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Welcome back, so, let us continue our discussion of the turbulent flow. And we are slowly 

getting into the details of characterization of the turbulent flow and first thing we have looked 

at the some initial features of the turbulent flow, how they would look and then discuss the 

properties of the flow.  
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Now, where we start here is the situation where the system is a well posed problem of the ill 

posed problem and we said a system of PDE's or closed system of PDE's for a given initial and 

boundary condition. If a solution exists the solution is unique that means, the only one solution 

exists and the solution is stable for small perturbation in the initial. Now, the important question 

which arises here is what about the Navier Stokes equations? Are they ill posed or well posed? 

So, this is well posed for laminar flows.  

 

So, that is a very important point. Now, that means, we mean to say this is ill posed for turbulent 

flows. Now, when we say it is an ill posed that means, we can say what it does not do. So, the 

turbulent flows do not satisfy this last condition of the third condition that means, if you say 

this is 1, 2, 3. So, this guy do not satisfy condition 3 which is that solution is not stable for a 



small perturbation in the initial and the boundary condition. So, which means the realistic initial 

condition and boundary condition always known with finite accuracy and also the behavior is 

related to non-linear term in Navier Stokes equation which is 𝑢𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
. So, this is the nonlinear 

term and this behavior is sort of related to this non-linear term in the Navier Stokes so, that 

means, which is one thing which is absolutely clear here is that for laminar flow. 

 

It becomes Navier Stokes equation becomes an ill posed problem that means, it satisfied all 

these 3 conditions solution exist, solution is unique and solution is also stable. But for turbulent 

flow it does not satisfy the third condition that is why it becomes ill posed and the behavior is 

somehow related to the nonlinear term. So, that means, we can conclude saying that the 

turbulence which could be in deterministic chaos. So, this is what one can say about turbulent 

flows.  
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Now, we will look at slightly in details. So, first thing that we will do the non-dimensional 

equation so, non-dimensional form of in this equation so, first thing that will do will non-

dimensional analyze the system so, for that we need some characteristic velocity and length 

skills. So, you say U and L and the non-dimensional analysis can be done can be achieved 

through this where we can define: 𝑥̃𝑖 is 
𝑥𝑖

𝐿⁄ , 𝑡̃ is 𝑡𝑈 𝐿⁄ , 𝑢̃𝑖 is 
𝑢𝑖

𝑈⁄  and 𝑝 is 
𝑝
(𝜌𝑈2)⁄ . 

 

So, that is what we do then if we write the non-dimensional Navier Stokes this will look like 

your continuity equation will look like 0 and momentum equation will be: 



𝜕𝑢̃𝑖
𝜕𝑡̃

+ 𝑢̃𝑗
𝜕𝑢̃𝑖
𝜕𝑥̃𝑗

= −
𝜕𝑝

𝜕𝑥̃𝑖
+

1

𝑅𝑒

𝜕2𝑢̃𝑖

𝜕𝑥̃𝑗
2  

Now here the Reynolds Number Re is defined as characteristics velocity length scale by ν 

which is our ratio of 2 forces, one is inertial divided by viscous forces. So, that is what we get. 
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Now, look at the scale similarity. So, already we have got the non-dimensional form. So, there 

are 2 similarity one is the Reynolds Number similarity. So, Re similarity that is one important 

thing which says that if for 2 flows the Reynolds Number and the scaled initial or boundary 

conditions are the same then the scaled velocity and pressure fields are the same as well. So, 

that is how you say about Reynolds Number similarity. Now at large Reynolds number, the 

viscous term essentially that term with 1 by Re is negligible at large scales. 

 

So, which means there is a scale similarity which on the other hand has no dependency on Re 

and other one holds for large scale structure of turbulence that is nothing but the macrostructure. 
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So, this is what from our non-dimensional Navier Stokes equations which is continuity this is 

continuity and this is momentum, we can say there are both the scales similarity and Reynolds 

Number similarity and the Reynolds Number similarity if for two flows are Reynolds Number 

and the scale initial and boundary conditions are the same then the scaled velocity and pressure 

fields are the same as well. So, that talks about your Re similarity. Now, when you move to a 

large Re, the term which has the viscous term that what we said terms with one by Re is 

negligible at large scale, which means, there is a scale similarity that means there is no 

dependency on the Re and this holds good for large scale structure of turbulence that means 

the macro structure. So, these 2 things are your Re and the scale similarity. 
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So, now that we need one more thing which to be interesting to quantify is the vorticity, so the 

definition of vorticity says that if you say 𝜔 = ∇ × 𝑢, which means the vorticity is 2 multiply 

by angular velocity of a fluid parcel so, that is small fluid volume so, that certainly takes a curl 

of velocity vector will get to the vorticity in mathematical term. This is the mathematics so, we 

can derive the conservation of vorticity so, that you get by taking the curl of N S equation. So, 

we have got this N S equation either in non-dimensional form so, you can or dimensional form 

you take the curl of that what we get: 

𝜕𝜔𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝜔𝑖

𝜕𝑥𝑗
= 𝜔𝑗

𝜕𝑥𝑖
𝜕𝑥𝑗

+ ν
𝜕2𝜔𝑖

𝜕𝑥𝑗
2

 

Now, here this is our vorticity transport equation or conservation of vorticity equation or one 

can say vorticity transport equation. Now, this particular term here these terms it is called the 

vortex stretching term and this only present in 3D flows. Now, what it does is a very interesting 

phenomena which is associated with this particular term. So, vortex stretching mechanism 

causes change in vorticity of a fluid parcel by stretching and rotation of the parcel. So, this is 

very important concept here. The vortex stretching mechanism actually causes the change in 

both the vorticity of fluid parcel by stretching and the rotation of the parcel. So, it stretches and 

also rotate the parcel. So, one can think about vorticity in global sense this is a characteristic 

feature of turbulence. 

