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Lecture-28
Turbulence (Contd...)

Welcome back, so, let us continue our discussion of the turbulent flow. And we are slowly
getting into the details of characterization of the turbulent flow and first thing we have looked
at the some initial features of the turbulent flow, how they would look and then discuss the

properties of the flow.
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Now, where we start here is the situation where the system is a well posed problem of the ill
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posed problem and we said a system of PDE's or closed system of PDE's for a given initial and
boundary condition. If a solution exists the solution is unique that means, the only one solution
exists and the solution is stable for small perturbation in the initial. Now, the important question
which arises here is what about the Navier Stokes equations? Are they ill posed or well posed?

So, this is well posed for laminar flows.

So, that is a very important point. Now, that means, we mean to say this is ill posed for turbulent
flows. Now, when we say it is an ill posed that means, we can say what it does not do. So, the
turbulent flows do not satisfy this last condition of the third condition that means, if you say

this is 1, 2, 3. So, this guy do not satisfy condition 3 which is that solution is not stable for a



small perturbation in the initial and the boundary condition. So, which means the realistic initial

condition and boundary condition always known with finite accuracy and also the behavior is

auf. So, this is the nonlinear

related to non-linear term in Navier Stokes equation which is u; Fy
J
term and this behavior is sort of related to this non-linear term in the Navier Stokes so, that

means, which is one thing which is absolutely clear here is that for laminar flow.

It becomes Navier Stokes equation becomes an ill posed problem that means, it satisfied all
these 3 conditions solution exist, solution is unique and solution is also stable. But for turbulent
flow it does not satisfy the third condition that is why it becomes ill posed and the behavior is
somehow related to the nonlinear term. So, that means, we can conclude saying that the
turbulence which could be in deterministic chaos. So, this is what one can say about turbulent

flows.
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Now, we will look at slightly in details. So, first thing that we will do the non-dimensional
equation so, non-dimensional form of in this equation so, first thing that will do will non-
dimensional analyze the system so, for that we need some characteristic velocity and length

skills. So, you say U and L and the non-dimensional analysis can be done can be achieved

through this where we can define: %; is xi/L, tis tU/L, il; is ui/U and P is p/(pUZ)'

So, that is what we do then if we write the non-dimensional Navier Stokes this will look like

your continuity equation will look like 0 and momentum equation will be:
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Now here the Reynolds Number Re is defined as characteristics velocity length scale by v
which is our ratio of 2 forces, one is inertial divided by viscous forces. So, that is what we get.
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Now, look at the scale similarity. So, already we have got the non-dimensional form. So, there
are 2 similarity one is the Reynolds Number similarity. So, Re similarity that is one important
thing which says that if for 2 flows the Reynolds Number and the scaled initial or boundary
conditions are the same then the scaled velocity and pressure fields are the same as well. So,
that is how you say about Reynolds Number similarity. Now at large Reynolds number, the

viscous term essentially that term with 1 by Re is negligible at large scales.

So, which means there is a scale similarity which on the other hand has no dependency on Re

and other one holds for large scale structure of turbulence that is nothing but the macrostructure.
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So, this is what from our non-dimensional Navier Stokes equations which is continuity this is
continuity and this is momentum, we can say there are both the scales similarity and Reynolds
Number similarity and the Reynolds Number similarity if for two flows are Reynolds Number
and the scale initial and boundary conditions are the same then the scaled velocity and pressure
fields are the same as well. So, that talks about your Re similarity. Now, when you move to a
large Re, the term which has the viscous term that what we said terms with one by Re is
negligible at large scale, which means, there is a scale similarity that means there is no
dependency on the Re and this holds good for large scale structure of turbulence that means

the macro structure. So, these 2 things are your Re and the scale similarity.
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So, now that we need one more thing which to be interesting to quantify is the vorticity, so the
definition of vorticity says that if you say w = V X u, which means the vorticity is 2 multiply
by angular velocity of a fluid parcel so, that is small fluid volume so, that certainly takes a curl
of velocity vector will get to the vorticity in mathematical term. This is the mathematics so, we
can derive the conservation of vorticity so, that you get by taking the curl of N S equation. So,
we have got this N S equation either in non-dimensional form so, you can or dimensional form
you take the curl of that what we get:

aa)i N aa)i axi n azwi
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Now, here this is our vorticity transport equation or conservation of vorticity equation or one
can say vorticity transport equation. Now, this particular term here these terms it is called the
vortex stretching term and this only present in 3D flows. Now, what it does is a very interesting
phenomena which is associated with this particular term. So, vortex stretching mechanism
causes change in vorticity of a fluid parcel by stretching and rotation of the parcel. So, this is
very important concept here. The vortex stretching mechanism actually causes the change in
both the vorticity of fluid parcel by stretching and the rotation of the parcel. So, it stretches and
also rotate the parcel. So, one can think about vorticity in global sense this is a characteristic

feature of turbulence.

