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Lecture-34
Combustion in 2 Phase Flows (Contd...)

Statistical turbulence
Welcome back. So, let us continue the discussion of the statistical turbulence and we are
looking at this simple jet flow and looking at the solution.
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We derive the governing equations for the with the assumption like mean 2-dimensional flow
and statistically stationary system.
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Turbulence
Mean flow solution procedure

1. Order-of-magnitude analysis - further simplification of governing equations
SE e e

. Require self-preservation = find expressions for both y, ,(x) and Uy(x)

. Solve resulting differential equation for u

Check your assumptions
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Now, we can find out the mean flow solution procedure. We will do by order-of-magnitude
analysis. We can further simplify the governing equation. Then requires self-preservation to

find the expression for both y:(x) and U,(x), then we can solve the resulting differential

equations and we can see the assumptions that we had.
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Now, first thing is that order of magnitude analysis 1.
We can see the different length scales or variations in the flow.

W yip 9x L[|y dx

Now we can look at the velocity scale

u=0(,), uaj=0w?
u * can thought about as a typical velocity scale of eddy.
Now, we can have some assumptions

1. 2«1
L

2. Re="en2y L

v Yi/2

3. =0 ([“Ll]m)

Point 1. means the streamwise evolution of the z is quite slow. Point 2. tells that at the large
Re. So, the viscous effect is quite negligible on the flow. Point 3. means the turbulence adapts

itself to changes in mean flow.
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Now, we look at the order of analysis 2.
In that case from continuity we can write

v=20 (%uo) K U

Now, we can estimate the terms in the y momentum equation.
ov U2 ov Ug?
— _0<L.3’1/2>, 5_=0<L.3’1/2>

Yax T\ L 3y L L
10p
———=0(?) Notknown
p oy

Then the diffusion component

Y ———
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So, we can now move to at the third level. Now, we have a simplified y momentum equation,

which is now

Do —— —-1dp ov'v'
— H —

p 76x~ dx

now if we substitute this in x momentum equation.
_ou N _du_ d[[v'v —uu] N 0*u N o*u\ ov'u’
Yox " Voay T V\axz Tay2) T Tay

d0x dy dx
Now, if you do this estimate that terms in x momentum equation using assumption 2 and 3.

We can get rest of the orders

_0u_ Up?
Yox T L

_ou_ Uy”
”ay_ L
o[[v'v' —u'u'] U;2 _ E Yi/2
_0( )_0( L’ L )
0%u Uy? v Uuy? 2
v o B2 Y ) o L[M]
dx? L L uyi, L L

0%v Ug? -1y Ug?
v—=0 = }’1/2] . K0 =
dx? L L UpY1/2 L




Now the last part is that so now we required the balance of the leading term. So, the streamwise
advection is

_odu N _ou v

v 0x v dy dy

So, first term is streamwise advection, second term is lateral advection. RHS term is lateral

turbulent diffusion. Now this can be solved along with the continuity equation which is
ou Jv
ax oy

So these two equations should be solved then we get the self preservation.
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We can introduce some stream function that automatically satisfy mass conservation where

Y =upy; o F () & =——
Y12

That means | can have mean velocity profile as u = uoF'®) = uyf (&).

Now similarity solution for turbulent stress which is from the again experimental observation
which will give u'v’ = uy2g(§).

And if we establish the relation between f and g using the boussinesq hypothesis so, that is give
us that

ou 1 UoY1/2
"' = —_ = —_— ,’ R =
uv V¢ dy - Jg Retf €t

Vi
Now, Re; must be constant in x if flow is self preserving, which means v, should be equal to

uyy1 /2 and also turbulent viscosity is assumed to be constant in y.
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So, then my Self Preservation 2 would provide me substitute the self-si

momentum equation. We will get

(M%) 2 _ Ld_<u°y1> FF =
u, dx

2
u, dx Re;

