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Turbulence (contd...) 

 

Okay. Welcome back and let us continue the discussion on the turbulent flow and we are 

looking at different situation. So, first we started over with the incompressible Navier Stoke's 

and where density is constant and the viscosity is constant then we move to a situation where 

still the dynamic viscosity is constant but there is a variation of the density which essentially 

gives rise to some effect due to density. And we approximated that one with the Boussinesq 

approximation. 
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This is what we got it basically when you have the Boussinesq approximation then where you 

have effect of the density variation and the density variation is only a function of temperature. 

So, you got your continuity, momentum equation. Now momentum equation will retain a term 

which is due to the temperature and this is my term energy equation in terms of temperature, 

so this term is known as buoyancy effect. So, this is nothing but my first order effect of weak 

temperature induced density variation. So, that is what you get for Boussinesq approximation.  
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So that is we have already looked at this picture at different situation. This is a picture where 

your laminar transition and this is a turbulent flow this is a flow over a perforated flat plate and 

these are jet flow this is Ru1 this is Ru2 which is greater than Ru1 is at the jet flows. Now if we 

combine or accumulate all these characteristics that we have discussed so far then we can see 

this is unsteady flow and 3 dimensional. So that is quite obvious this flow field has to be 

completely unsteady and 3 dimensional and when it is unsteady and 3 dimensional, we can say 

it is quite chaotic and irregular in nature then we can characterize it by lot of eddies these are 

the eddies in every flow you can see but they have different scales sometimes they are large-

scale sometimes they are of small scale and there could be a wide range of scales and that 

depends on the Reynolds number, what kind of scale we have whether it is a multiple scale or 

single scale or something like that then as I said there are multiple length scale primarily one 

could be large scale which we term as macrostructure there could be small scale which we term 

as microstructure.  

 

So, combined all these features that are exhibited due to unsteady and 3 dimensional flow field 

then also the flow field is at high Reynolds number so there is a scale similarity that means the 

large scale structure are independent of Reynolds number. So, if you look at the large-scale 

structure or the macro structure they are independent of the Reynolds number that gives you 

scale similarity. This is a very important characteristics then there is dissipative in nature, the 

flame flow field is dissipative in nature, so that means there is a rapid loss of energy and is 

effective in mixing and mass momentum heat etc. So, these are the characteristics that we have 

seen. 
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Now we have already said that for a turbulent flow the Navier stokes equations are ill-posed 

that because if we make some small perturbation to the initial condition or boundary condition 

the flow does not remain any more stable. So this is the where we can use our concept or linear 

stability to see whether the flow is stable or not for some small perturbation. Now this is quite 

important to identify the zone where you can see the stable flow field and the zone where it is 

unstable.  

 

So you can do some analysis for inviscid flows that means no viscosity one could be type of 

Kelvin Helmholtz instability this kind of this is an image of unstable jet flow, so this is an 

image of KH instability or Kelvin Helmholtz instability then we can look at a Rayleigh’s 

stability equation for 1D basic flow and then in second point criteria for instability. Now similar 

exercise can be extended by including the viscosity in that case we will get Orr-Sommerfeld 

equation and we can find out our stability diagram. 
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So the types of stability analysis one can do if you start write bottom here the analysis let us 

say this can go to one direction where it is a nonlinear. So which is something called finite 

amplitude disturbance or other one is the segment where we can say it is a linear that means 

infinitesimal disturbance okay. Now we will do or restrict our analysis for the linear system 

only, so this one will not going to be discussed. 

 

So you look at only the linear stability system now there are also different approach of this one 

can look at either normal mode analysis which is no interaction between Fourier mode so that 

is normal mode analysis or it could be non-normal mode analysis that is mode interaction, so 

even under the basket of linear stability analysis we will only be doing the normal mode 

analysis. We will not treat this non-normal mode.  

 

So now under the normal mode analysis there could be two categories. So we will say 1D basic 

flow either it could be inviscid which is essentially analyze equation or we can do viscous 

which is Orr-Sommerfeld equation. So we will look at these two type of instabilities. 
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Now before doing that we can look at some of this concept of a linear stability analysis. So, 

first thing is that one has to do formulate the base flow or basic flow. So, which is usually 

stationary and laminar. Then you can super impose on this a small instationary disturbance that 

is 𝑢′. Then you can substitute the sum which is plus into governing equation and linearize like 

𝜕𝑢′

𝜕𝑡
 and so on. Finally from that linearized equation, one can formulate an eigenvalue problem.  

