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Lecture-35
Turbulence (Contd...)

Welcome back, let us continue the discussion on the turbulence scaling. So, we looked at the
wall boundary flows, where we looked at different region like inner region and outer region
and overlap region. So, that is from there we will now look at the other pattern like the effect
of some roughness and all this thing, that this is where we stopped that you can have an inner
layer, log law layer, overlap layer and the outer layer and then if you put them in the Reynolds
number plot there would be sub layer,
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Inner sub layer, buffer layer, and all these finer details one can actually work out and look at.
Now we will move to the next set of things that is wall roughness on the turbulent boundary
layer. So, what we are interested, this is if you have a boundary layer up there roughness then
what is the effect of wall roughness. So, there could be different scaling law for inner layer
there would be friction factor.
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Turbulence
Wall roughness and turbulent boundary layer

Effect wall roughness (illustrated for pipe flow) ‘ﬂ¥'/——

- Different scaling law for inner layer —_— —
— \_,\

+ Effect on friction factor O \;\?‘—/Q\ s

Analysis of turbulent boundary layer
+ Approximate equations for mean velocity —~ "
=
+ Scaling laws for mean velocity: : ~
- Law of the wall (inner layer)
- Velocity-defect law (outer layer)
- Log law (overlap region)
+ Velocity-defect law = log law + law of wake
- Effect streamwise pressure gradient
on law of the wake
« Skin-friction coefficient ,
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Now, to do the analysis, what one can look at, it can be approximate the equation for the mean
velocity then they can have scaling laws, all of them in velocity like law of the wall velocity
defect law, log law and then find out the skin friction coefficient and all these things. Now, if
you look at the wall roughness, so, what happens in the boundary layer? so, if there is a
roughness with characteristics height is then when you scale the velocity profile or velocity
gradient, there will be another extra length scale that comes into the picture.
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And if someone looks at the plots here, that this is nicely 64/Re plot with the friction factor and
this is for smooth pipe and as Re/x increases, so, you can see the effect of roughness. So, from
smooth to the fully wrap situation and that is how the roughness is going to. Now, scaling over

that outer layer, what would happen outer layer actually unaffected by the wall roughness. So,



this is unaffected by wall roughness. So, the larger eddies in outer region scale with delta since
is by delta is smaller than one.
(Refer Slide Time: 03:01)
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Now the scaling of inner layer depends on inner layer, it depends on S/dy. So, if S/dy is less
than 1, one can write

y ou (Y
2w
U ay 817

So this is for hydraulically smooth wall or if S/dy if it is greater than 1 then

:
R

which is again hydraulically rough wall. Now when you talk about hydraulically rough wall,
so here one can think about the friction at wall dominated by the pressure drag instead of
viscous drag. So, in this case the viscous effect can be ignored. Secondly, the eddy switch is
close to the wall skill with the height of roughness element and the overlap region of rough

wall one can write on the limit that

Jim, 61 ) = Jimos(5) =
So, if you look at the roughness effect on log law, so, generalization of the log law for wall
roughness. So, this is R U + one by Kappa Y by S is by delta V with this factor which is one
by Kappa for S by delta V less than 5, if it is greater than equal to 7 it is 8.5.
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Roughness Effect on log law (I)

Generalization of log law for wall roughness:

= (y) o s | |
u —Inf = |+ Bl — | Sl
X s {0y ) } LTS
| e
o} o N
.| s 5 | i TP
-In} — |+5 for — =<5 f ¥
N N o
{ ¥
with B > i | th 4
o o * 7
8.5 for - 0 $ 3
‘ o ! '
Relrrt! : 26
Alternative representation: Jomoond  § Nlymugh
o A i ’ 0 s,
u - ln{ s ‘ Symbols: expenments by Nikuradse in
K Yo which pipe was uniformly covered with

where y, is the equivalent roughness height sand graine
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where 1y, is the equivalent roughness height. Now one can interestingly look at this B versus

s/dv and that variation and there is an i data base, which is the experimental data one can see,
and this is a smooth wall when s/dy is less than 5, and this is fully rough beyond 70. And in

between, this goes through. So this is from smooth to rough. So, in between the region, slightly

mixed, y, the mix situation one can expect.
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Roughness Effect on log law (II)
Rewrite logarithmic law in following form:
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(From: White, 1974)
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Now, second situation, one can rewrite the logarithm law in the following from,