This will be self preserving if

1
yi duo
—~—— = constant
Uy dx
— 2 = constant
u, dx

which follows that ~ y1 = S(x — x) , Uy = A(x — x)"
2
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milar solution into x

S is tangent of spreading angle and n is the exponent which is undetermined. So, we need an

extra equation.
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Now, we will get an extra equation for u, from

aﬁd N awd f au'ﬁd

X - - = - =
0 0x Y dy Y dy 4
y=—00 y=—00 y=—00

Now the streamwise momentum is conserved.
we get

M = f puudy = pu;*d (constant)

y=—00

M = pu,?y1 jfzdf = constant
2

This will be also Self Preserving, if u,2y: is constant. The solution which will get for the u,
2

u, = A(x — x) "2

. u A -
where Reynolds number is Re = % = 75 (x — xo) "2/
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Now, the solutlon of the resultlng equatlon WhICh will give
1
=2a%(f2+ f'F)=f" ,azzzSRe
we can get
1 i
f2+ f'F =5 [F2)" —a?[F?]" = F

So, —a?F%? = F' + C,& + C, Here C; becomes 0 because of symmetry.

F'(0) = 1,F(0) = 0 Which gets C, = —1. So, the solution for F and f will be

1

1 —
F = ;tanh(af) f= cosh(a$)?

1
f) = 5 a ~ 0.88
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similarity solution for a plane turbulent jet

Turbulence

Similarity solution of plane turbulent jet
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is the profile of u by u,, this is for turbulent Reynolds number of 31.
So, this gives you an idea how things vary with.
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So, you can see for a similarity solution for a plane turbulent jet. We can see how it varies. This

Similarity solution of plane turbulent jet
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Turbulence
Scale similarity of round jet

Re =U,d /v = 1500 Re = 20000 Jet from rocket motor,
. . Re = 200-10¢. (Pope, p. 4)

(from: Dahm & Dimotakis, 1990)
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Now, at the same ﬁme, these non-dimensional velocity This is how it varies and this will give
you an idea about the scale similarity of the round jet. The similarity means there will be
similarity of the large-scale structure. But, once we go from this first to last in above slide, the
range of small scale structure actually increases.
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turbulent wake
past sphere

example of self-preservation:
wake behind ship and small plate in laboratory

OV e
Re=107 L A8 Y Re=4300

(M. Van Dyke, Album of fluid motion)
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So, this is again some of the pictures like this is mixing layer jet, wake, this is the turbulent
wake behind the sphere. So, this shows the self-preservation this is a high Reynolds number

and a low Reynolds number. These are all example of self-preservation of the system.
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Wake
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Now, we can see what happens There is a C|rcular cylinder or a C|rcular obstacle here and is
behind the width. The flow field takes on this kind of profile, but because of this pattern, there
is a deficit. So, there is a velocity deficit at the center line in the wake and the half width is

shown.
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Self Preservation
l T {\ 0.000
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obstacles) | 7‘m|7(7wake behind airfoil)

Self-preservation for x/d > 80..200 (cylinder): when scaling with
U, and v, , , the turbulence statistics are invariant in x.

(experimental data from Wygnanski et al., J. Fluid Mech., 1986)
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Now, when you talk about the self-preservation and this is what =~ plot. shows nice plots and

Yi/2

this is how the wake behind the fluctuating component behaves. So, this gives you an idea and

there are flows which essentially shows this kind of behaviour.
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Governing Eqgn.
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Simplifications:
Mean flow is 2D -

« Flow is statistically stationary
Flow is statistically homogeneous in z-direction
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Now, coming back to that we had mean flow in 2D so, we got rld of the terms as above,

because of the flow statistically stationery and flow is statistically homogeneous in z-direction.
So, this is the equation we started off.
(Refer Slide Time: 20:18)
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Solution of mean vel. profile

1. Order-of-magnitude analysis - simplify governing equations
2. Require self-preservation - find expressions for both y, ,(x) and U (x)
3. Solve resulting differential equation for u

