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Welcome back, let’s continue the discussion on this linear stability analysis. So, what we have 

done, we have already looked at different type of analysis and we are going to look at two 

different kind of normal mode analysis here. One is the K-H instability, another is linearized 

equations for distribution where we come across the Sommerfeld equation. So, for K-H 

instability, we have taken situation and derived the linearized perturbation equation.  

 

So, this is the system that we have taken and we defined all the characteristics of this particular 

system and other properties using that,  

 

(Refer Slide Time: 01:13) 

 

We bring back our potential flow theory and got the model equations. 
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Now, for base flow which is stationary and spacially uniform except for that location where y 

equals to zero there could be a jump, we get this equation and basic pressure varies with height.  
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There are four equations, 2 equations from the mass conservation and the 2 equations from the 

momentum conservation.  
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Now, to solve this problem, we need boundary conditions and there are three different set of 

boundary conditions which are required. One is the zero velocity disturbance at 𝑦 = ±∞, one 

is the kinematic condition and another one is the dynamic interface condition which says that 

when the surface tension is neglected, the normal stress must be continuous across the interface. 

Now for inviscid flows a continuous normal stress reduces to a continuous pressure across the 

interface. So, that essentially gives me this condition.  
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Now, how do we get the solution for potential flow. Now, we have second order differential 

equation for mass conservation. So, which are: 



𝜕2𝜑1
′

𝜕𝑥2
+
𝜕2𝜑1

′

𝜕𝑦2
= 0 

𝜕2𝜑2
′

𝜕𝑥2
+
𝜕2𝜑2

′

𝜕𝑦2
= 0 

Now we have boundary conditions at infinity, which is: 

lim
𝑦→±∞

∇𝜑1,2
′ = 0 

Now we have normal mode analysis that means: 

𝜑1,2
′ = 𝐹1,2(𝑦). 𝑒

𝑖(𝐾𝛼−𝜔𝑡) 

So, that is how, now this equation this reduces to: 

𝜕2𝐹1,2
𝜕𝑦2

− 𝐾2𝐹1,2 

So, once these we put it back there this is what now the solution what you can have. That is: 

𝜑1
′ = 𝐵1𝑒

𝐾𝑦𝑒𝑖(𝐾𝛼−𝜔𝑡) 

And 

𝜑2
′ = 𝐵2𝑒

−𝐾𝑦𝑒𝑖(𝐾𝛼−𝜔𝑡) 

So, this is what we get for the solution of the potential. Now, we apply the second boundary 

condition. 
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So, that is kinematic interface condition. So, kinematic interface conditions gives us: 

𝐷𝜂

𝐷𝑡
= |𝑣|𝑦=𝜂 = |

𝜕𝜑′

𝜕𝑦
|
𝑦=𝜂

 

So, this is my kinematic interface condition. Now, if our tangential velocity essentially 

discontinuous. So, tangential velocity across the interface is discontinuous. So, we get 2 set of 

equations: 

lim
𝑦↑𝜂

=
𝜕𝜂

𝜕𝑡
+ (𝑈1 + 𝑢1

′ )
𝜕𝜂

𝜕𝑥
=
𝜕𝜑1

′

𝜕𝑦
 

And second: 

lim
𝑦↓𝜂

=
𝜕𝜂

𝜕𝑡
+ (𝑈2 + 𝑢2

′ )
𝜕𝜂

𝜕𝑥
=
𝜕𝜑2

′

𝜕𝑦
 

Now, cross terms can be neglected like this term or this term. So, these are the cross terms can 

be neglected. After linearization, so which get us: 

𝑖(−𝜔 + 𝑈1𝐾)𝐴 = 𝐾𝐵1𝑒
𝐾𝜂 ≈ 𝐾𝐵1 

Similarly,  

𝑖(−𝜔 + 𝑈2𝐾)𝐴 = −𝐾𝐵2𝑒
−𝐾𝜂 ≈ −𝐾𝐵2 

So, essentially this is my linearization. So, the linearization get me these 2 equation.  
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Now we apply the third boundary condition that is the dynamic interface condition, which says 

that at 𝑦 = 𝜂 and 𝑝1 = 𝑝2 so means at 𝑦 = 𝜂: 

𝜌1 (
𝜕𝜑1

′

𝜕𝑡
+ 𝑈1

𝜕𝜑1
′

𝜕𝑥
+ 𝑔𝜂) = 𝜌2 (

𝜕𝜑2
′

𝜕𝑡
+ 𝑈2

𝜕𝜑2
′

𝜕𝑥
+ 𝑔𝜂) 

So, this is what we get. Now, from there we get: 

𝑖𝜌1(−𝜔 + 𝑈1𝐾)𝐵1 = 𝑖𝜌2(−𝜔 + 𝑈2𝐾)𝐵2 − (𝜌1 − 𝜌2)𝑔𝐴 

So my dynamic interface condition provides this. So once we apply all these three boundary 

conditions that means. 
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First the boundary condition at the infinity, where 𝑦 → ±∞. So, you get these two solutions. 

