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K-H Instability 

Welcome back. So, let us continue the discussion on turbulence. we are looking at the 

generalization of the stability analysis. And we started with the K-H instability. 
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So, this is where we actually stopped in the last class. If you look at this generalization of this 

K-H instability. This is what we got with an assumption that it is a 1D inviscid flow, and then 

we add some disturbances for normal-mode analysis, then our 𝑢𝑖′, 𝑝𝑖′ and then finally, if we 

linearize the system of equations we get these following linearized inviscid equations. 

𝜕𝑢′

𝜕𝑥
+

𝜕𝑣′

𝜕𝑦
= 0 

𝜕𝑢′

𝜕𝑡
+ 𝑈

𝜕𝑢′

𝜕𝑥
+ 𝑣′

𝜕𝑈

𝜕𝑦
= −

1

𝜌

𝜕𝑝′

𝜕𝑥
 

𝜕𝑣′

𝜕𝑡
+ 𝑈

𝜕𝑣′

𝜕𝑥
= −

1

𝜌

𝜕𝑝′

𝜕𝑦
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Rayleigh’s stability equation 

Now, we look at the Rayleigh’s stability equation. So, from those equations, when you put  

𝑢𝑖
′ = 𝑢𝑖

^
(𝑦)𝑒𝑖𝑘(𝑥−𝑐𝑡)  

𝑝𝑖
′ = 𝑝𝑖

^
 (𝑦)𝑒𝑖𝑘(𝑥−𝑐𝑡) 

We get, 

𝑖𝑘𝑢
^

+
𝑑𝑣

^

𝑑𝑦
= 0 

𝑖𝑘𝑐𝑢
^

+ 𝑖𝑘𝑢
^

𝑈 + 𝑣
^ 𝑑𝑈

𝑑𝑦
= −𝑖𝑘

𝑝
^

𝜌
 

𝑖𝑘𝑐𝑣
^

+ 𝑖𝑘𝑣
^

𝑈 = −
1

𝜌

𝜕𝑝
^

𝜕𝑦
 

Now from these set of equation, we can actually eliminate. what to eliminate we can eliminate 

𝑢
^
. So, we eliminate 𝑢

^
 from the first equation and 𝑝

^
 from the second and third equation. So, we 

get: 

(𝑈 − 𝑐) (
𝑑2𝑣

^

𝑑𝑦2
− 𝑘2𝑣

^
) − 𝑣

^ 𝑑2𝑈

𝑑2𝑦
= 0 
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So, now we can put the stability criteria. Let us consider the base flow 𝑈(𝑦) with 𝑣
^

=
𝑑𝑣

^

𝑑𝑦
= 0 

at 𝑦1 and 𝑦2. Then multiply Rayleigh’s equation by complex conjugate 𝑣
^
* and integrate over 

y. So that will get us: 

∫ 𝑣
^ ∗ [

𝑑2𝑣
^

𝑑𝑦2
− 𝑘2𝑣

^
−

1

(𝑈 − 𝑐)

𝑑2𝑈

𝑑2𝑦
𝑣
^

]

𝑦2

𝑦1

 𝑑𝑦 = 0 

Now the first term if we integrate it with partial integration, we get:  

∫ (|
𝑑𝑣

^

𝑑𝑦
|

2

+ 𝑘2 |𝑣
^

|
2

) 𝑑𝑦 +
𝑦2

𝑦1

∫
1

(𝑈 − 𝑐)

𝑑2𝑈

𝑑2𝑦
|𝑣

^
|

2𝑦2

𝑦1

𝑑𝑦 = 0 

Now you can consider the complex part: 

𝑐𝑖 ∫
1

(𝑈 − 𝑐𝑟
2) + 𝑐𝑖

2

𝑑2𝑈

𝑑2𝑦
|𝑣

^
|

2𝑦2

𝑦1

𝑑𝑦 = 0 
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Now we can have, if 𝑐𝑖 > 0, then 
𝑑2𝑈

𝑑2𝑦
= 0 (This must hold somewhere between 𝑦1 and 𝑦2. So, 

this is a necessary condition, but not sufficient condition in general. Let us say we can have a 

profile shown as below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑑2𝑈

𝑑2𝑦
= 0 

inflexion point which is possibly unstable 

Poiseuille flow 

stable based on Rayleigh criterion 

Parabolic profile 



 

