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Hello and welcome to this Design Practice 2 module 8. We will be solving the curve fit problem

for the Hermitian case given the end points and the slopes and magnitude of the slope. So let us

start with looking at a particular equation for this in the x and y direction.
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You know that V t is really defined by an x t and y t in case you are talking about the parametric

representation and in this particular case, the V t is actually defined using again a term a 0 plus a

1 t plus a 2 t square plus a 3 t cube and further what we know of is that we can write this V t

again in terms of the end conditions that is V of 0, V of 1 and similarly V dash 0 and V dash 1 in

terms of V t equals V of 0 times of 1 minus 3t square plus twice t cube plus V of 1 times of 3t

square minus twice t cube plus V dash 0 times of t minus twice t square plus t cube plus V dash 1

times of I am sorry this is t cube V dash 1 times of minus t square plus t cube.

And if we looked at Vt, Vt could be represented in terms of the x coordinate at V  0 that is I call

this V x 0 times of 1 minus 3t square plus twice t cube plus again V  x1 that means at the other

extremity what is the x coordinate times of 3t square minus twice t cube plus again V dash x0



that means the x slope at the initial boundary that is corresponding to t equal to 0 boundary plus

the again the x slope at 1 that means the other boundary that is the n boundary of the particular

curve.

And  this  is  actually  the  V x  t  that  means  this  is  the  coordinate  corresponding  to  different

variations in t which will plot up with the V y coordinate corresponding to different variations of

y. The all you need to change is to put the y coordinates here and the equation for the y can be

plotted as the equation being written here. We already know that V x is 0 and the V y 0 are the

initial coordinates which are given in this particular problem example is equal to 1 and 3.

And similarly I am sorry 1 and 2 and similarly the V x 1 and the V y 1 are given in this particular

coordinate as 3 and 1 okay and similarly as the magnitude of the slope is unity and the angle is

60 degrees at t equal to 0 and 30 degrees at t equal to 1 corresponding to both the extremities and

both the end points I should have the x slope and the y slope okay respectively at both the points

that means V dash x 0 and V dash y 0.

And similarly V dash x 1 and V dash y 1 okay as the values 1 cos of 60 degrees and 1 cos of 30

degrees and similarly 1 sin of 60 degrees and 1 sin of 30 degrees.
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So having said all these values if I put it back into the equations 1 and 2 which I formulated right

here the formulation that would eventually happen upon substitution of these values will be the

coordinate V x in terms of t which is 1 times of 1 minus 3 t square plus twice t cube plus 3 times

of 3t square minus twice t cube plus cosine 60 times of t minus twice t square plus t cube plus

cos of 30 times of minus t square plus t cube and similarly so this comes out to be equal to the

equation 1 plus half t plus 5 minus root 3 by 2 t square plus root 3 by 2 minus 7 by 2 t cube.

And similarly in case of Vy t we can write down as 2 plus root 3 by 2 t plus minus 7 by 2 minus

root 3 t square plus 5 by 2 plus root 3 by 2 t cube. There is a way we can verify further by putting

the values of V equal to 0 or sorry t equal to 0 and t equal to 1 to find out if the end conditions

match exactly and here what we find out is that if t equal to 0 then Vx becomes equal to 1 okay

and at t equal to 0 okay and Vx becomes equal to exactly at t equal to 1 it becomes equal to

exactly 3 from substituting the value of t in this equation and finding out.

And similarly if I wanted to see the Vx and Vy at t equal to 1 in both the cases these values

would turn out to be exactly I am sorry this is Vy 2 and 1 okay. So that is what cubes are test of

whether the solution to describe the x point and the y point in terms of the parameter t provided

the t varies between 0 and 1 is going to be appropriately making up for the boundaries where t

equal to 0 and t equal to 1.