 

So, that is how we, now we are looking at different aspect of this particular flow, we looked at 

this large scale similarity, Reynolds Number similarity and macro structure. Now we are 

looking at the vorticity, not only vorticity also the vorticity transport equation where we have 

a vortex stretching term and vortex stretching mechanism. So, that is one of the characteristics 

feature of the turbulent flow. 
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Now, we will go back a little bit and start with some simple system like potential flow, so 

which means that is 0 vorticity so, the potential flow means flows with no vorticity so, that 

means there is no stretching of fluid parcel neither the rotation of the fluid parcel so, which 

means 𝜔 is 0 so, you can have a velocity potential and one can define 𝑢𝑖 as: 

𝑢𝑖 =
𝜕𝜑

𝜕𝑥𝑖
 

Once you do some algebra here so, 

∇2𝑢 = ∇(∇. 𝑢) − ∇ × 𝜔 

So, the these goes to 0 and: 

𝑢. ∇𝑢 = ∇(𝑢. 𝑢 2⁄ ) − 𝑢 × 𝜔 

This also goes to 0. So, there is cross terms are 0 for 0 vorticity. So, for potential flow the 

Navier stokes equation actually reduced to another famous equation called Bernoulli's equation 

which is: 

𝜕2𝜑

𝜕𝑥𝑖2
= 0 

And: 

𝜕𝜑

𝜕𝑡
+
1

2
𝑢. 𝑢 +

𝑝

𝜌
− 𝑔𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

So, these are the set of equation that one may have for potential flow which does not have a 0 

vorticity that flow field assumed to be not getting straight neither having any rotation. 
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Now, we will look at the equation or the governing Equation with varying density. So, density 

is no more constant, but still we maintain dynamic viscosity constant and density is a function 

of temperature only. So, that means the density is no more constant, density is varying. So, we 

can have some approximate equation for conservation of mass which will be: 

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 

So, one can note here approximate equation when density is varying, we cannot directly write 

this what we have written for incompressible flow. So, this is an approximate equation now, 

the momentum conservation will have the variation of the density into the system. So, that will 

look like density with: 

𝜌 (
𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

) = −
𝜕𝑝

𝜕𝑥𝑖
+ 𝜌𝑔𝑖 + 𝜇

𝜕2𝑢𝑖
𝜕𝑥𝑗2

 

Now, we use one more equation because density is a function of temperature. So, we use the 

energy equation and equation of state. So, equation of state would give me 𝜌 is a function of θ 

and my energy equation will get me energy equation for temperature. So, that will be: 

𝜕𝜃

𝜕𝑡
+ 𝑢𝑗

𝜕𝜃

𝜕𝑥𝑗
= κ

𝜕2𝜃

𝜕𝑥𝑗2
 

So, that is what we get. So, this is the Governing Equation that one can have for the varying 

density condition. 
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Now, we will use one important approximation is known as Boussinesq approximation. So, we 

can define our reference system like this. So, this is my x. So, u in this direction and this is my 

y, v will be in this direction, this is my z, so, my w will be this direction, so, my g will be acting 

on this direction. Now, first we will have some reference condition. So, the reference condition 

is 0, p0, ρ0, θ0. So the equation of basic state would be: 

0 = −
𝜕𝑝0
𝜕𝑧

− 𝜌0𝑔 

Now you want to slightly deviate from the basic state that means small deviations from basic 

state. So, how do you get that? So, we will say that 𝑢0 + 𝑢, 𝑝0 + 𝑝, 𝜌0 + 𝜌, 𝜃0 + 𝜃. There is a 

small deviation from the basic state now, we linearize the governing equation. So, the 

governing equation that we have written here mass momentum energy for temperature. So, the 

linearized system would look like that: 

𝜌

𝜌0
= −𝛼

𝜃

𝜃0
 

So, this is where: 

𝛼 = −(
𝜃0
𝜌0
) |
𝜕𝑝

𝜕𝜃
|
𝜃=𝜃0

 

For ideal gas, 𝛼 would be 1. This is my linearized equation of state. 
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Now, my Boussinesq approximation will get me: 

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 

And my momentum equation becomes: 

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
1

𝜌0

𝜕𝑝

𝜕𝑥𝑖
− 𝛼

𝜃

𝜃0
𝑔𝑖 +

𝜇

𝜌0

𝜕2𝑢𝑖
𝜕𝑥𝑗2

 

And we get: 

𝜕𝜃

𝜕𝑡
+ 𝑢𝑗

𝜕𝜃

𝜕𝑥𝑗
= κ

𝜕2𝜃

𝜕𝑥𝑗2
 

And this is the term what with the negative sign is the buoyancy effect. So this is first order 

effect of weak temperature induced density variation. So, the density dependent on temperature 

due to that you get to see some variation in the momentum equation. We will stop here and 

continue the discussion in the next lecture. 