Then we put the kinematic interface condition, 
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So, that after linearization, we get this and then finally, we get the dynamic interface condition 

which after application it may this. So, now, if we put the whole system of equation after 

applying the boundary condition in the linear system or in the matrix system, how the matrix 

would look like? 
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So, we have 3 × 3 system and the equations are for A1, B1 and B2. And if we look back, this is 

for A beyond B2 coupled. 
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So, once we do that, this is for A, B1 and B2 these are essentially you can think about this is A 

x b. So, we are solving for A x equals to zero. 
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So, you put things together you get that particular situation and the non-trivial solution is that 

because of determinant of the matrix is zero. Now, if you look at the solution, so, there is a 

quadratic equation for ω which we solve with quadratic formula. So, that will get: 

𝜔 = (
𝜌1𝑈1 + 𝜌2𝑈2
𝜌1 + 𝜌2

)𝐾 ±
1

𝜌1 + 𝜌2
√−𝜌1𝜌2𝐾2(𝑈2 − 𝑈1)2 + (𝜌1 + 𝜌2)(𝜌1 − 𝜌2)𝐾𝑔 

So, this is one can think about it send dispersion relation of omega k. Now there would be a 

quadratic solution. So there could be two modes. Obviously, one is stable mode and the other 

one is unstable which is greater than zero. Now, for that is unstable case. So for unstable: 

𝐾 >
(𝜌1 − 𝜌2)𝑔

(𝑈2 − 𝑈1)2
(
𝜌1 + 𝜌2
𝜌1𝜌2

) 

So with, that’s λ. That is my η(x,t). This is state two, this is state one, this is my axis and this 

is my gravity. So, if we neglect the surface tension, then you can see what happens that one 

can work out also. So, the solution which will tell you one stable mode, one unstable mode. 

Now, we can take some specific and very specific case.  
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And see what happens now, first one look at basic flow at rest. So, which means my U1 U2 

these are 0. So, the 2 modes that will get that would be: 

𝜔 = ±√
𝜌1 − 𝜌2
𝜌1 + 𝜌2

𝐾𝑔 
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So, if you look at this picture here, these are the basic flows and they are at rest, then we get 

these two modes. Now, if 𝜌1 get up then 𝜌2 that means, this is 𝜌1 and this is 𝜌2.  
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So, which tells that heavier fluid below lighter fluid, which means, the lighter fluid is top of 

that plate and heavier fluid is below which is essential a normal flow characteristics and that 

gives you a stable system, which nothing but my gravity wave. 
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Other situation when 𝜌1 is less than 𝜌2 that means lighter fluid is in the bottom. So, this shows 

always unstable behaviour. So, in this particular case where you see on the basic flow is that 

raised the stability and the instability regime can be identified now.  
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Now the second case we can consider, shear flow in homogenous fluid, so which will tell me 

that, 𝑈1 is not equal to 𝑈2 and 𝜌1 equal to 𝜌2. If you look at this,  

 

 

 



(Refer Slide Time: 19:25) 

 

(Refer Slide Time: 19:29) 

 
(Refer Slide Time: 19:29)  

 



(Refer Slide Time: 19:30)   

 

𝑈1 is not equal to 𝑈2 and 𝜌1 and 𝜌2 are same, because it is an homogeneous fluid. So that gives 

me this condition which is shear flow that gives me this condition. So my modes of that 

solution, the two modes should be: 

𝜔𝑖 =
1

2
|𝑈2 − 𝑈1|𝐾 ± 𝑖

1

2
|𝑈2 − 𝑈1|𝐾 

So, again this case is also one mode. So, always one mode is unstable. And the growth factor 

would be growth factor which is: 

𝜔𝑖 =
1

2
|𝑈2 − 𝑈1|𝐾 

So, that is my growth factor. So, one mode, would be stable and another mode would be always 

unstable with growth factor to be like this.  
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So, we can see some photographs of K-H instability. So, there are two types of instability you 

can see. So if there is a shear, which essentially you can see here in the atmosphere, this is 

primary due to the gradient of the density. Now in the jet also, you see this K-H instability, this 

could be due to velocity gradient, this could be due to density gradient then there is a flow 

behind perforated plate. So, you can see the K-H instabilities, there are nice picture of 

instabilities in cloud, smoke from cigarette all these photographs actually.  

 

So, some sort of K-H instability. So, essentially if one would like to see these kind of instability 

we can see in regular life quite often, whether we term it as K-H instability or not that is a 

different issue, but we get to see this kind of because these are the pictures which you often 

see. 
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Now, we try to generalize K-H stability analysis. So, if we try to generalize, we again assume 

one dimensional inviscid flow. So, the first thing we have small disturbances plus the normal 

mode analysis. That will give us: 

𝑢𝑖
′ = 𝑢⏞𝑖 (𝑦)𝑒

𝑖𝐾(𝑥−𝑐𝑡) 

And second one would be: 

𝑝𝑖
′ = 𝑝⏞

𝑖
(𝑦)𝑒𝑖𝐾(𝑥−𝑐𝑡) 

So, there is a nice theorem, which is called squire theorem which says that disturbance 

propagating getting in direction of basic flow in direction of basic flow is most unstable.  



That means, the span wise direction can be ignored. So the span wise direction can be 

neglected. So we will get 2D disturbances. So that will suffice the whole business. Now, if you 

write the linearized inviscid N–S equation, which is some sort of an Euler equation. We will 

get: 

𝜕𝑢′

𝜕𝑥
+
𝜕𝑣′

𝜕𝑦
= 0 

Then, 

𝜕𝑢′

𝜕𝑡
+ 𝑈

𝜕𝑢′

𝜕𝑥
+ 𝑣′

𝜕𝑈

𝜕𝑦
= −𝑝

𝜕𝑝′

𝜕𝑥
 

And the other component is: 

𝜕𝑣′

𝜕𝑡
+ 𝑈

𝜕𝑢′

𝜕𝑥
= −

1

𝑝

𝜕𝑝′

𝜕𝑦
 

So, these are the set of linearized equation. So, these are linearized inviscid N-S equation. So, 

first one from continuity other two from the momentum. So, generalize this K-H instability 

equation where we again assume it is in only inviscid flow. So, we have a small disturbance 

and we assume that the disturbance is only in the direction of the basic flow which will become 

more unstable.  

And so that we can neglect the span of direction and we get this equation in the linearized form. 

So, now we will see how we can obtain solution for this particular form and this linearized 

system. We will stop here and continue in the next lecture. 


