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Welcome back and let us continue the discussion on this premixed flame analysis where we 

are doing the analysis of a simplified system and based on the assumption we are taking a 1D 

premixed flame. 
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And this is where we stopped and just to quickly bring about there are certain assumptions and 

which are there one dimensional steady flow there is no pressure change across this flame front. 

Then Lewis number is 1, Cp all are equal single step chemistry and this is my control volume. 
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Now so first thing that will start our mass conservation which is an important thing so it will 

be: 

𝑑

𝑑𝑥
(𝜌𝑉𝑥) = 0 

Or one can write as to: 

𝜌𝑉𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Now that is my mass conservation. Now we will look at the species conservation, so this is for 

individual species this is my species conservation because individual species they will react 

and now when I apply now Fick's law of diffusion.  
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So if we apply Fick's law of diffusion what we get with the application of Fick's law of diffusion 

we get: 

𝑑 [�̇�′′𝑌𝑖 − 𝜌𝐷
𝑑𝑌𝑖
𝑑𝑥

]

𝑑𝑥
= �̇�𝑖

′′ 

Now what we have assumed it is a single step reaction, so that is our simplified analysis single 

step global reaction, so you can think about 1 kg of fuel, ν kg of oxidizer that will give ν + 1 

kg of product. So, I can write: 

�̇�𝐹
′′′ =

1

𝜈
�̇�𝑜𝑥

′′′ = −
1

𝜈 + 1
�̇�𝑝𝑟

′′′  

Okay? So you get this fuel oxidizer mass flux and the products mass flux equated. 

 

(Refer Slide Time: 03:26) 

 

Now we can write also in terms of individual species because now individual species mass 

transfer equation if we write, so how it looks like for fuel it would be: 

�̇�′′
𝑑𝑌𝐹
𝑑𝑥

−
𝑑 (𝜌𝐷

𝑑𝑌𝐹
𝑑𝑥

)

𝑑𝑥
= �̇�𝐹

′′′ 

And for oxidizer if we write: 

�̇�′′
𝑑𝑌𝑜𝑥
𝑑𝑥

−
𝑑 (𝜌𝐷

𝑑𝑌𝑜𝑥
𝑑𝑥

)

𝑑𝑥
= 𝜈�̇�𝐹

′′′ 

So one can notice here in the diffusion law we have D which is constant because that is one 

thing that we have assumed they are going to be equal it. 
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Now similarly we can write for the products, so this would be: 

�̇�′′
𝑑𝑌𝑝𝑟

𝑑𝑥
−
𝑑 (𝜌𝐷

𝑑𝑌𝑝𝑟
𝑑𝑥

)

𝑑𝑥
= −(𝜈 + 1)�̇�𝐹

′′′ 

So everything is written in terms of �̇�𝐹
′′′. That means if we know one of the mass flow rate 

whether it is a fuel or oxidizer something we can find out the ratio, so we got species mass 

conservation equations in terms of individual species like fuel oxidizer and product, now we 

will write the energy conservation equation which is: 

�̇�′′𝐶𝑝
𝑑𝑇

𝑑𝑥
−
𝑑 (𝜌𝐷𝐶𝑝

𝑑𝑇
𝑑𝑥

)

𝑑𝑥
= −∑ℎ𝑓,𝑖

0 �̇�𝑖
′′′ 

 

So that is the contribution for the species consumption or due to the reaction, so that is mine 

now this right hand side of this equation one can write in a slightly different format.  
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Like I can simplify that thing like: 

−∑ℎ𝑓,𝑖
0 �̇�𝑖

′′′ = −[ℎ𝑓,𝐹
0 �̇�𝐹

′′′ + ℎ𝑓,𝑜𝑥
0 𝜈�̇�𝐹

′′′ − ℎ𝑓,𝑝𝑟
0 (𝜈 + 1)�̇�𝐹

′′′] 

Which in term becomes: 

