and the Reynolds term also we can rewrite which is
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Now if | put these things into the previous equation that will get me
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So that is what we get for mean kinetic energy. Now here we can say let us in the right hand side
this would be the term one. This whole thing, we can say it is 2, this guy is 3 and this guy is 4.
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Turbulence

o T,

J 3@ L'TJ.{M = \i ‘T:),\’; o - h il

- - " :,'9“: .75 )

H;' I .- 2 S s KO0, Sl Y
) ™)
W )r” -1 550 &0
|
- / \ ,TAJ

Now term 1 is energy production by pressure gradient then term 2 is the spatial distribution of the
energy by viscous and turbulent diffusion, which means if | integrate over volume by T; dv which
will get me the surface integral of T; nj dA which is 0 when T; equals to zero at A. Now term 3

which is this term which is a loss of energy by Reynolds stress. So using the Boussinesq hypothesis

one can write that,

where Sjj is
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which is the rate of strain tensor of the mean flow.
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Mean K.E. budget: plane channel flow
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And term 4 which is again loss of energy by viscous dissipation. So these are the different terms
in that kinetic energy equation. Now if we look at this mean Kinetic energy equation for plane
channel flow, so that gives me this is a pressure gradient term, transport term, Reynolds stress
term, viscous dissipation term and if you plot this budget term that means this is the individual
term, so you can see the contribution from each of these terms. | mean due to pressure gradient or
the transport and all these things.
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Now we can look at mean turbo kinetic energy budget so we can derive this transport equation
from the Kkinetic energy which we have defined by 2. So this is mean turbulent Kinetic energy
budget. So turbulent kinetic energy would be this. Now we can subtract the mean momentum



equation from the momentum equation and multiply with the u i prime and take Reynolds
averaging. So we first subtract mean momentum equation from the momentum equation and then

multiply by u; prime and take Reynolds averaging.

——2
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now again we can have this is the term 1, this term is 2, and this is term 3. So term 1 is the
production of time where kinetic energy by Reynolds stress on mean flow. So turbulent flow is

essentially unstable. So in stability process transfer of energy from the mean flow to large eddies.

Now term 2, which is a spatial distribution of turbulent kinetic energy by viscous diffusion and
fluctuating velocity plus pressure? And term 3 the loss of turbulent kinetic energy due to viscous
dissipation. Now for a plane channel flow, if you look at the mean turbulent kinetic energy. So this
is the Reynolds stress component, this is transport component, dissipation component and you can
look at the effect of different budget terms for plane channel flow. So once we get this.
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Now also you estimate the local energy equilibrium. So where is the shear production by the

Reynolds stress at certain y* and you have dominant balance in the log layer where this is the



production of by action of large eddies which contributes to maximum of shear stress and this is
the dissipation at small scale. So this production term is based on Kolmogorov theory where

v(t) o g/3[4/3
where so that means in log layer there could be a balance. Whatever is the energy produced by
the large eddies. This should be dissipated by the small eddies.
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So we can apply this turbulent kinetic energy budget for 1 equation model. So the macroscopic

velocity scale is

and macroscopic length scale is

which will get us

vy = UL = CVk I,

Now we can have a turbulent kinetic energy transport equation, which is in terms of
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So this is estimated as



Now local energy equilibrium between production and dissipation in that concept we can write

Ci’ 2 2

which is Prandtl mixing length hypothesis. So advantage of this one equation model is that it
accounts for non-equilibrium effect. So that is in one of the advantage but the biggest disadvantage
is that mixing length must still be specified.
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Now we can have these one equation coefficients that we can consider this logarithmic layer of
turbulent plane channel flow where

Tarl A~ 2,2
—u'v' = u;g
ou  u,
Jdx ky

So this is the coefficient for the c,,

’ Ug
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Now in log layer due to local energy equilibrium you get
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Now we can find out the eddy viscosity for velocity component. Now for individual velocity
component kinetic energy would be

Ugly

Now you can subtract the mean momentum equation from the momentum equation and multiply
by us, SO we get this equation. So which is in terms of which we have got

ok dk ou d 1— 1 dk 1 oul, ou,
— U= = —ulll “+—<—u}—u&2—;p’u&6ja+v—“>+— 'u“—v<—“>

ot Y ox Y x T ox\ U2 ox;

So right hand side you got term 1 term 2, 3 and 4. So you can find out the energy power fluctuating
component like this.
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For a plane channel flow if ky is O then this would be 0, so you can put it this is the shear production
component, these are the transport component, pressure strain term and viscous dissipation. So the
shear production feeds to kxwhich is anisotropy of large-scale motion, so that essentially tells you
how much anisotropy is there and pressure stain redistributes the energy of u to other velocity
components through this.