So this gives you a very good you know flexibility now on plotting the curve because now you

can take any value of t for example t could be as small a value as 0.1 or 0.2 and then at every

value you could do a local plotting of the curve so that you could have resolution of the curve

okay and now the question that remains with us is that this parametric form can we do something

so that we can generate a family of such curves one of which may be able to fit the contour of the

topology that we are mapping very closely.

That is the whole purpose behind this particular exercise. And so in order to do that let us now

try to see first of all whether the particular you know plot would change or curve would change

or how it actually plots up when we talk about let us say different values of t.
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So in this particular instance for example if you were to take the values of t equal to at the

magnitude of the slope 1 if you were to you know use values of t equal to 0 so corresponding to

the value t equal to 0 let us say one-fourth, one-half, two-third, three-fourth, and one we could

actually independently find out both the solutions how the Vx and Vy would behave. So as you

know the Vx in this particular case is written down, again I am just going to repeat this equation.

T by 2 plus 5 minus root 3 by 2 square of t plus root 3 by 2 minus 7 by 2 t cube and similarly Vy

is or written down as 2 plus root 3 by 2 t plus minus 7 by 2 minus root 3 square of t plus 5 by 2

plus root 3 by 2 cube of t okay. So in these two instances if I put all these values of different

values of t we could find out a bunch of different coordinates okay of Vx Vy we should be able to

satisfy the you know the plots or the plot by making an array of points.

Which should fall corresponding to this values of t on the curve, the whole curve between the

two extremities corresponding to equal to 0 and equal to 1 which are the two points A and B.

(Refer Slide Time: 09:56)



So in such a plot something like this would be generated where you can have the initial value

here corresponding to the value let us say 1, 2 and starting from there to a value 3, 1 okay and the

plot  that  is  generated  is  actually  represented  here  with  a  magnitude  1.  What  is  also  very

interesting here is that if we wanted to vary the magnitude of the tangent vector from one to

multiple values including 2, 3, 6, and 12 then generation would happen of a family of curves.
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Something like this where this is corresponding to the initial value 1 which you saw earlier. This

is the curve corresponding to the value of 2 then again 3 and 6 and 12. So you can see that you

know there is a family of curves generated for one to be flexible enough now to actually compare



this with the surface a complex topology that you are mapping and generate exactly the segment

you know the shape of the segment which you are trying to map.

And so if supposing such curves are connected to each other in terms of C0 continuity or C1

continuity I should be able to generate the whole surface typically as pieces you know and these

pieces can be contributed by each one segment of the curve that you saw here corresponding to

the magnitude where it fits the particular part of the surface.

So this is the beauty about this process that you can divide a surface into small curves where

each of these curves are being indicated  and complex organic forms which need to be now

mapped into a computer in terms of some data and some data you know management can be very

easily stored okay in on the basis of such synthetic curves. So this is one very key example of

how you can do a contour mapping through curve fitting exercise using the simplest Hermitian

cubic fit polynomial.

But however, the problem in this particular application as you can see is about is almost a single

fold problem that how you determine  the slopes.  And for a  designer it  is  very very hard to

determine slope at a certain point because there are not many measurement systems which would

say that instantaneously that particular point what is going to be the exact nature of the slope.

And so an average slope has to be concerned and then you know there is a question of again how

much will that induce errors in terms of the plot that you are trying to make and so the curve

family that eventually would get generated may not be able to fit properly to the contour that we

are trying to fit in and there may other problems associated with it.

So we need to method where we get rid of the slope and are only concerned with maybe one or

two or maybe a bunch of different points through which we can actually generate okay a curve

and for that there is a very nice you know way of estimating through rather than points and

slopes only points, a particular curve behaviour and such curves are also known as the Bezier

curves.
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So Bezier curves are based on approximation techniques that produce curves which do not pass

through all the given data points except the first and the last control point but the implication of

the data is felt upon if the data is varied for example if it goes up or down the overall nature of

the curve, the geometry of the curve may change accordingly okay based on which the Bezier is

plotted okay with the set of points in mind.