1
ot =in (l) +52
K \J,

So, this will replace my logarithm law for smooth wall, so we invoke that term, okay. That is
my smooth wall effect. And then this is the displacement of the velocity profile you to
roughness. So it is essentially taking care of the smooth wall effect plus the variation due to

roughness variation. So, for fully rough one this would become

1 y
=t — 2\
U Kln(&,) 3.3

that is
> — 70
5,
So, this will become
Aut = 7.1

So, this is the same thing, what one can plot for %* by Y* and you can see the differences by
delta v ratio and how the profile looks like. Now, also for this rough pipe, one can find out the

friction factor. From log law, one can estimate the bulk and centreline velocity. So, we have
u,-U, 3
U, T 2k

So, this one can try out. Now, we can estimate from the law the centreline velocity will be
u, 1. /(R
—~>ln (—) +85
U, K S
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Friction factor for fully rough pipe
» From log law (in defect form) estimate relation bulk and centerline velocity:
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and the friction factor is equivalent to

dpx 2R :8(2)2

/= _W(pug) Uy
2

So, essentially which brings, if f would be of this order

f=
|1.9910g1 (g) + 1.71]2

and if you put this thing in the plot, which is a Re, then this is the 64/Re curve and then the
other curve one can and this is for different is Y delta v and this is for this Y R/s. Now, if you
go to turbulent boundary layer, so this is in flat plate flow becomes turbulent here.
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Turbulent boundary layer

Free stream flow irrotational: v [Vo/U| <<1
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Assumptions:
1. Slow streamwise evolution: 5/L <<1
2. High Reynolds number -
> viscous effects on mean flow can be neglected, except very close to wall
3. Turbulence can adapt itself to changes in mean flow m

(%% INDIAN INSTITUTE OF TECHNOLOGY KANPUR Ashoke De 127



So, this is our boundary layer profile. Here obviously Vo/U, is quite small that means that the
various and industry moves direction and the feast employs the rotational so that will satisfy
au, av,
dy 0x

0 and also boundary ethics is 6/L less than 1. So 1/L will be scaled as

1_ 1d6|
L |6dx

Which are kind of associated with that, one is the slowest term was evolution that means /L
is quite small that means, in this direction that growth is quite faster. Secondly, it is a high level
summer case. So, viscous effects on mean flow can be neglected, except very close to wall,
were the boundary layer and all these different and it can adapt split to changes in mean flow
which is essentially the property of self-preservation. So, now,
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Boundary layer thickness

« Based on 99% of free-stream velocity: )
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Boundary layer thickness based on 99 % of free-stream velocity we can define u at y equals to
dis
u(y=296)=0.990,

Res would be
Reg = 6U, /v

Similarly, one can find out the displacement thickness which is



oo

- -2)e

0

and
Reg = 6"U, /v

and also the moment of thickness which is

(0]

0

So, these are the momentum thickness, displacement thickness and free stream velocity these
things are very standard and one can define those.
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Simplifications:
No mean flow in z-direction because of symmetry
Flow is statistically stationary
Flow is statistically homogeneous in z-direction
Assumption: slow streamwise evolution (and Reynolds stresses of same order-of-magnitude)

Now, how we simplified the governing equation so, we had continuity equation and momentum
equation in 3 dimension in Cartesian coordinate system. So, no meaningful z-direction because
of the symmetry. So, these terms goes off, flow statistically stationary. So, the stream wise goes
up flow is statistically homogeneous in z-direction. So, get these terms are also going up and

this also goes off, the complete gen momentum equation and also streetwise evolution is slow.

