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Coupling of Chemical Kinetics and Thermodynamics (Contd.,) 

 

Ok, welcome back. We were in the middle of the discussion of this coupling of kinetic and the 

Thermodynamics. And we started with some simple example and the one that we are discussing 

in the constant pressure fixed mass reactor and there would be few more that will take it up and 

look at this application.  
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So this is where you are actively looking at it. This is a constant pressure fixed mass reactor. 

That was the schematic just to give you a quick refreshment where we stop. 
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And these are the assumption then we wrote our energy equation and then we got the enthalpy 

and then we have work. This is one of the biggest assumption is that work is only the P-dv 

work. 
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Then finally we replace that thing. 
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And this is where we stopped the ideal gas behaviour. This is equation 5.7. 
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Now the 5.7 provide the link to the system temperature and the system composition they are 

linked with like this. So, this is 5.8 and now chemical dynamics that can be linked as: 

𝑑𝑁𝑖
𝑑𝑡

≡ 𝑉𝜔̇𝑖 

That is where my 𝜔̇𝑖 is the net production of species i, so this already have seen it. Now if you 

to substitute this 5.7 in to 5.9. So, basically you want to substitute 5.7 to 5.9 into 5.6, once you 

do that what we get is that. 
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𝑑𝑇

𝑑𝑡
=
(
𝑄̇
𝑉
⁄ ) − ∑ (ℎ𝑖̅𝜔𝑖̇ )𝑖

∑ ([𝑋𝑖]𝐶𝑃̅,𝑖)𝑖

 

And this will take over all this is there. Now once we use the calorific equation of state which 

states that this is: 

ℎ𝑖̅ = ℎ̅𝑖
0 + ∫ 𝐶𝑃̅,𝑖

𝑇

𝑇𝑟𝑒𝑓

𝑑𝑇 

So that what we get now, one can find out using this the volume so that can be easily obtained. 
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And the volume would be: 

𝑉 =
𝑚

∑ ([𝑋𝑖]𝑀𝑊𝑖)𝑖
 

[𝑋𝑖] is concentration molecular weight of i which is; now this is the change with time as a result 

of both chemical reaction and changing volume. So, what one can write: 

𝑑[𝑋𝑖]

𝑑𝑡
=
𝑑 (

𝑁𝑖
𝑉⁄ )

𝑑𝑡
=
1

𝑉

𝑑𝑁𝑖
𝑑𝑡

− 𝑁𝑖
1

𝑉2

𝑑𝑉

𝑑𝑡
 

So, or one can write: 

𝑑[𝑋𝑖]

𝑑𝑡
= 𝜔𝑖̇ − [𝑋𝑖]

1

𝑉

𝑑𝑉

𝑑𝑡
 

That is my 13b. 
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So again, we use the ideal gas law which is nothing but: 

𝑃𝑉 =∑𝑁𝑖𝑅𝑢𝑇

𝑖

 

Now here P is constant. So if you differentiate this equation and rearrange that this will get: 

1

𝑉

𝑑𝑉

𝑑𝑡
=

1

∑ 𝑁𝑖𝑖
∑

𝑑𝑁𝑖
𝑑𝑡

+
1

𝑇

𝑑𝑇

𝑑𝑡
𝑖

 

For this particular system pressure is constant. Now we substitute 5.9 into 5.14b and then you 

substitute the result of 5.13b.  
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So that will get us: 

𝑑[𝑋𝑖]

𝑑𝑡
= 𝜔𝑖̇ − [𝑋𝑖] [

∑𝜔𝑖̇

∑ [𝑋𝑗]𝑗

+
1

𝑇

𝑑𝑇

𝑑𝑡
] 

In summary, the problem is to find out the solution of the following two set of differential 

equation 1 is that: 

𝑑𝑇

𝑑𝑡
= 𝑓([𝑋𝑖], 𝑇) 

And T that is number one and the second one would be this is a function of T. So, this is the 

bottom line to setup equation and the whole idea is to find out the solution of these two.  
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So, this equations are subjected to some initial conditions where t at 0 is T0 and 

[𝑋𝑖](𝑡 = 0) = [𝑋𝑖]0 

So this is a and this is b. Now this functional form of these two equations are obtained from 

equation 5.10 and 5.11 gives enthalpy and equation 5.1 to give volume. But what happens most 

of the time there is no analytical solution. So, one has to go by some numerical technique like 

numerical integration. And which is somehow capable of handling this strip system. 
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Now I will move to the next reactor which is a constant volume fixed mass reactor. So, this 

volume is fixed and things should only change with time. Now again this case also, Energy 

equation will apply which will be similar to constant pressure case. 
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And only exception here is that this particular case, so this case our 𝜔̇ for constant V constant 

previously V was changing. So, there is a work done due to P/V work. So, my energy equation 

will get me: 