(Refer Slide Time: 07:54)  

 
Linear stability analysis with viscosity  

So, now, we can do the linear stability analysis with viscosity. So, again we can have 1D basic 

flow and we have flow 𝑈(𝑦) between 𝑦1 and 𝑦2. So, we can write linearized N-S equation + 

normal mode analysis which will get us: 

(𝑈 − 𝑐) (
𝑑2𝑣

^

𝑑𝑦2
− 𝑘2𝑣

^
) − 𝑣

^ 𝑑2𝑈

𝑑2𝑦
= −

𝑖𝜈

𝑘
(

𝑑4𝑣
^

dy4
− 2𝑘2

𝑑2𝑣
^

dy2
+ 𝑘4𝑣

^
) 

This is a well-known equation Orr-Sommerfeld equation. Now in dimensional form, if we use 

the velocity U and length scale L. We can use 𝑅𝑒 =  
𝑈𝐿

𝜈
. So, the eigen value problem essentially 

becomes 𝑐 =  𝑓(𝑘, 𝑅𝑒). Critical Reynolds number 𝑅𝑒𝐶  is the lowest possible Re number for 

which 𝑐𝑖 would be positive. 
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We can look at plane Poiseuille flow in the above slide. This is the stability diagram for the 

plane Poiseuille flow between two parallel plates and the distance between that is 2𝐻 and 𝑈𝑐 

is the centre line velocity. Now, if you look at the diagram where Reynolds number is plotted 

vs 𝑘𝐻 and the curve shown is for 𝑐𝑖 = 0, that means a marginal stability curve. The zone in 

which 𝑐𝑖 > 0 is the stable zone and for 𝑐𝑖 < 0 is the unstable zone. So, we get critical Reynolds 

number 𝑅𝑒𝐶 = 5772.22.. for the plane Poiseuille flow. 
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Now, similarly, stability diagram for boundary layer over a flat plat is shown in above slide. 

The Blasius boundary layer is shown on the flat plate. So, one important point here to be noted 

here is that, zero curvature of velocity profile at the wall that means at the inflexion point. So, 

non-parallelism of basic flow needs to be taken into account. Critical Reynolds number is 

taken, 𝑅𝑒𝐶 = 520 for parallel and 𝑅𝑒𝐶 = 400 for non-parallel. The zone enclosed by the 

parallel curve with 𝑅𝑒𝐶 > 520 is the unstable zone. 

 

 If you look at the Reynolds number, you can take different flow regions and whether it is a 

simple flow between two parallel plates or it is a boundary layer flow, you can demarcate the 

zone through the linear stability analysis as stable zone and unstable zone. And the Reynolds 

number which is going to be at the point that will be the critical Reynolds number which tells 

you what could be the situation for that zone. 
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Now this is another very well-known situation or picture which is so, this is Tollmien-

Schlichting waves and turbulent spots in boundary layer. Over a flat plate if you look at the 

boundary layer, these are the wave that you see. The flow goes through transition to become 

turbulent. In the second image you can see the stable regime and how far it is stable and then 

when it is becoming unstable. These are some of the basic features that we can look at. 
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The Scaling of turbulence  

Now, the important aspect of the turbulence is the scaling, that means, we have to somehow 

quantify the turbulence. Scaling is very important in turbulence and these are the famous 

scientists J.M. Burgers, Lewis Frey Richardson and Andrey Kolmogorov who have proposed 

different theories. One of the important theories of Richardson is the energy cascade, which 



talks about that the energy transform from large eddies to small eddies and at the end dissipated 

as heat. 

 The theory proposed in 1941 by this famous scientist Kolmogorov, talks about the scaling 

laws. These quantification and scaling models started with the work of Burger, that is why the 

equation is called is the Burger’s equation. 
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Burger’s equation  

We will look at the Burger’s equation. In Cartesian coordinate system the incompressible 

Navier Stokes equation: 

Continuity equation 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

X-momentum equation 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) 

Similarly, for other directional momentum equations. 