4. Check assumptions of order-of-magnitude analysis

u
" LN
%o ¥, 4x)
s, U,(x)
obstacle
n uniform flow u(x.y)
with velocity U,
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Now we find out the solutlon of mean veIOC|ty profile in the wake. We will again start with
order of magnitude analysis and then simplify the governing equations. We find out the self-
preservation and solve the required equations. And once you do that, we can get the solution
for the mean velocity profile at the wake. So, this is how we proceed further. One can go

through this in standard textbook and all these.
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We can come down to the ordinary differential equation that you get. So this will give you an
idea about the solution, which would be

—alf +Ef) = 7 , a=t
With,
Frif = ef) .l =f
we get

—aff =f'+C i =0because lim f(§) = F1O = 0

And solution of f
-1
f = Caexp (7“52>
f0)=1, f(x1)=1/2

Solution will be
f = Cyexp (—0.693&2)
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Similarity solution of plane turbulent wake
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So, if you again, plot, so this is a similarity solution of a plane turbulent wake. if we plot that,
then you get this kind of profile. So, this standard calculation one can continue, and basically
derived that. The is a solution of the f below.
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V' N\ Intermittent character of
¥ / \  turbulence near edges wake:
f=— / \ turbulent viscosity should decrease
Us / \ with & /
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Solid: experiments of Wygnanski et al. (1986)
Dashed: analytical solution
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Intermittency near edge of wake
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Intermittency near edge of wake

=3V,

Y is probability that flow
at (x.t) is turbulent
(defined as vorticity above
threshold value)

v, <y Uy,

is self-similar!

From Tennekes & Lumley, 1972.

:f,; NDIAN INSTITUTE OF TECHNOLOGY KANPUR Ashoke De 116

But if you look at this particular picture, here is the U, coming in and you can see the

intermittency near each of the wake. So v is the probability that flow at X, t is turbulent,

(Refer Slide Time: 23:26)
Axisymmetric round wake
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Axisymmetric round wake

» Solutions for U, and r,,, (see Pope, p. 151):

U, =A(x-x,)* r]‘:H(x—\o’“

Usr, AB 3
= Re=—1 i(x«\ol'
v v

Re decreases with x = turbulence dies out for large x (relaminarization) -
limited range in x where self-similarity may be expected
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Now, if you have an axisymmetric round wake, then the solution of Us and r;/, , you can find
out the solution of this pattern. Reynolds number decreases with x, turbulence dies out of large

X, S0 it is a relaminarization. So limited range in x where self-similarity may be expected.
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Now we can look at the scaling of wall bounded shear flow. So, you can take a center line,
there could be a nice velocity profile. So profile for total shear stress which will give me
ou —— y
_ Tagl — 2 _ 7
pu 3y pu'v pu, (1 6)
Where

dp

So scaling on mean velocity gradient in based on dimensional analysis one can get

1E=(lg P
uray 617’6 v Ug
(Refer Slide Time: 25:37)
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So, we have 3 different layer one is the inner layer where % < 0.1, this is close to the wall and

length scale delta is not that important. So, what we get



Inner layer

—+ —+ u y
u =fw(y+)v u = .’ y+=6_
T

v

this is called law of the wall.

Outer layer where y* > 50, this is far from the wall then we get

Uy —uU
uT

This is known as velocity defect law.

- =F()

And there could be overlap region which we can identify which is y* > 50 and % < 0.1 we

have
_+ 1
u = Eln(y“L) +B ,

this is one can think about log arithmetic law.
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Scaling region
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Scaling region

......

(Figures adapted from Pope, p. 276 and 281)
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So once you put that thing, so there would be inner layer, log layer, wall region and outer layer.

these are the scaling region. This is adapted from Pope; one can go through the details there.

And this is variation with the Reynolds number and %. So, that is what you get when you look

at these different scaling at the different region, in a wall bounded shear flow. We will stop

today and continue the discussion in the next lecture. Thank you.