We can use the same magnitude analysis for and this term. And now from here we can get our
boundary layer equation. So the boundary layer equation we get is that for free-stream region,
We have



1 ap, dUu,
p ox S o y

since

IVo/Us| <1
Now we can integrate y momentum equation from y to 6 and use zero stress condition at the
boundary layer top.
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So, that will give us
5
7 ov
%zi)—o+v——v’v’+j u—+v—>dy
y

Now we can take the derivative to x and make use of the continuity equation + equation of the
free stream. So, that will get us

5
10p du, N 62ﬂ+62v’v 0 f + )d
pdx Yolax TV axz T Toxz dy u v Y
y

Now we can substitute the pressure gradient into the x momentum equation and what we get

from x momentum equation



du_l_ f + d N dUO+ 62ﬁ+62v’17’ ou'v’
udx vdy ax v VI % g TV axz T oz dy

So, there are small terms which is slow evolution of boundary layer or inner stasis of the same
of the order. So, these goes off these also goes off and these goes off.
(Refer Slide Time: 14:57)
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So, from the approximate momentum balance we get
ou ou du, N 107
ox ' Vay " %Tax T oy

— ou [P
T=pv 3y pu'v
Now we can integrate these equation send from wall to Y. We guess
T du, N fy( ou N au)d T(u)
p_uT Yo% 0 “ox ”ay yi u P

Now we use a boundary condition at the boundary layer top.

Where t(6) is 0. If we put that, what we get is that
8

Tow(1-2 fy(a_“ a_“> 4 (a_” a_”>
5 uT(l 5) u6x+u6y dy — 5 uax+vay dy

Where



w? du, 1 (° (_ o aa)
5 "Tdx 5,
So, this is what you get, for 0 pressure gradient boundary layer profile if we plot this is how
you have this and this is the y by delta.
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B.L. profiles- zero press. gradient

intermittency
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Total stress profile is approximately linear — similar scaling of mean velocity
profile expected as for turbulent pipe/channel flow!
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So, this is Blasius profile and turbulent case, this is the variation of the u/d intermittency t/ tw
in blue and that is the variation. So, total stress profile is approximately linear. So, one can
think about similar scaling of mean velocity profile as for turbulent pipe and now, if we go to
the law of the wall, so, there are multiple experiments and simulations have been done to find
out or confirm this law of the wall, which is inner layer with y/ less than point one.

(Refer Slide Time: 17:54)
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Law of the wall

Experiments and simulations confirm universality of law of the wall in the
inner layer with y/3 < 0.1 :
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So, this is a plot for u™ versus y*. So law of the values u™ is a function of y*. So, this particular

zone where y* less than somewhere 5 it is a viscous sub-layer then 5 to 30 is the buffer layer



and 32 somewhere above hundred is log layer, where it follows this log profile and this is the
upper bound in one limits of log region with increase in x. Now, if we look at different layers

now, inner layer, what do have mean velocity profile, total shear stress t/p is

T ou =
—=v——u'v
dy
(Refer Slide Time: 18:54)
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Now, we can use prandtl mixing hypothesis to get

— 2

T 6ﬂ+lz (6u>
o’ ™ \oy

Now we can normalize this one by év and u. so that we get
v _oat o, (0 ’
7w oyt T M\ 5y

Now, once we solve for the velocity gradient, what we get this

2T
out T

w
ay+

Ciefiea () @]

(Refer Slide Time: 20:42)



Turbulence
Inner layer — mean vel. profile (II)

» Model for mixing length in whole inner layer (for a smooth wall):
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The inner layer Ti is order of 1 which gets us back that it should be

out 2

oyt 14 [1+4(l})?]Y/2

So, if we look at the inner layer mean velocity profile so model for mixing length in whole
inner layer for smooth wall. This is
y+
Ln = ky™[1—exp <— A_+>]
So this is the Van Driest damping function and that follows like this, which is y* and u* y*
follows this line, where A* turns out to be 26. So there are evidences also with the

measurements and simulations for this kind of profile, which are.
(Refer Slide Time: 21:21)
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Mixing length — turbulent B.L. (zero press. gradient)
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(DNS data of Spalart (1988), taken from Pope.)