 For simple model to study the characteristics of turbulent flow, we take the equation: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈 (

𝜕2𝑢

𝜕𝑥2
) 

 

 

 

Convection 

(Non-linear) 
Diffusion 

(Linear) 

Unsteady 

(Linear) 



Here the lateral momentum transport and lateral diffusion both are neglected plus if you can 

see, pressure gradient term is also neglected. So, once we neglect these terms, we get this 

equation which is known as the Burger’s equation. 
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Role of Diffusion 

Now we see the role of diffusion which essentially dampens the velocity gradient. We neglect 

the influence of advection or convection. The equation becomes: 

𝜕𝑢

𝜕𝑡
= 𝜈 (

𝜕2𝑢

𝜕𝑥2
) 

The initial conditions and boundary conditions are: 

𝑡 = 0          ∶ 𝑢 = 𝑈0𝛿(𝑥) 

𝑥 → ±∞  ∶ 𝑢 = 0    ∀𝑡 

 The solution will look like: 

𝑢

𝑈0
=

1

2 · √𝜋(𝑡𝑈0
2/𝜈)

𝑒𝑥𝑝 (
−𝑥2

4𝜈𝑡
) 

 

The solution is visualised the above slide with curves for different values of 𝑡𝑈0
2/𝜈. So that is 

how you can see the impact of the diffusion, essentially the diffusion dampens the velocity 

gradient. So that is what it does. 
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Role of Convection 

Similarly, for the role of convection. We neglect the influence of diffusion term. The equation 

becomes: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0 

 Solution is of the form: 

𝑢 = 𝑓(𝑥 − 𝑢𝑡) 

So, the propagation along the characteristics 𝑥 − 𝑢𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 →
𝑑𝑥

𝑑𝑡
= 𝑢. 

The solution is plotted in 𝑢, 𝑥 𝑎𝑛𝑑 𝑡 dimensions for different values of 𝑡  as shown in the above 

slide. 

So, essentially the role of convection term is that it sharpens the velocity gradients. 
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Exact solution of the Burger’s equation  

Now, we can find out the exact solution of the Burger’s equation. 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈 (

𝜕2𝑢

𝜕𝑥2
) 

The solution which satisfies the Burger’s equation would be of the form: 

𝑢

𝑈
=

𝑥

𝐿
− 𝑡𝑎𝑛ℎ (

𝑈𝑥

2𝜈
) 

The solution is plotted with axes  
𝑥

𝐿
 and 

𝑢

𝑈
 as shown in the above slide. The velocity scale 𝑈 and 

length scale 𝐿 which will get the Reynolds number 𝑅𝑒 =
𝑈𝐿

𝜈
=

𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 
.  

This is an exact solution of this simple system; one can just take some points and recreate this 

plot in MATLAB. 

 

 

  

Where 𝑈 =
𝑢0

1+(𝑈0𝑡/𝐿)
 



(Refer Slide Time: 24:10) 

 

Now, when Reynolds number which is 𝑅𝑒 =
𝑈𝐿

𝜈
≫ 1 (really high) that will lead to turbulent 

situation. Now the solutions, they could be of two types, one could be macro structure where 

this would |𝑥| ∼ 𝐿. So, it can be can be approximated by two straight lines and this is 

independent of viscosity. we can actually provide solution by two straight line where it is a 

macro structure as shown in the slide.  

 

And then, we have micro structure where |𝑥| ∼
𝑣

𝑢
≪ 𝐿. There would be sharp gradient and 

viscous diffusion dominates. The solution of micro structure is indicated in the plot shown in 

the above slide. So, the single solution which we have 

𝑢

𝑈
=

𝑥

𝐿
− 𝑡𝑎𝑛ℎ (

𝑈𝑥

2𝜈
) 

 where 𝑈 =
𝑢0

1+(𝑈0𝑡/𝐿)
 

 

 

So, this solution is plotted here and there could be two types of structure which will influence 

that. 
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Now we can basically account for the energy budget. For the energy budget, we can multiply 

the Burger’s equation by velocity u and we can obtain the equation for the kinetic energy. Ok, 

we can stop it here and look at the energy budget in the next lecture. 

 

 

 


