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Statistical turbulence 

Welcome back. So, let us continue the discussion of the statistical turbulence and we are 

looking at this simple jet flow and looking at the solution.  

(Refer Slide Time: 00:26) statistical turbulence 

 
We derive the governing equations for the with the assumption like mean 2-dimensional flow 

and statistically stationary system. 

(Refer Slide Time: 00:41) 

 



Now, we can find out the mean flow solution procedure. We will do by order-of-magnitude 

analysis. We can further simplify the governing equation. Then requires self-preservation to 

find the expression for both 𝑦1

2

(𝑥) and 𝑈0(𝑥), then we can solve the resulting differential 

equations and we can see the assumptions that we had.  

(Refer Slide Time: 01:16) 

Magnitude analysis 

 
Now, first thing is that order of magnitude analysis 1.  

We can see the different length scales or variations in the flow.  

𝜕

𝜕𝑦
=

1

𝑦1/2
  ,

𝜕

𝜕𝑥
=

1

𝐿
 [≡  

1

𝑦1/2

𝑑𝑦1/2

𝑑𝑥
] 

Now we can look at the velocity scale 

𝑢 = 𝑂(𝑢𝑜)  ,  𝑢′𝑖𝑢′𝑗 = 𝑂(𝑢∗
2) 

u * can thought about as a typical velocity scale of eddy. 

Now, we can have some assumptions  

1. 
𝑦1/2

𝐿
≪ 1 

2. 𝑅𝑒 =
𝑢𝑜𝑦1/2

𝜈
≫  

𝐿

𝑦1/2
 

3. 
𝑢∗

𝑢𝑜
= 𝑂 ([

𝑦1/2

𝐿
]

1/2
) 

Point 1. means the streamwise evolution of the z is quite slow. Point 2. tells that at the large 

Re. So, the viscous effect is quite negligible on the flow. Point 3. means the turbulence adapts 

itself to changes in mean flow.  
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Now, we look at the order of analysis 2. 

In that case from continuity we can write  

𝑣 = 𝑂 (
𝑦1/2

𝐿
𝑢0) ≪  𝑢0 

Now, we can estimate the terms in the y momentum equation. 

𝑢
𝜕𝑣

𝜕𝑥
= 𝑂 (

𝑢0
2

𝐿
.
𝑦1/2

𝐿
),    𝑣

𝜕𝑣

𝜕𝑦
= 𝑂 (

𝑢0
2

𝐿
.
𝑦1/2

𝐿
) 

−
1

𝜌

𝜕𝑝

𝜕𝑦
= 𝑂(? )  Not known 

Then the diffusion component 

𝜈
𝜕2𝑣

𝜕𝑥2
= 𝑂 (

𝑢0
2

𝐿
. [

𝑦1/2

𝐿
]

2

.
𝜈

𝑢0𝑦1/2
) ≪ 𝑂 (

𝑢0
2

𝐿
. [

𝑦1/2

𝐿
]

3

) 

𝜈
𝜕2𝑣

𝜕𝑦2
= 𝑂 (

𝑢0
2

𝐿
.

𝜈

𝑢0𝑦1/2
) ≪  𝑂 (

𝑢0
2

𝐿
.
𝑦1/2

𝐿
) 

𝜕𝑢′𝑣′

𝜕𝑥
= 𝑂 (

𝑢∗
2

𝐿
) =  𝑂 (

𝑢0
2

𝐿
.
𝑦1/2

𝐿
) 

𝜕𝑣′𝑣′

𝜕𝑦
= 𝑂 (

𝑢∗
2

𝑦1/2
) =  𝑂 (

𝑢0
2

𝐿
) 

Now the required balance of leading term using assumption one would get us 

𝑂 ≈
−1

𝜌

𝜕𝑝

𝜕𝑦
−

𝜕𝑣′𝑣′

𝜕𝑦
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So, we can now move to at the third level. Now, we have a simplified y momentum equation, 

which is now  

𝑝

𝜌
 ≈

𝑝∞

𝜌
− 𝑣′𝑣′   →  

−1

𝜌

𝜕𝑝

𝜕𝑥
≈

𝜕𝑣′𝑣′

𝜕𝑥
 

 

now if we substitute this in x momentum equation.  

