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Lecture-33
Turbulence (Contd...)

Welcome back. So, let us continue the discussion on turbulence and the scaling of turbulence.
So, we are looking at the different scale of turbulent flow field. So, like macro structure and
then the micro structure and then also we have looked at the energy cascading phenomena. So,
now, we are looking at the different statistical description of the turbulence and we have so far
looked at the averaging methods.
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The probability density function (PDF)
(useful for stochastic signals)

» Measure time spent between u*

f(u) and u*+du*

« Division by total time yields the

probability of u found between
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« f(u) is the PDF of u with
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Probability density function (PDF) of Turbulent signal
Now, we will look at some of these other features like probability density function (PDF),

which is quite useful when we look at them in a statistical signal like turbulent signal. Above
slide provides a velocity profile and its time history of the velocity profile. This is instantaneous
velocity profile and if we look at the PDF of it, we have measured time spent between u* and

u* + du* velocity like one particular instant and the delta change of that.

So, using the f(u) PDF definition of

J_o:of(u) du=1

When you look at the definition of mean velocity based on PDF, we can get

ﬂzf_o;uf(u)du
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Statistical quantities of Turbulent signal
Now, we can look at some of these statistical quantities. We will look at the variance of a

velocity component.

fudl? = | G = ) £ ) du
Where
Up=u -y
u; is the mean quantity.

u;' is turbulent fluctuation.

Similarly, one can find out the RMS or standard deviation. Which give us

Ui rms = [ull]z
now we can find out the covariance between two velocity components.

Covariance between two velocity components at same point in space and time.

Cov(u;,u) = u';u'j = J (w — ) (v — ) fw w) du; du;

f(u; ;) function is called the joint PDF. Now, this concept of this probability density

function, this should be quite handy when we look at some PDF based combustion model.
Now, the other one is the correlation coefficient which is

Cov(u;, u;)

pij - [ui rms uj rms]



So, that gives

-1 <p;=1
this correlation coefficient is sort of bounded.
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Now, there could be some special cases, let us say if we have 1. statistically stationary case or

steady turbulence, the PDF becomes independent of time. Then we can write
fr(w) = freac(w) = u # f(0)
u' i (Ou'(t +1) = F(r) # f(t)

Now, item 2. statistically homogeneous turbulence. For statistically homogeneous turbulent we

can write
fr) = frane(wy) = u, # f(x)
u;()uj(x +8) = F(8) # f(x)

So, one case independent of time, other case we have independent of x.
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Now, for a stationary process, we can write that

N —
=u

lim% = lim %

T—oo N—oo
So that means that time averaging and ensemble averaging lead to the same thing. One can
think about finite integral timescale of turbulence which means that turbulence fluctuations are

uncorrelated over sufficiently long time.

Now, for homogeneous process, we can have this limit
. —L . —N —

limu =limu =u

L—>oo N—oo
Line averaging become similar to and ensemble averaging. So, here the finite integral timescale
of turbulence is that turbulent fluctuations are uncorrelated over sufficiently long distance. So,
one case 1. the fluctuations are uncorrelated over a sufficiently long time and in this case for
homogeneous process the turbulent fluctuations are uncorrelated over sufficiently long

distance. So, these are the two hypotheses one can have.
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Properties of averaging
Now, that brings to the Reynolds decomposition. Reynolds who proposed in 1895 that if I have
instantaneous flow field, I can have mean plus fluctuating component.

u=u+u

After Reynolds averaging the properties that one can have these are quite important.

L F¥g=F+7

Zzﬁzaf
of _oF

3. ds _ ds

4 fg=f3g

So, these are the some of the desired properties of averaging.
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If you look at the time averaging that is ET(t) , time averaging actually it does not satisfy

condition number 4, because of the doubling of the integral interval like

—_TT—lfT TRLLLA IWOR
u _T_T T u T T

. T/2
FU = —f u(t+1)dr
T -T/2

If T>> integral timescale, which is the timescale of larger eddy essentially, integral timescale
is the timescale of larger eddies. If it is much larger than that, in that case this error is small.
Now, at the same time, if you look at the ensemble averaging it does satisfy all these properties.

So, this is what we write from ensemble averaging is that

L N

—N _ 1

u =N E u(x,t,a)
a=1

So, that satisfy all the condition.
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Reynolds averaging
Now we can get the Reynolds averaging equation for mean flow. So, we start with an
incompressible Navier stokes equation
0x;
ou; ou; 10dp 0%u;
W“‘f'a_xj: _;_)a_acj+vaxj2
0,9 _ 20
ot 7 ox; 0x;?

So, this is our starting point that means, all incompressible NS equation now we apply the

average over here. So, once we apply, averaging, Reynolds averaging to these below equations,
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So, we can get the average equation

So, you can see two additional term which are added compared to the starting equation or

governing equations. Due to the averaging we get these additional terms and these terms are
known as Reynolds terms.
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Now, we can rewrite the momentum equation

om , _om|_ o[ . (om om)
P1o¢ u’ax]-  0x; POy T\ By S TPy

Reynolds stress
Molecular stress or

Turbulent stress

The extra term is arrived because of Reynolds averaging over the equation system. One can
interpret is that, the turbulent fluctuations act on mean flow as if they induce an additional
stress which is a direct result from the averaging and this additional stress originates from the

transport of mean momentum by turbulent fluctuation.