𝑑𝑘

𝑑𝑡
=
𝑄̇

𝑚
 

Now u here plays the same role as h in our analysis for P constant. Now the equations or that 

we got from 5.5 to 5.7. So similar things can be developed here and can be used in this particular 

equation. So essentially this is one expression this is second expression this is third expressions 

all this would be applicable and we can use them up and put it in this particular equation. 
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To get that my (
𝑑𝑇

𝑑𝑡
) would be: 

𝑑𝑇

𝑑𝑡
=
(
𝑄̇
𝑉
⁄ ) − ∑ (𝑢̅𝑖𝜔̇𝑖)𝑖

∑ ([𝑋𝑖]𝐶𝑣̅,𝑖)𝑖

 

So that is my temperature. Now you have: 

𝑢̅𝑖 = ℎ̅𝑖 − 𝑅𝑢𝑇 

And 

𝐶𝑣̅,𝑖 = 𝐶𝑃̅,𝑖 − 𝑅𝑢 

So, once we put them back you get: 

𝑑𝑇

𝑑𝑡
=
(
𝑄̇
𝑉
⁄ ) + 𝑅𝑢𝑇∑ (𝜔̇𝑖)𝑖 − ∑ (ℎ̅𝑖𝜔̇𝑖)𝑖

∑ ([𝑋𝑖]𝐶𝑃̅,𝑖 − 𝑅𝑢)𝑖

 

So, this is what we get here (
𝑑𝑃

𝑑𝑡
) is quite important this is important for this V equals to constant 

case. Because V constant case is the term disappeared. So in this case V should not disappear 

and that would be quite important. 
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Now to get (
𝑑𝑃

𝑑𝑡
) again start using the ideal gas law which is: 

𝑃𝑉 =∑𝑁𝑖𝑅𝑢𝑇

𝑖

 

And we get: 

𝑉
𝑑𝑃

𝑑𝑡
= 𝑅𝑢𝑇

𝑑 ∑ 𝑁𝑖𝑖

𝑑𝑡
+ 𝑅𝑢∑𝑁𝑖

𝑖

𝑑𝑇

𝑑𝑡
 



So that is the total pressure of the system. From here we get: 

𝑉
𝑑𝑃

𝑑𝑡
= 𝑅𝑢𝑇∑𝜔𝑖

𝑖

+ 𝑅𝑢∑[𝑋𝑖]

𝑖

𝑑𝑇

𝑑𝑡
 

Now this 5.20 can be integrated. 
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And simultaneously to determine t and dT so what we get: 

𝑑𝑇

𝑑𝑡
= 𝑓([𝑋𝑖], 𝑇) 

We get a function of this and T for i equals to 1,2 to such that N, now these set of equations. 

They can be sort with the initial conditions like T equals to T0 and: 

[𝑋𝑖](𝑡 = 0) = [𝑋𝑖]0 

So, these are the initial conditions. So this set of equation can be solved subjected to this initial 

condition. 

 

Now that is how you get the solution for the temperature and concentration in the volume 

constant reactor.  
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Now you go to well stirred reactor, so the well stirred reactor is essentially the perfectly stirred 

reactor is ideal reactor with perfect mixing achieved inside the control volume. So, this is quite 

often used experimental setup for flame stability if someone wants to measure pollutant then 

global reaction parameter, Zeldovich reactor. And these are some of the applications. 
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Now, this is the picture of the well stirred reactor with the electron species are coming in there 

is a going out this is a control volume. And the things are well mixed inside that. 
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So, again the mass conservation for any arbitrary species that one can write: 

𝑑𝑚𝑖,𝐶𝑉

𝑑𝑡
= 𝑚̇𝑖

′′′𝑉 + 𝑚̇𝑖,𝑖𝑛 − 𝑚̇𝑖,𝑜𝑢𝑡 

So, this rate at which the mass of is generated this is mass of the flow of i which comes into 

the control volume. This is what goes out of the; and this is the rate at which this changes that 

you get the now (𝑚̇𝑖
′′′𝑉) this is the source term essentially this is either generation or 

destruction of species by chemical reaction through transformation of one species to another 

species. 
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Now also we can write that: 