Now, if you look at the mixing length boundary layer, which is a zero pressure gradient case,
then the mixing length model gives you that is inner stress the order of vt and velocity gradient
which one can write [2, and magnitude of the velocity gradient to the velocity gradient. And if
you plot those things, this is how In is varying. This is how vt is varying with y/3. And this is
the van driest model and for 0.11. So, one can recreate these things very nicely.

(Refer Slide Time: 22:06)

Turbulence
Velocity defect — outer layer

» Velocity-defect law in the outer layer for y™ > 50 :
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(Experimental data of Kiebanoff (1954) for zero pressure-gradient boundary layer, taken from Pope.)
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Now, there will be velocity defected the outer layer also. Now, when y * > 50. We can have an

velocity defect which is

So, this is for n fixed stream is pressure gradient. And you can see when we plot these velocity

defect with y/6, this is the line it follows and this is the log layer. And if you only look at the



normalized velocity profile mean velocity profile y/s, this is how it follows and there is a
contribution comes from the wake.
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Now, this is velocity defect law, we can find out now let us say for y/d greater than 0.3 the log
law deviates from the velocity defect law. The difference between 2 laws is the law of the

quick. So, what one can write is that

So, this is our log law outer scaling. So, this is velocity defect law. This is log law and this is
the law of the wake where this is
KB,

=

here w is the wake function and this we extend parameter or calls parameter. So, you can have

an alternative formulation which looks like

U So, this is again log law of the inner scaling and this is the log the wake.

So, for complete smooth wall, velocity expression in boundary layer would be



+

u y 2 n o,y
_ = d + _ -
" L T+ +a0) 2™ +20(5)

So, this gives you law of the wall with band lyst model this is law of the wake. So, this is law
of the wake and this is law of the wall. So, then within the boundary layer you get complete
profile. Now, you can find out the wake function.

So, the law of the wake is universal function of y/& which is consistent with velocity defect
law. And w(y/d) would be

w (%) ~ 2 sin? (g%)

Now, we can define the wake strength parameter. So it depends on essentially depends on
streamers pressure radiant.
(Refer Slide Time: 26:20)
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So you can write
6*U,
5* dp, ( u )/ur
N=1(0R); B=— = — L
(B) B Ty dX (dUo -1
dx

which you can think about the time scale how large it is in outer layer this is time scale of free
stream flow. So, this is known as clauses parameter. Now, one important thing to note here that
turbulent boundary layers are self-preserving. When this pi is constant in x since in this case
the large eddies is in the outer layer can adapt to changes in the free stream flow.
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Wake strength
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Now, if you look at for flat plate which is a 0% radian in steamers direction this will be almost
hub. So, again one can put these things and look at the wake strength. This is your U + masters
y + and this is increasing beta mild average strong average very diverse. So, depending on this
and this is the separating flow. So, you can actually define this and this is how pi vs between

of varies.
(Refer Slide Time: 28:56)
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Wake strength — plane channel flow
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Wake strength parameter of plane channel flow is small compared to
boundary layer over flat plate — weak effect of pressure gradient on wake.
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So, you can actually define this wake strength and if you look at for plain channel flow, this is
the velocity defect with y/& and this is our maximum deviation at y/5 and this is the plot for

pi which is a different values. So, extend parameter of plain channel small compared to

boundary layer or flat plate. So weak effect of pressure gradient on wake. So we'll stop here

today and continue this discussion

in the next lecture.