−∑ℎ𝑓,𝑖
0 �̇�𝑖

′′′ = −�̇�𝐹
′′′∆ℎ𝑐 

So that is in simplified way one can basically represent that right hand side where ∆ℎ𝑐 is 

nothing but your heat of combustion and one can write it as: 

∆ℎ𝑐 = ℎ𝑓,𝐹
0 + ℎ𝑓,𝑜𝑥

0 𝜈 − ℎ𝑓,𝑝𝑟
0 (𝜈 + 1) 

So this is how one can represent that now we have another assumption which is Lewis number 

1, so that tends you κ is ρDCp. So, using that we can rewrite 6.7 a. 
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And what one can write now: 

�̇�′′
𝑑𝑇

𝑑𝑥
−

1

𝐶𝑝

𝑑 (κ
𝑑𝑇
𝑑𝑥

)

𝑑𝑥
= −�̇�𝐹

′′′∆ℎ𝑐
1

𝐶𝑝
 

So using the other thing now whole idea here is to or the rather the objective is to find an 

expression for laminar flame speed. Expression for laminar flame speed that is what we want 

to do now one can correlate that or relate to that the mass flux �̇�′′ like: 

�̇�′′ = 𝜌𝑢𝑆𝐿 

This is a very interesting expression where 𝜌𝑢 stands for density of unburnt mixture and 𝑆𝐿 is 

your laminar flame speed, so approach is to assume a temperature profile that must satisfy the 

boundary condition and then we can integrate this equation, so you can assume a temperature 

profile and which will obviously satisfy the boundary condition then this temperature equation 

if we integrate then we can get that. 
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Now what are the boundary condition if we look at those boundary conditions first at the 

upstream you have T which x extends to negative infinity is T unburnt and gradient would be 

when x tends to negative infinity gradient is zero. Now that is enough upstream, now 

downstream at the product side you have T extends to positive infinity equals to T burnt and 

gradient while extends to positive infinity is zero. 

 

So 6.9 c to d, so this is the situation this is your upstream and this is your this is for example 

temperature profile this is downstream. So, you get these 2 condition. 
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So if you put them this is my x negative infinity this is x positive infinity and this is the direction 

of the x and we assume in temperature profile, so the one which represented here is a linear 

profile so this is the upstream boundary condition this is the downstream boundary condition 

and this is the 𝛿, see this 𝛿 is the flame thickness where you have this temperature now the 

assumption here is that this T(x)  is linear. 

 

So this is what we assumed that temperature profile and the temperature goes from T unburnt 

to T burnt and the distance between which this temperature is, so that is the 𝛿 or the flame 

thickness. So, within this distance temperature goes T unburnt to T burnt.  
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Now we integrate 6.7 b and get: 

�̇�′′[𝑇]𝑇𝑥
𝑇𝑏 −

𝜅

𝐶𝑝
[
𝑑𝑇

𝑑𝑥
]
0

0

= −
∆ℎ𝑐
𝐶𝑝

∫ �̇�𝐹
′′′

∞

−∞

𝑑𝑥 

So if we write: 

�̇�′′(𝑇𝑏 − 𝑇𝑢) = −
∆ℎ𝑐
𝐶𝑝

∫ �̇�𝐹
′′′

∞

−∞

𝑑𝑥 

So now the limits of the reaction rate integral this is the one can be switched to the temperature 

from space coordinate the reason is that m triple dot this �̇�𝐹
′′′ is this guy is non-zero between 

Tu and Tb so over 𝛿. 
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So: 

𝑑𝑇

𝑑𝑥
=
𝑇𝑏 − 𝑇𝑢

𝛿
 

Or 

𝑑𝑥 =
𝛿

𝑇𝑏 − 𝑇𝑢
𝑑𝑇 

Now we switch these things, now this one if we used here in 6.11 then what we get now using 

these in 6.11 we get: 

�̇�′′(𝑇𝑏 − 𝑇𝑢) = −
∆ℎ𝑐
𝐶𝑝

𝛿

𝑇𝑏 − 𝑇𝑢
∫ �̇�𝐹

′′′

𝑇𝑏

𝑇𝑢

𝑑𝑇 



So we switch the limit of the integration from the spatial coordinate to the temperature 

coordinate. 