𝑑𝑚𝐶𝑉

𝑑𝑡
= 𝑚̇𝑖,𝑖𝑛 − 𝑚̇𝑖,𝑜𝑢𝑡 

And when you related this with the reaction rate so this is molecular weight and we can write 

that. And regarding the diffusion flux what can write that: 

𝑚̇𝑖𝑛 = 𝑚̇𝑌𝑖 

This is by ignoring the diffusion flux. Now, one can apply equation 5.27 to well stirred reactor 

and the time derivative on left hand side for steady state. This is one can use that, so with, now 

combining this equation, combining 5.29 5.30 and 5.27.  
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So, one can write that: 

𝜔̇𝑖𝑀𝑊𝑖𝑉 + 𝑚̇(𝑌𝑖,𝑖𝑛 − 𝑌𝑖,𝑜𝑢𝑡) = 0 

Where i is 1, 2 to N. So, further 𝑌𝑖,𝑜𝑢𝑡 is 𝑌𝑖,𝑖𝑛 of the control volume and species production rate: 

𝜔̇𝑖 = 𝑓([𝑋𝑖]𝑀𝑊𝑖) 

At the constant volume and temperature which is also a function of constant volume out and 

this is in that is out, where Yi is: 

𝑌𝑖 =
([𝑋𝑖]𝑀𝑊𝑖)

(∑ [𝑋𝑗]𝑀𝑊𝑗
𝑁
𝑗=1 )⁄  

So, this is what one can get it out now 5.31 here this can be written for N number of species 

provide N number of equation. This equation is valid for 1 to N and there would be N + 1 

unknown, assuming 𝑚̇ and V are known. 
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So, the additional equation comes from the energy. Now what we can write that steady state 

steady flow energy conservation for well stirred reactor where we get: 

𝑄̇ = 𝑚̇(ℎ𝑜𝑢𝑡 − ℎ𝑖𝑛) 

Which neglect any changes in kinetic and potential energy. Now in terms of individual species 

so this neglect kinetic energy and potential energy. 
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So, now in terms of individual species, this equation 5.34 becomes: 

𝑄̇ = 𝑚̇ [∑𝑌𝑖,𝑜𝑢𝑡ℎ𝑖(𝑇)

𝑁

𝑖=1

−∑𝑌𝑖,𝑖𝑛ℎ𝑖(𝑇)

𝑁

𝑖=1

] 



So here, ℎ𝑖(𝑇) is the sum of enthalpy of formation and CpidT. So, finding T and Yi,out is similar 

to equilibrium flame calculation but the composition is constant by kinetics. 
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So most of the time in this mean residence is defined for well stirred reactor and that is: 

𝑡𝑅 =
𝜌𝑉

𝑚̇⁄  

So, this is mean residence time. Now at the mixture density is: 

𝜌 =
𝑃.𝑀𝑊𝑚𝑖𝑥

(𝑅𝑢𝑇)
⁄  

For the well stirred reactor, equation system are nonlinear algebraic equations. 
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Now we will go to the plug flow reactor. 
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So, the plug flow reactor is like that where is the mass coming in going out? They are the steady 

state flow but no axial mixing. So, the assumption are steady-flow, no mixing in the axial 

direction. Molecular and turbulent mass diffusion in flow direction is also negligible. Uniform 

properties in the direction perpendicular to the flow that means it essentially talks about one 

dimensional flow, ideal frictionless flow, pressure-velocity can be related by Euler equation 

and it follows ideal gas behaviour. So that is the schematic of the system. 
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Basically write down for Mass conservation so that is the control volume issued whatever 

comes in it goes basically this is x and this is x + Δx. So that sleep is for small infinitesimal 

element of Δx with, it is mass conservation. And there will be momentum conservation and 

then there will be energy conservation this much of energy coming this is going out if there is 

a heat transfer takes place. 