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜕[[𝑣′𝑣′̅̅ ̅̅ ̅̅ ̅ − 𝑢′𝑢′]̅̅ ̅̅ ̅̅ ̅

𝜕𝑥
+ 𝜈 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) −

𝜕𝑣′𝑢′̅̅ ̅̅ ̅̅

𝜕𝑦
 

Now, if you do this estimate that terms in x momentum equation using assumption 2 and 3. 

We can get rest of the orders  

𝑢
𝜕𝑢

𝜕𝑥
= 𝑂 (

𝑈0
2

𝐿
) 

𝑣
𝜕𝑢

𝜕𝑦
= 𝑂 (

𝑈0
2

𝐿
) 

𝜕[[𝑣′𝑣′̅̅ ̅̅ ̅̅ ̅−𝑢′𝑢′]̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥
= 𝑂 (

𝑈∗
2

𝐿
)= 𝑂 (

𝑈0
2

𝐿
,

𝑦1/2

𝐿
) 

𝜈
𝜕2𝑢

𝜕𝑥2
= 𝑂 (

𝑢0
2

𝐿
.
𝑦1/2

𝐿
.

𝜈

𝑢0𝑦1/2
) ≪ 𝑂 (

𝑢0
2

𝐿
. [

𝑦1/2

𝐿
]

2

) 

𝜈
𝜕2𝑣

𝜕𝑥2
= 𝑂 (

𝑢0
2

𝐿
. [

𝑦1/2

𝐿
]

−1

.
𝜈

𝑢0𝑦1/2
) ≪ 𝑂 (

𝑢0
2

𝐿
) 

𝜕𝑣′𝑢′̅̅ ̅̅ ̅̅

𝜕𝑦
=  𝑂 (

𝑢∗
2

𝑦1/2
) =  𝑂 (

𝑢0
2

𝐿
) 



Now the last part is that so now we required the balance of the leading term. So, the streamwise 

advection is  

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣′𝑢′̅̅ ̅̅ ̅̅

𝜕𝑦
 

So, first term is streamwise advection, second term is lateral advection. RHS term is lateral 

turbulent diffusion. Now this can be solved along with the continuity equation which is  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

So these two equations should be solved then we get the self preservation. 

(Refer Slide Time: 10:51) 

self preservation 

 
We can introduce some stream function that automatically satisfy mass conservation where  

𝜓 = 𝑢0𝑦1/2𝐹(𝜉)     𝜉 =
𝑦

𝑦1/2
 

That means I can have mean velocity profile as 𝑢 = 𝑢0𝐹′(𝜉) = 𝑢0𝑓(𝜉).  

Now similarity solution for turbulent stress which is from the again experimental observation 

which will give 𝑢′𝑣′̅̅ ̅̅ ̅̅ = 𝑢0
2𝑔(𝜉). 

And if we establish the relation between f and g using the boussinesq hypothesis so, that is give 

us that  

𝑢′𝑣′̅̅ ̅̅ ̅̅ = 𝜈𝑡

𝜕𝑢

𝜕𝑦
→ 𝑔 =

1

𝑅𝑒𝑡
𝑓′,    𝑅𝑒𝑡 =

𝑢0𝑦1/2

𝜈𝑡
 

Now, 𝑅𝑒𝑡 must be constant in x if flow is self preserving, which means 𝜈𝑡 should be equal to 

𝑢0𝑦1/2 and also turbulent viscosity is assumed to be constant in y.  

 



 

(Refer Slide Time: 12:24) 

 
So, then my Self Preservation 2 would provide me substitute the self-similar solution into x 

momentum equation. We will get  

(
𝑦1/2

𝑢0

𝑑𝑢0

𝑑𝑥
) 𝑓2 − (

1

𝑢0

𝑑 (𝑢0𝑦1
2

)

𝑑𝑥
) 𝑓′𝐹 =

1

𝑅𝑒𝑡
𝑓′′ 

This will be self preserving if  

𝑦1
2

𝑢0

𝑑𝑢0

𝑑𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

1

𝑢0

𝑑 (𝑢0𝑦1
2

)

𝑑𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

which follows that      𝑦1

2

= 𝑆(𝑥 − 𝑥0)                  ,      𝑢0 = 𝐴(𝑥 − 𝑥0)𝑛    

S is tangent of spreading angle and n is the exponent which is undetermined. So, we need an 

extra equation.  
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Now, we will get an extra equation for 𝑢0 from  