 

(Refer Slide Time: 15:42) 

 

Now the average reaction rate which one can define this is the average reaction rate which is 

now: 

�̇�𝐹
′′′̅̅ ̅̅ ̅ ≡

𝛿

𝑇𝑏 − 𝑇𝑢
∫ �̇�𝐹

′′′

𝑇𝑏

𝑇𝑢

𝑑𝑇 

So we turn that thing is a average reaction rate, so if you use this information of the average 

reaction rate we can finally simplify that term to be: 

�̇�′′(𝑇𝑏 − 𝑇𝑢) = −
∆ℎ𝑐
𝐶𝑝

𝛿�̇�𝐹
′′′̅̅ ̅̅ ̅ 

So that is the expression one gets, now here in this particular equation if you look at it there are 

2 unknowns number one is �̇�′′ and second is 𝛿. So these are the 2 unknowns, so we have right 

now one equation and 2 unknowns so that means to get the complete solution we need one 

more equation. 
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Now what we can assume we can assume the reaction rate is much smaller within the first half 

of 𝛿 that means which essentially says between x equals to - infinity and x equals to 𝛿/2, so 

we can re evaluate equation 6.10 and from  x equals to - infinity to x equals to 𝛿/2 if we do 

that we get: 

𝑇 =
𝑇𝑏 + 𝑇𝑥

2
 

And 

𝑑𝑇

𝑑𝑥
=
𝑇𝑏 − 𝑇𝑥

𝛿
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So now one can write 6.10 we can rewrite that or that becomes: 



�̇�′′
𝛿

2
−

𝜅

𝐶𝑝
= 0 

So here is my second equation. So, we have 2 equations now equations are 6.15 and 6.17 and 

we have to solve for 𝛿 and �̇�′′, so once you solve this 2 equation the solution gives you: 

�̇�′′ = [2
𝜅

𝐶𝑝
2

(−∆ℎ𝑐)

(𝑇𝑏 − 𝑇𝑢)
�̇�𝐹

′′′̅̅ ̅̅ ̅]

1/2

 

So that is one solution that you get for this and the 𝛿 becomes: 

𝛿 =
2𝜅

𝐶𝑝�̇�
′′

 

So, you get the solution for these things.  
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Now we apply the definition of laminar flame speed, so we applying the definition of a SL 

which is: 

𝑆𝐿 =
�̇�′′

𝜌𝑢
 

where α is: 

𝛼 =
𝜅

𝜌𝑢𝐶𝑝
 

And heat of combustion is: 

∆ℎ𝑐 = (𝜈 + 1)𝐶𝑝(𝑇𝑏 − 𝑇𝑢) 

So if you use all this expression rather combine them together and you use the solution of 𝛿 

and �̇�′′ what we get: 



𝑆𝐿 = [−2𝛼(𝜈 + 1)
�̇�𝐹

′′′̅̅ ̅̅ ̅

𝜌𝑢
]

1/2

 

And 𝛿 is: 

𝛿 = [
−2𝜌𝑢𝛼

(𝜈 + 1)�̇�𝐹
′′′̅̅ ̅̅ ̅
]

1/2

 

Tthis is my 20 and one can see if you use the information of 𝑆𝐿 here in the 𝛿, one can write this 

𝛿 as (2 ∝ 𝑆𝐿
⁄ ). So that is what one can write, it is a nice correlation you will get between 𝑆𝐿 

that is the laminar flame speed in terms of thermal conductivity and the flame thickness.  
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Now we can look at so that one thing there is and this thing is that there will be some factors 

which are influencing this so we look at base factors that influence 𝑆𝐿 and 𝛿. Now one thing 

immediately you can notice that from this 2 equations 6.20 and 6.21 you can immediately 

notice that 𝑆𝐿 has a dependency on temperature or 𝛿 is a function of temperature. 