 

And finally species conservation comes and goes out and some generation or destruction. So, 

these are the four governing equations one requires. One is the mass, momentum, energy, 

species mass transfer equation.  
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So what is the idea ideas to develop a system of first order ODE whose solution describe the 

reactor flow properties as a function of axial distance. Total we have 6 + 2 in equation and 

unknown of function show. The number of unknown can be reduced by N noting that 𝜔̇𝑖 can 

be expressed in terms of Yi and known quantities are 𝑚̇, ki, A(x) and 𝑄̇′′(𝑥). So, this one can 

calculate from the given wall temperature distribution. 
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Now these are the fundamental conservation mass, momentum, energy species. So, the number 

of equations are 3 + N under variables are derivative involve are 
𝑑𝜌

𝑑𝑥
, 
𝑑𝑃

𝑑𝑥
, 
𝑑ℎ

𝑑𝑥
 and Yi. This is for 

number of species and mass action law or mass conservation in which is 𝜔̇𝑖 the variables 

equation of state one which contents is derivatives 
𝑑𝜌

𝑑𝑥
, 
𝑑𝑃

𝑑𝑥
, 
𝑑𝑇

𝑑𝑥
 and this Calorific equation of state 

and the definition of mixture molecular weight.  

 

So, these are only the source of equation number of equations and the variables which are 

involved.  
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Now mass conservation you get: 

𝑑

𝑑𝑥
(𝜌𝑉𝑥𝐴) = 0 

That is your 5.39 then X momentum equation you get: 

𝑑𝑃

𝑑𝑥
+ 𝜌𝑉𝑥

𝑑𝑉𝑥
𝑑𝑥

= 0 

And then energy you get: 

𝑑 (ℎ +
𝑉𝑥
2

2
⁄ )

𝑑𝑥
+
𝑄̇𝑃

𝑚̇
= 0 

So  𝑉𝑥 is axial value and P is the local parameter. And species conservation: 

𝑑𝑌𝑖
𝑑𝑥

−
𝜔̇𝑖𝑀𝑊𝑖

𝜌𝑉𝑥
= 0 
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So, now equation 5.39 to 5.41one can rearrange and get that: 

1

𝜌

𝑑𝜌

𝑑𝑥
+
1

𝑉𝑥

𝑑𝑉𝑥
𝑑𝑥

+
1

𝐴

𝑑𝐴

𝑑𝑥
= 0 

And one write: 

𝑑ℎ

𝑑𝑥
+ 𝑉𝑥

𝑑𝑉𝑥
𝑑𝑥

+
𝑄̇′′𝑃

𝑚̇
= 0 
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So, using the ideal calorific equation where h is a function of temperature and the mass fraction. 

So, 
𝑑ℎ

𝑑𝑥
 can be related as: 

𝑑ℎ

𝑑𝑥
= 𝐶𝑃

𝑑𝑇

𝑑𝑥
+∑ℎ𝑖

𝑑𝑌𝑖
𝑑𝑥

𝑁

𝑖=1

 

So, to complete the mathematical description one more require is that for ideal gas law which 

is this. 
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So, these are the set of equation and so one will get: 

1

𝜌

𝑑𝑃

𝑑𝑥
=
1

𝜌

𝑑𝜌

𝑑𝑥
+
1

𝑇

𝑑𝑇

𝑑𝑥
−

1

𝑀𝑊𝑚𝑖𝑥

𝑑𝑀𝑊𝑚𝑖𝑥

𝑑𝑥
= 0 



Where 

𝑀𝑊𝑚𝑖𝑥 = [∑
𝑌𝑖

𝑀𝑊𝑖

𝑁

𝑖=1

]

−1

 

And these are: 

𝑑𝑀𝑊𝑚𝑖𝑥

𝑑𝑥
= −𝑀𝑊𝑚𝑖𝑥

2 ∑
1

𝑀𝑊𝑖

𝑑𝑌𝑖
𝑑𝑥

𝑁

𝑖=1

 

Now number of equations which are here are basically can be reduced by eliminating some of 

the derivative by substitution. 
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And one can find out: 

𝑑𝜌

𝑑𝑥
=

𝐴 + 𝐵

𝑃 + (1 +
𝑉𝑥2

𝐶𝑃𝑇
) − 𝜌𝑉𝑥2

 

So, this is what you get where A is: 

𝐴 = (1 −
𝑅𝑢

𝐶𝑝𝑀𝑊𝑚𝑖𝑥
)𝜌2𝑉𝑥

2 (
1

𝐴

𝑑𝐴

𝑑𝑥
) 

And 

𝐵 =
𝜌𝑅𝑢

𝑉𝑥𝐶𝑝𝑀𝑊𝑚𝑖𝑥
∑ 𝑀𝑊𝑖𝜔̇𝑖

𝑁

𝑖=1
(ℎ𝑖 −

𝑀𝑊𝑚𝑖𝑥

𝑀𝑊𝑖
𝐶𝑝𝑇) 

So, this is what you get and I will stop here and finish the rest of the derivation in the following 

lecture, thank you. 