𝑥0 ∫
𝜕𝑢𝑢

𝜕𝑥

∞

𝑦=−∞

𝑑𝑦 + ∫
𝜕𝑢𝑣

𝜕𝑦

∞

𝑦=−∞

𝑑𝑦 = − ∫
𝜕𝑢′𝑣′

𝜕𝑦

∞

𝑦=−∞

𝑑𝑦 = 0 

Now the streamwise momentum is conserved. 

we get  

𝑀 = ∫ 𝜌𝑢𝑢

∞

𝑦=−∞

𝑑𝑦 = 𝜌𝑢𝑗
2𝑑 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

𝑀 = 𝜌𝑢𝑜
2𝑦1

2
∫ 𝑓2𝑑

∞

−∞

𝜉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

This will be also Self Preserving, if 𝑢𝑜
2𝑦1

2

 is constant. The solution which will get for the 𝑢𝑜  

𝑢𝑜 = 𝐴(𝑥 − 𝑥0)−1/2 

where Reynolds number is 𝑅𝑒 =
𝑢0𝑦1/2

𝜈
=

𝐴𝑠

𝜈
(𝑥 − 𝑥0)−1/2   
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Now, the solution of the resulting equation, which will give  

−2𝛼2(𝑓2 + 𝑓′𝐹) = 𝑓′′                              , 𝛼2 =
1

4
𝑆 𝑅𝑒  

we can get  

𝑓2 + 𝑓′𝐹 =
1

2
[𝐹2]′′                                   , −𝛼2[𝐹2]′′ = 𝐹′′′ 

 

So,  −𝛼2𝐹2 = 𝐹′ + 𝐶1𝜉 + 𝐶2   Here 𝐶1 becomes 0 because of symmetry. 

 𝐹′(0) = 1, 𝐹(0) = 0 Which gets  𝐶2 = −1. So, the solution for F and f will be  

𝐹 =
1

𝛼
tanh(𝛼𝜉)                                    𝑓 =

1

cosh(𝛼𝜉)2 

𝑓(1) =
1

2
                                     𝛼 ≈ 0.88 

  



(Refer Slide Time: 17:25) 

similarity solution for a plane turbulent jet 

 
So, you can see for a similarity solution for a plane turbulent jet. We can see how it varies. This 

is the profile of u by 𝑢0 this is for turbulent Reynolds number of 31.  

So, this gives you an idea how things vary with.  

(Refer Slide Time: 17:47) 
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scale similarity of the round jet 

 
Now, at the same time, these non-dimensional velocity This is how it varies and this will give 

you an idea about the scale similarity of the round jet. The similarity means there will be  

similarity of the large-scale structure. But, once we go from this first to last in above slide, the 

range of small scale structure actually increases.  

(Refer Slide Time: 18:31) 

 
So, this is again some of the pictures like this is mixing layer jet, wake, this is the turbulent 

wake behind the sphere. So, this shows the self-preservation this is a high Reynolds number 

and a low Reynolds number. These are all example of self-preservation of the system. 

  



(Refer Slide Time: 18:56) 

velocity deficit in wake 

 
Now, we can see what happens. There is a circular cylinder or a circular obstacle here and is 

behind the width. The flow field takes on this kind of profile, but because of this pattern, there 

is a deficit. So, there is a velocity deficit at the center line in the wake and the half width is 

shown. 

 

(Refer Slide Time: 19:32)  

 
Now, when you talk about the self-preservation and this is what 

𝑦

𝑦1/2
  plot. shows nice plots and 

this is how the wake behind the fluctuating component behaves. So, this gives you an idea and 

there are flows which essentially shows this kind of behaviour. 

 

 

 



 

(Refer Slide Time: 19:54)  

 
Now, coming back to that, we had mean flow in 2D so, we got rid of the terms as above, 

because of the flow statistically stationery and flow is statistically homogeneous in z-direction. 

So, this is the equation we started off. 