 

Now we first consider some temperature approximate temperature scaling some approximate 

temperature scaling which will get you that: 

𝛼 ∝ 𝑇𝑢�̅�
0.75𝑃−1 

And reaction rate would be proportional to: 𝑇𝑢�̅�𝑏
𝑛𝑃𝑛−1𝑒𝑥𝑝 [−

𝐸𝐴

𝑅𝑢𝑇𝑏
], so here n is the overall 

reaction order and �̅� is the [0.5(𝑇𝑏 + 𝑇𝑢)]. So, that is what one can get. 

 

 



(Refer Slide Time: 24:10) 

 

Now if you combine this scaling which will allow you to get an expression for 𝑆𝐿 and that will 

look liked now it will be: 

𝑆𝐿 ∝ �̅�0.375𝑇𝑢𝑇𝑏
−𝑛/2𝑒𝑥𝑝 [−

𝐸𝐴
2𝑅𝑢𝑇𝑏

] 𝑃
𝑛−2
2  

There is 𝛿: 

𝛿 ∝ �̅�0.375𝑇𝑏
𝑛/2𝑒𝑥𝑝 [

𝐸𝐴
2𝑅𝑢𝑇𝑏

] 𝑃
−𝑛
2  

So what one can notice here there is a strong dependence on T, on both Tu and Tb and flame 

thickness that 𝛿 is inversely proportional to 𝑆𝐿 if you take some number. For example, let us 

say n is 2 then 𝑆𝐿 becomes independent of P that is a specific case one can look at it that the 

dependency of 𝑆𝐿 on P and all this.  
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Now there are different correlations which actually exist some for let us say for stoichiometric 

methane air mixture the correlation is that: 

𝑆𝐿 = 10 + 3.21 × 104[𝑇𝑛(𝑥)]
2 

And this is based on temperature based on pressure same 𝑆𝐿 is: 

𝑆𝐿 = 43 × [𝑃(𝑎𝑡𝑚)]−0.5 

So simplified analysis can capture the effect of temperature but not the effect of pressure. 
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So you can see these are again based on some simplified analysis there is a correlation 𝑆𝑢 is 

nothing but your 𝑆𝐿 that we are discussing so laminar burning velocity the pressure in the 

atmosphere when it is changes the data is in the lower atmospheric condition data is quite 



scattered and then the burning velocity at the higher atmospheric condition follow some 

correlation, but at the lower pressure there is a quite a bit of scattered mists which is observed. 

 

(Refer Slide Time: 27:51) 

 

At the same time if you see that this is on the equivalence ratio this is φ curve axis this is 

percentage of methane and this is normalized and this is again burning velocity what you can 

see clearly and this is a pretty much and very unique characteristics of hydrocarbon fuel that 

you can see if you plot the laminar flame speed corresponding to φ, you get some peak around 

this point 1, that means around φ equals to 1 that is a stoichiometric so there will be a peak 

before that this φ less than 1 that means the lean condition. 

 

So the lean condition temperature dependency meaning temperature would be less and it is 

completely burnt. So, it is increasing because as the φ is increasing, fuel is increasing, 

temperature due to reaction is increasing, 𝑆𝐿 is increasing it reaches a maximum limit around 

φ equals to 1 which may not be exactly 1 then after that this side is the φ greater than 1 where 

again it starts decreasing this is one of the unique characteristics that you find in the 

hydrocarbon fuel.  

 

So but other fuel also you can estimate this and again there are analytical expression which are 

available. So, you can actually take it up as in smaller work assignment and calculate this. So, 

now stop here and continue the discussion in the next lecture. 


