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                                     Laminar Non-Premixed Flames (cont…) 

 

Okay welcome back, let us continue the discussion on the laminar non-premixed flame. So, we 

are looking at the jet diffusion flame and doing the detailed analysis and trying to find out the 

profiles and all these things.  
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So, this is where we stopped on the boundary conditions and all these things.  
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So, this is the jet, unconfined jet. We had fuel coming in and then with some of the assumption. 
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We got to the conservation laws and mass, axial momentum, species. 
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And then we have one from the oxidizer. 
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And then we noted down the boundary condition. One of the boundary condition is the along 

jet center line and then at the large radius, jet center line we have radial velocity is 0 and the 

derivative said 0 which is from symmetry. At large radius axial velocity is 0, fuel mass fraction 

is also 0.  
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And then at the finally, we have this jet exit where we assume the uniform axial velocity and 

fuel mass fraction and 0 so that will get you these boundary conditions. 
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Now for the solution, the velocity field can be obtained by assuming the profiles to be similar. 

Secondly, the intrinsic shape of velocity profile is same everywhere in the flow field. Thirdly 

the radial distribution of Vx (r, x) is normalized with the local center line velocity like this is a 

universal function that only depends on similarity variable that is (r/x).  

 

So, this is a standard jet flow. So, the analytical solution exists for this solution for the axial 

velocity is: 
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Now, similarly, for radial velocity solution is: 
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So, Je we have already defined it is the initial jet momentum which is 𝜌𝑒𝑣𝑒
2𝜋𝑅2 and 𝜉 is defined 

as: 
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So, these are the definition for initial momentum and the 𝜉. 
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Now, one can demand the axial velocity that means in terms of (vx/ve) which is an exit velocity 

of the jet. So, if you do that this dimensions form will look like: 
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Now, the dimensionless center line velocity indicates okay, now this can be obtained by setting 

r = 0 if we put these were 𝜉 = 0: 

𝑣𝑥
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So, this is what we get now, what it clearly says or shows that this relationship how the center 

line or velocity decays. The velocity decay actually inversely proportional to the axial distance 

and jet Reynolds number.  
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So, the jet Reynolds number is defined as (
𝜌𝑒𝑣𝑒𝑅

𝜇
). So, if you put it so, this is proportional to 

the jet Reynolds number and inversely with the axial distance. Now, from this expression, one 

can also see that this is the 7.13, it is not valid near the nozzle. Why? Because at a small value 

of x, the dimension less centerline velocity that is this, this is for small values of x.  

 

This quantity becomes greater than 1 and this is a condition which is actually not possible or 

rather one can say it is a physically impossible scenario. So, this cannot happen.  

 

(Refer Slide Time: 08:35) 

 

So, that one can see these dimensionless centre line velocity along this axis which will plot 

dimensionless centre line velocity and the axial distance. So, you can see for this size is the 



increasing jet Reynolds number and with the increasing jet Reynolds number, you can see the 

pattern because it should not increase or goes beyond one which is not physical and also 

feasible too.  
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Now, so, the other parameters which are used to characterize the jets are the one is spreading 

rate and spreading angle which is α. So, these are 2 more important parameters which are often 

used to define or characterize the jet spreading jet. Also we can introduce jet half-width which 

is 𝑟1/2. Now what is half-width? Half-width is the radial location where jet velocity has decayed 

to one half of its center line value.  

 

That means along the radial directions it is basically width, so you find the radial width where 

the jet velocity decays to one half of the center line value, this is what one can form as a half-

width. Now, this 𝑟1/2 or half width can be derived by setting this (vx/vx,0) So, then one can say 

jet spreading rate is nothing but (𝑟1/2/𝑥). So, one needs to find out the half-width and jet 

spreading angle is the angle whose tangent is the spreading rate. So, Jet spreading rate would 

be 𝑟1/2/𝑥 and get spreading angle would be angle whose standing the jet spreading rate. 
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So, you can see this is our spreading angle and this is the half with and then along these are 

𝑟1/2/𝑥 will give you that jet spreading rate. So, one can look at that thing and this is my vx/vx,0, 

how it varies with width r that means along these directions, radial direction. So, these 2 

quantities, I mean rather I would say 3 quantities, one is the spreading rate, spreading angle 

and half width they are very important when you characterize the jet or other jet close.  
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So, the spreading rate one can estimate it would be: 

𝑟1/2

𝑥
= 2.97 (

𝜇

𝜌𝑒𝑣𝑒𝑅
) = 2.97𝑅𝑒𝑗

−1 

And the spreading angle will be: 



𝛼 = 𝑡𝑎𝑛−1 (
𝑟1/2

𝑥
) 

So that is how you get one is rate spreading rate, one is spreading angle. So, at high Rej that 

means jet Reynolds number on narrow while low Rej are white which one can see because this 

is inversely proportional.  

 

So, if you have high Rej and low Rej you can see the difference between the spreading rates for 

a low Reynolds number case. The spreading would be more for high Reynolds number case, 

the spreading would be low that primarily because it is inversely proportional. Now, we also 

know that when you look at the 2 equations 7.4 and 7.5, YF plays a same mathematical role as 

vx/vx,e if SC is 1 that is the Schmidt number which means 
𝜇

𝐷⁄  is 1.  
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Now, if that is the situation, we can find out the functional form of the solution for YF. So, the 

functional form of YF is identical as vx/vx,e. So you can write: 
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Where fuel flow rate is 𝑣𝑒𝜋𝑅2. So this is your volumetric fuel flow rate. Now we apply the 

condition Schmidt number = 1 to this equation. So, that gives back: 

𝑌𝐹 = 0.375𝑅𝑒𝑗 (
𝑥

𝑅
)
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So, that's the functional form. 
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Similarly, one can find out the center line values of the mass fraction. So, the center line values 

of mass fraction would be: 

𝑌𝐹,0 = 0.375𝑅𝑒𝑗 (
𝑥

𝑅
)

−1

 

It is similar to the velocity program. Now again, one has to note all these solutions are valid far 

from the nozzle. The dimensionless distance downstream or the solution is valid must exceed 

the jet Reynolds number, so which means x/R should be greater than this. 