(Refer Slide Time: 20:18) 

 
Now we find out the solution of mean velocity profile in the wake. We will again start with 

order of magnitude analysis and then simplify the governing equations. We find out the self-

preservation and solve the required equations. And once you do that, we can get the solution 

for the mean velocity profile at the wake. So, this is how we proceed further. One can go 

through this in standard textbook and all these. 
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We can come down to the ordinary differential equation that you get. So this will give you an 

idea about the solution, which would be  

−𝛼(𝑓 + 𝜉𝑓′) = 𝑓′′                        ,                        𝛼 =
𝑢𝑐𝐵𝑅𝑒𝑡

2𝐴
 

With, 

𝑓 + 𝜉𝑓′ = [𝜉𝑓]′                           ,               − 𝛼[𝜉𝑓]′ = 𝑓′′ 

 

we get 

−𝛼𝜉𝑓 = 𝑓′ + 𝐶1       ,      𝐶1 = 0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 lim
𝜉→±∞

𝑓(𝜉) =  𝑓′(𝜉) = 0 

  

And solution of 𝑓 

𝑓 = 𝐶2exp (
−1

2
𝛼𝜉2) 

𝑓(0) = 1,    𝑓(±1) = 1/2 

Solution will be 

𝑓 = 𝐶2exp (−0.693𝜉2) 

  



(Refer Slide Time: 22:45) 

Similarity solution of plane turbulent wake 

 
So, if you again, plot, so this is a similarity solution of a plane turbulent wake. if we plot that, 

then you get this kind of profile. So, this standard calculation one can continue, and basically 

derived that. The is a solution of the f below. 

 (Refer Slide Time: 23:04) 
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Intermittency near edge of wake 

 
But if you look at this particular picture, here is the 𝑈𝑐 coming in and you can see the 

intermittency near each of the wake. So γ is the probability that flow at x, t is turbulent,  

(Refer Slide Time: 23:26) 

Axisymmetric round wake 

 
Now, if you have an axisymmetric round wake, then the solution of 𝑈𝑠 and 𝑟1/2 , you can find 

out the solution of this pattern. Reynolds number decreases with x, turbulence dies out of large 

x, so it is a relaminarization. So limited range in x where self-similarity may be expected.  
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Now we can look at the scaling of wall bounded shear flow. So, you can take a center line, 

there could be a nice velocity profile. So profile for total shear stress which will give me  

𝜌𝜐
𝜕𝑢

𝜕𝑦
− 𝜌𝑢′𝑣′ =  𝜌𝑢𝜏

2  (1 −
𝑦

𝛿
) 

Where 

𝜌𝑢𝜏
2 = 𝜏𝑤 = (−𝛿

𝑑𝑝𝑤

𝑑𝑥
) 

So scaling on mean velocity gradient in based on dimensional analysis one can get 

𝑦

𝑢𝜏

𝜕𝑢

𝜕𝑦
= 𝜙 (

𝑦

𝛿𝑣
,
𝑦

𝛿
)                      , 𝛿𝑣 =

𝜐

𝑢𝜏
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So, we have 3 different layer one is the inner layer where 

𝑦

𝛿
≤ 0.1 , this is close to the wall and 

length scale delta is not that important. So, what we get  



Inner layer 

 𝑢
+

= 𝑓𝑤(𝑦+),   𝑢
+

=  
𝑢

𝑢𝜏
  , 𝑦+ =

𝑦

𝛿𝑣
 

 this is called law of the wall. 

 

Outer layer where 𝑦+ > 50, this is far from the wall then we get 

𝑢0 − 𝑢

𝑢𝜏
 = 𝐹𝐷(

𝑦

𝛿
) 

This is known as velocity defect law. 

 

And there could be overlap region which we can identify which is 𝑦+ > 50 and 
𝑦

𝛿
≤ 0.1  we 

have 

𝑢
+

=
1

𝜅
ln(𝑦+) + 𝐵                 ,            

𝑢0 − 𝑢

𝑢𝜏
=   −

1

𝜅
ln (

𝑦

𝛿
) + 𝐵1    

 this is one can think about log arithmetic law.  

 

(Refer Slide Time: 27:21) 

Scaling region 

 
So once you put that thing, so there would be inner layer, log layer, wall region and outer layer. 

these are the scaling region. This is adapted from Pope; one can go through the details there. 

And this is variation with the Reynolds number and 
𝑦

𝛿
. So, that is what you get when you look 

at these different scaling at the different region, in a wall bounded shear flow. We will stop 

today and continue the discussion in the next lecture. Thank you. 