So, that is how we, now we are looking at different aspect of this particular flow, we looked at
this large scale similarity, Reynolds Number similarity and macro structure. Now we are
looking at the vorticity, not only vorticity also the vorticity transport equation where we have
a vortex stretching term and vortex stretching mechanism. So, that is one of the characteristics

feature of the turbulent flow.
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Now, we will go back a little bit and start with some simple system like potential flow, so
which means that is 0 vorticity so, the potential flow means flows with no vorticity so, that
means there is no stretching of fluid parcel neither the rotation of the fluid parcel so, which
means w is 0 so, you can have a velocity potential and one can define u; as:
_J¢

u; = G—Xl

Once you do some algebra here so,
Vu=VV.u) —VXw
So, the these goes to 0 and:
u.Vu = V(u.u/z) —uXw

This also goes to 0. So, there is cross terms are 0 for 0 vorticity. So, for potential flow the
Navier stokes equation actually reduced to another famous equation called Bernoulli's equation

which is:
aZ
Y -0
axiz
And:
0 1
a—(f + Eu.u + % — gx = constant

So, these are the set of equation that one may have for potential flow which does not have a 0

vorticity that flow field assumed to be not getting straight neither having any rotation.



(Refer Slide Time: 21:05)

Turbulence
GE wth Vil densily «-Gh D _2(1)
Mass "‘; 220 ( Aphprimate 4]
B h : ) AU;
e ey L 3 W —
o i\ 92t o il 1y 2
: o0
E 1 ek p="p6)
ez 1 VQ
_’V\l'fﬂ ] ) b )6 . K 13
* p % c

20

Now, we will look at the equation or the governing Equation with varying density. So, density
is no more constant, but still we maintain dynamic viscosity constant and density is a function
of temperature only. So, that means the density is no more constant, density is varying. So, we
can have some approximate equation for conservation of mass which will be:

ou;

0x;
So, one can note here approximate equation when density is varying, we cannot directly write
this what we have written for incompressible flow. So, this is an approximate equation now,

the momentum conservation will have the variation of the density into the system. So, that will

6ui+ ou;\ (')p_l_ N 0%u;
P\t "Yox )T Tox;  PI T Hox2

look like density with:

Now, we use one more equation because density is a function of temperature. So, we use the
energy equation and equation of state. So, equation of state would give me p is a function of 6
and my energy equation will get me energy equation for temperature. So, that will be:

00 00 0%6

—tu—=x
ot ] axj anZ

So, that is what we get. So, this is the Governing Equation that one can have for the varying

density condition.
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Now, we will use one important approximation is known as Boussinesq approximation. So, we
can define our reference system like this. So, this is my X. So, u in this direction and this is my
y, v will be in this direction, this is my z, so, my w will be this direction, so, my g will be acting
on this direction. Now, first we will have some reference condition. So, the reference condition
is 0, po, po, Bo. So the equation of basic state would be:

0po

0=——>_""PYg

Now you want to slightly deviate from the basic state that means small deviations from basic
state. So, how do you get that? So, we will say that uy + u, py + p, po + p, 6o + 6. Thereis a
small deviation from the basic state now, we linearize the governing equation. So, the
governing equation that we have written here mass momentum energy for temperature. So, the

linearized system would look like that:

p 0
po 6
So, this is where:
_ o\ [P
== (G) 561,

For ideal gas, @ would be 1. This is my linearized equation of state.
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Now, my Boussinesq approximation will get me:
aui —0
axi -

And my momentum equation becomes:

And we get:

0,90 _ 2%

ot 7 ox; 0x;2
And this is the term what with the negative sign is the buoyancy effect. So this is first order
effect of weak temperature induced density variation. So, the density dependent on temperature
due to that you get to see some variation in the momentum equation. We will stop here and

continue the discussion in the next lecture.