 

(Refer Slide Time: 17:44) 

 

Now, once we do this, we can look at the jet flame behavior. So, now the burning laminar fuel 

jet is quite similar to the discussion that we have done for the non-reacting rate and to get into 



this burning jet that we have first looked at how the jet flames and the flows looks like, how 

central line velocity profile changes and all these characteristics. Now, since the fuel is flowing 

along the axis, it obviously diffuses radially outward.  

 

And the other hand oxidizer diffuses inward. So, that means, if fuel goes like this oxidizer come 

like this. So, in that contact point you get the flame. So, this is exactly what the flames surface 

is the locus of points were φ equals to unity that means along the stoichiometric condition so 

when one goes towards outside one come towards inside.  
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Now, this is the burning jet, this is the jet diameter and jet exit or the nozzle exit and this dotted 

line. So, fuel is coming from the side. So, fuel goes like this oxidizer come from that side when 

they meet at a point that is the locus of the flame surface and this is the flame surface where it 

is stoichiometric. Outside of that, this is lean condition because fuel is going from that side so, 

it is lean φ less than 1.  

 

These two lines corresponding φ greater than 1 and this height is called a flame height, so this 

is the flame height. Now, if we look at the temperature profiles at this particular location and 

this is at the jet exit location. So, jet exit location you have a velocity which is uniform, 

temperature is uniform, fuel mass fraction is also 1 and this is outside the jet it is all oxidizer 

so, that is 1 and this position there is nothing.  

 



At a sudden downstream location, this is temperature is varying. So, this position 

corresponding to the location of the radial location. If we look at here, this is r direction and 

this is the location which corresponds to Tf flame surface. So, this corresponds to that and this 

is how my Fuel comes down oxidizer comes down and product forms go further downstream, 

this is my temperature will vary because now this is exactly at the tip of the flame height.  

 

So, this will be the variation of the product and this is the variation of the oxidizer. So, once 

you have an idea about the evolution of this jet, you can also identify these characteristics and 

the profiles how that looked like and this should also help you to understand a lot about 

laboratory scale burner or the unconfined burners which you use later on for the analysis and 

see how that evolves and all these things. 
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Now, some points which can be noted here. One is that the products which are formed at the 

flame surface that diffuse radially both inward and outward. Obviously that would happen 

because products can go either side from this flame surface what is produced. This can go this 

side this can go that side. Now, over ventilated claim is where there is more than enough 

oxidizer in the immediate surroundings to continuously bond the fuel and obviously the 

opposite to that would be the under ventilated flame. 

 

Now, the flame length for an over ventilated flame can be determined at a location where 𝜑(𝑟 =

0, 𝑥 = 𝐿𝑓) and the pi is isometric.  
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Now, the zone of chemical reaction is quite narrow, but one can see that the laminar flame 

thickness but significantly larger than that. So, this is corresponding to your premixed flame 

thickness which is 𝛿. Typically, the premixed flame thickness is quite small and that creates 

some challenges for the modeler. But in the diffusion case you get in bigger reaction flame.  

 

Now, flame temperature distribution also exhibits an annular shape until the tip is reached and 

the upper sides of the buoyant forces are quite important. So, what it does is jet accelerates 

narrowing the flame and narrowing the flow increases the fuel concentration gradient. So, that 

in turn enhances the radial diffuser.  
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So, these are some images of flame. This is a nice laminar flame obviously, this is not laminar 

this is turbulent, but this is laminar and one can see clearly the difference between these 2 flame 

and what is quite chaotic in nature here. So, you get different reaction zone and in these case 

you get a nice shape. 
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Now we can ignoring the effects of heat released due to reaction. Then from 7.16, one can get 

in very crude description of the flame boundary when: 

𝑌𝐹 = 𝑌𝐹,𝑠𝑡𝑜𝑖 

So, this is a very crude description because what we are ignoring is the effect of the heat release 

which is not possible in a realistic situation. In that case, this would boils down to: 

𝑌𝐹 =
3
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Now, when r equals to 0, we get the flame length and that is: 

𝐿𝐹 =
3

8𝜋

𝑄𝐹

𝐷𝑌𝐹,𝑠𝑡𝑜𝑖
 

So that is what you get by assuming that you are ignoring the effect of the flame.  
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Now the flame length what you see it is proportional to the volumetric flow rate of the fuel. At 

the same time, it is inversely proportional to the stoichiometric fuel mass fraction. Now, since 

we have volumetric flow rate of the fuel is 𝑣𝑒𝜋𝑅2. So various combination of 𝑣𝑒 and 𝑅 will be 

the same flame length. Since the diffusion coefficient D is inversely proportional to the 

pressure, the height of the flame is is independent of pressure at given mass flow rate. So, that 

is how you get the analysis of the flame height in a jet diffusion flame. We will stop here and 

continue the discussion in the next lecture. 