 

So this is quite important and then we can find the non-trivial solutions which is for a non-zero 

disturbance and then finally the flow is unstable if a solution grows in time. So, that is how we 

can do that. 
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So we start with a K H instability which is linear and inviscid analysis in nature so we can have 

a fuel like this and this is λ. So this is my state 1: ρ1, u1. This is how I defined x and y this is u2 

this is my gravity 0 and state 2: ρ2. This is η(x, t), this is my Cr. Now here some definitions 

which are quite important to note one is that: 

𝐾 =
2𝜋

𝜆
 

Which is wave number then we get this: 

𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 

Then this is my growth factor and Cr is: 

𝐶𝑟 =
𝜔𝑟

𝐾
=

𝜆

𝑇
= 𝑤𝑎𝑣𝑒 𝑠𝑝𝑒𝑒𝑑 

Now if you look at the base flow or the basic flow there y is less than 0 you have u1 and P1. Y 

greater than 0: u2 and P2. Now if you look at the disturbances, then they are 𝑢′, 𝑣′, 𝑝′, 𝜂. Now 

for normal mode analysis my η(x, t) is 𝐴𝑒𝑖(𝐾𝑥−𝜔𝑡). So this is the set of variables. Now we can 

derive the governing equation. 
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So here we are talking about K H instability. So we derived the governing equation now for 

flow with no viscosity and irrotational which is a Kelvin theory this is a flow it is insulation 

potential flow theory which gives you: 

𝑢 =
𝜕𝜑

𝜕𝑥
, 𝑣 =

𝜕𝜑

𝜕𝑦
 

And Bernoulli’s equation will give you: 



𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
= 0 

And the other term: 

𝜕𝜑

𝜕𝑡
+

1

2
𝑢. 𝑢 +

𝑝

𝜌
+ 𝑔𝑦 = 0 

So that’s what we get. 
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So what is our basic flow is stationary plus spatially uniform except for jump at y equals to 0. 

So the Bernoulli’s equation yield for this: 

1

2
𝑢1

2 +
𝑝1

𝜌1
+ 𝑔𝑦 = 𝐶1 

And: 

1

2
𝑢2

2 +
𝑝2

𝜌2
+ 𝑔𝑦 = 𝐶2 

So this is what we wrote. So this is constant. So then for stationary the unsteady term goes off 

and from the rest of the term if it is spatially uniform except the point y equals to 0 is it and 

one can also note that the basic pressure varies with height that is due to gravity which means 

𝐶1 and 𝐶2 are constants. 
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Now we can formulate the linearized equation for disturbance so still we are doing KH 

instability this is linearized equation for disturbance. So from mass conservation equation we 

get 2 equations one is: 

𝜕2𝜑1
′

𝜕𝑥2
+

𝜕2𝜑1
′

𝜕𝑦2
= 0 

Second is: 

𝜕2𝜑2
′

𝜕𝑥2
+

𝜕2𝜑2
′

𝜕𝑦2
= 0 

So these are the 2 linearized equation that we get for the mass conservation. Now similarly 

momentum conservation momentum conservation will get 2 equation. So one is: 

𝜕𝜑1
′

𝜕𝑡
+ 𝑈1

𝜕𝜑1
′

𝜕𝑥
+

𝑝1
′

𝜌1
+ 𝑔𝜂 = 0 

And: 

𝜕𝜑2
′

𝜕𝑡
+ 𝑈2

𝜕𝜑2
′

𝜕𝑥
+

𝑝2
′

𝜌2
+ 𝑔𝜂 = 0 

So these are the 2 equation these are from mass conservation there are 2 equation from 

momentum conservation there are 2 equations and they are linearized equations and these 

equations are for disturbances.  
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Now we need boundary conditions which are quite important. Number one we can have 0 

velocity disturbances far from interface that means one can write: 

lim
𝑦→±∞

∇𝜑1,2
′ = 0 

So that is our delay velocity disturbance far from the interface, second we can have kinematic 

interface condition so kinetic interface condition talked about with fluid parcels sitting on the 

interface move with the interface and no gap should be formed between the 2 fluids which 

means: 

𝐷𝜂

𝐷𝑡
= |𝑣|𝑦=𝜂 = |

𝜕𝜑′

𝜕𝑦
|

𝑦=𝜂

 

So that is my kinetic conditions and last is dynamic interface condition when surface tension 

is neglected, normal stress must be continuous across interface. Now for inviscid flows a 

continuous normal stress reduces to a continuous pressure across the interface which will get 

at 𝑦 = 𝜂 and 𝑃1 = 𝑃2. So this is what we get. So these are 3 conditions that one have as the 

boundary conditions. So we stop here today and continue it in the next lecture. 