(Refer Slide Time: 18:39)
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Now we can look at the different budget like budget of kx ky k; and all these details. So this is
taken from this multiple literature where people have looked at for channel flow in details and they
computed individual budget terms and all these things.
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Now if we look at for plane channel flow and energy conversion so we can say that say this is my

sy _ —12
u?. This is mean kinetic energy which is -%‘%”, then it goes to a term which is essentially uT and
! ! ! ! p'2 .
that -2 2% that get you by -2 2% you the 2. So that is another block where u’v*Z
p dz p dy 2 dy

Now here this is nu del u prime by del y square then this - nu del u prime by del x j square, then
this del v prime by del x j square and this one also - nu del w prime by del x j. So all this will
contribute to the one single component is the internal energy which is C v T bar in case of ideal
gas. So this is how the complete picture of the energy conversion look like for a plane channel
flow.
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Now, we move to the another topic where you have the density which varies due to temperature.
That means the between 2 parallel plates will look at Rayleigh Benard Convection. So we have 2
parallel plates plus g this is g direction. Axis X y z and this is how my g is going to act. So these
kinds of things one can observe in atmospheric boundary layer where heating up our surface by
shortwave radiation from sun during the day cooling by long-wave radiation during the night.

Now here Boussinesq approximation would be required. So the temperature variation is connected
with the pressure and hydrostatic variation, which is like this and the Boussinesq equations we

write

aui aui 1 ap 0 U azui

ot "Yox, T peon 6,77 pyox?

So alpha equals to 1 for ideal gas and this is the term which is known as buoyancy effect, so we
have already looked at this equation.
(Refer Slide Time: 23:47)
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Temperature effects

« Basic state: linear temperature profile
between 2 plates

« Based on linear (normal-mode) viscous
stability analysis, fluid layer becomes
unstable when Rayleigh number:
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Flow undergoes several
bifurcations before it
becomes fully turbulent
at high Ra number.

(Experiments by Buhler et al., Acta Mechanica, 1979.)
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Now how temperature affects this is a parallel plate and these are the 2 different temperature it has
and you can see how basic state one can assume the linear temperature profile and based on linear
normal mode stability analysis one can do and find out the rally number, and this is how the
experimentally observed flow pattern in these things. So it goes through multiple bifurcation
before it becomes fully turbulent.

(Refer Slide Time: 24:22)
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Example of convection in atmosphere: clouds
(caused by condensation of moist air)

Cumulonimbus cloud (Grand Canyon)

Source: www.weerfotografie.nl
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So this is another area where and you can see these are the some of the example of this relevant at
conduction in atmospheric cloud where you can see these things.
(Refer Slide Time: 24:34)
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Now we can estimate the turbulent kinetic energy budget including buoyancy effect. So the

derivation would be similar and we have already got the equation, so but will rewrite it, but there
will be effect from the temperature gradient.

ok _ ok o0 g
E-I-uja_xj:_uiuja_xj-l_awg + transport + €

So this again the term one which is a production by the general shear stress. This is the buoyant

production or destruction of turbulent kinetic energy by gravitational forces.
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Now what is buoyant production or destruction, so the Boussinesq hypothesis says that

7 -1
T
So this is a typical gradient diffusion hypothesis in turbulent heat flux were I1; is approximated as
Ve
M, =—
t o,

where gy is the turbulent Prandtl number v, is the turbulent diffusivity, so there could be 2 different

cases, where one case this is an convective turbulence.

_ M, 00
I g =21t 59
0, 6, ot
So this will be buoyant production situation or you can have a situation where
_ I, 00
9w =21t
0, 6, ot

which is buoyant destruction. So we can look at this production and destruction term the buoyancy
effect. Now the other like buoyancy versus shear and all these things that we will discuss in the

next lecture will stop here today.