(Refer Slide Time: 18:22)

Turbulence
An interpretation of the Reynolds stress

) -
mean velocity/ U (V)
profile

T
~
N
puv'<0 turbulent  |pu'v'< 0
eddy
v
x
I / \\. v

» Flux of momentum across y-plane: » Mean momentum increases when the
momentum flux converges, hence the
minus-sign in RANS equations:

v(ipu)=puv+pu'v

(when negative: flux downward) o PRI
— — [pu' v'
oy

y—— : 9
Interpretation of Reynolds stress

We can have a velocity profile like above and fluid particle may go in increasing y direction.
The mean velocity increases, mean momentum also increases but between the points to
maintain that momentum flux the condition pu'v’ < 0 has to satisfy. Similarly, when moving
own along y mean momentum decreases. But to maintain the momentum, this has to be

increased. So, one can look at it in that way.
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Closure problems in RANS - too many unknowns
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If we look at those equations completely, we need an equation for the Reynolds stress.
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Closure problems in RANS
Now, closure for this stress what we can write, we have this momentum equation we can rewrite

again in a slightly different form
6171 _ 6171 . aO'l'j
p [E Tax| T o,

a ! !
+a—xj[—pulu]]

_ 0w, 0
O-ij =—p6U+pU a_+a_xl

Iso;roplc part Deviatoric part
(Pressure) (Shear stress)




(Refer Slide Time: 20:06)

Turbulence

4i)

= ?ul’:j' = 'é ?MFLV 5 +P (»V/."EA,/'/+£€M )
] ‘L : A:\/A‘J"‘“ PM
ol P;:) | %%h:f:i)
(Mbvl'v& \ﬂ )
W A
?(, w'/;)' Jr\u':v‘?ﬁ) = R <?>m * sz

To close that Reynolds stress term, we bring in the boussinesq hypothesis. so that we can write
these Reynolds stress term in a slightly different way.

ol 1 r 2 o a7 1 r 2
—pu' u' = —gpuk bij +p(—u auy +§puk 6l-j)
N J
Y
Isotropic part Deviatoric part
(Turbulent Pressure) (Turbulent Shear stress)

Now, boussinesq hypothesis based on the similarity with molecular stress, we can write
— 1 = zs \ = ow, 01
P(—uluj‘l'gpuk ij)—pvt E+a—951

v; is the eddy viscosity or turbulent viscosity.
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Scaling Of Eddy Viscosity

¥ —
mean velocity ) U (1)
profile

scales of mean flow (e.g.,
width and velocity difference
over mixing layer)

.

Eddy viscosity has dimension: velocity * length \
« From figure it can be anticipated that: Vp ~ U(J[() ~ uc

scales of large eddies
(are most efficient in mixing)
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Now, the scaling of eddy viscosity. If [ is the size of the turbulent eddy, which is having a
velocity scale of u(l) and the picture of the shear layer is shown above. The Eddy viscosity is
order of v,~uy,l,and for the large scale it is v,~U L , that is for macro structured scale for the
large eddies, which allows more efficient mixing.
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Free Shear Flows
wake
jet
mixing layer
(From: Tennekes & Lumley, 1972)
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Now, this is an example of free shear flow where you see a mixing layer where two different
layers they are mixing. Different kind of eddies that form and the velocity profile is shown.

These are some example of free shear flows.
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Round jet- velocity profiles

Of=e (velocity data from
okt s , different downstream
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Self-preservation (or self-similarity):
i) meéan flow Invariant in x when scaling
2 with centerline velocity and typical jet
= width.
» Image source: S. Pope
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When we look at the round jet, as we go along with the axial distance, the velocity profile is
shown for this. This actually gives an idea that this is self-similarity: mean flow in variant of x
when scaling with centreline velocity. This is an important hypothesis.
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Plane jet
quiescent surroundings )\ u(xy)
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jet ¥ U, .
nozzle Y &

U, (x)=1(x,0) (mean centerline velocity )

u(x,y,,) E%U”(x) (definition of y,, )

Now, we see a planar jet, there is a jet nozzle and from where the jet is injected and further
downstream, we can see how the profile looks like.
Mean centerline velocity
Upy(x) =u(x,0)
Definition of y, s,

_ 1
Wz, 1/2) = 5 Vo)
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Starting with the governing equation which are in cartesian coordinate system.

Continuity equation

ou Jdv ow
wte T
X-momentum equation
ou . _ou o _du au _l@ <aza 0*u 6ZU> Cww vy aw'w
ot ox dy e p 0x 0x? 0dy? 0z2 0x dy 0z
Similarly, for other directional momentum equations.
Y-momentum equation
v N ﬂ@_l_ 5@ N W(’)_v _ _1lap , <625+ 0%v N 825> _ou'v' vy’ aw'v’
at 0x dy 0z p 0x dx?  dy? 0z? dx dy 0z
Z-momentum equation
6_W+ ua_w+ va_w+ Wa_w _ _1dp (62W+ 62W+ 62W> _ou'w’ dv'w' ow'w!’
ot dx dy 0z p 0x 0x?  0y? 0z* dx dy 0z

Now we can have some assumption to simplify the system and carry out this analysis. One of

the simplifications can be done is that
1. mean flow is 2D
2. flow is statistically stationary

3. flow is statistically homogeneous in z direction.



With these assumptions we get a simplified system of equations:
Continuity equation
ou Jv
xtay " 0

X-momentum equation
_Ou _odu_ 1dp (62ﬁ 025> ouu’  ov'u’

Uai-l?@——ggi'v ax2+ay2

d0x dy
Y-momentum equation
_o0v _ov 10p (625 62§> ou'v’ ov'v'
— LI _

”a“’@‘ _;_)6x+ 0x? +6y2

0x dy

Now we can use this simplified system to find out the solution. We will stop here and discuss

the solution procedure in the subsequent lecture.