So Bezier curve does not require first order derivative. The shape of the curve is controlled by

control points.
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So we consider here also one segment of the curve just as we did for the Hermitian case and here

we will like to plot the curve keeping into mind n + 1 control points, including both the end

points where the Bezier curve should necessarily pass from and the remaining n - 1 points it may

not be needed for the Bezier curve to pass through all the points. However, the nature of the

curve is such that the points moving across or the points going to higher place or lower place will

influence definitely the overall shape of the curve even if the curve does not pass.

So it has, so the points in the neighborhood which are considered for the Bezier fit would have

an influence on the on the Bezier curve even if they are not intersecting with the curve itself. So

it  is  defined by a  polynomial  of degree n and the polynomial  and the Bezier  polynomial  is

expressed by the Bezier function is expressed by a polynomial which is otherwise known as the

Bernstein polynomial.

The array of points Vt in this particular case would be represented by you know discrete points

for indices varying between 0 and n. So exactly there are about n + 1 points and this would be

represented as V i B int where t varies between 0 and 1 is the parameter and this Bin is the

Bernstein polynomial okay. So the Bernstein polynomial is defined as commination N i t to the

power of i 1 minus t to the power of n –  i.

So in fact the whole Bezier equation can be written as V i times of c and i t to the power i 1

minus t to the power of n -  i and there are exactly n + 1 points, control points through which

such a curve would move.
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So we all are aware that the combination of ni is further defined as factorial n by factorial i times

of n – i factorial. So that is how we will define the Bernstein polynomial okay and the Bezier

equation Vt equals sigma 0 to n c and i e to the power i 1 – t to the power of n – i V i. Here the

points V0, V1, V2 so on up to Vn are the position vectors of the respective n + 1 points.

I think I had mentioned earlier that the curves necessarily pass through t equal to 0 and t equal to

1 but whatever points are in between the first and the last  point it  may not necessarily pass

through these points and so if you look at the lines which are joining these points they so called

represent the characteristic polygon through which a curve segment has to necessarily move for

the curve to be qualifying a Bezier fit.
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So for example in this particular figure represented on the left here, it shows a C1 continuity with

radii  of  curvatures  on both sides  and a  common tangent.  One of  the beginning of  the next

segment,  this  is  the next  segment,  this  is  the earlier  segment  and one at  the end of the last

segment or the preceding segment the curves pass through the first and the last control points V0

and Vn.

In this particular case, V0 should be point which you know as V1 here corresponding to t = 0

okay and the point here V4 which is somewhere here I am sorry in the first segment which is

actually corresponding to t = 1 okay and so V0 and V1 are the parametric forms of representation

of these point vectors you know representing V1 and V4 in space for the first segment and V1

dash and V4 dash are therefore the second line segment or second curve segment and naturally

the slopes at V4 and V4 dash of this particular geometry.

In other words what I will say is that the V1 of the last, the slope at the V1 of the last segment is

equal to the slope at the V0 of the succeeding segment. So the tangents at the first and the last

points are in the directions of the first and last segments of the characteristic polygon. You can

see here for example the tangent at V1 is in the direction of V2 – V1 okay and similarly the

tangent here is in the direction of V4 – V3 okay is the last segment.



And we can represent this better in terms of V dash 0 is n(V 1 – V 0) and V dash 1 is n(V n – V n

- 1) where this 1 and 0 and this n and n – 1 describe the point number okay, not the t values. The

t values are in brackets here that is being considered. So from the equation that we had described

earlier we need to prove this point whether we will have an equation which will satisfy these two

conditions for a Bezier fit to necessarily exist where the V 1 – V 0 and V n – V n-1 define the

first and the last segments of the curve polygon through which the tangent should necessarily

pass for a curve to be called a Bezier fit or a Bezier curve.

This  implies  that  by  aligning  the  last  control  point  and  the  first  Bezier  curve  segment  the

connection point and the first control point of the next curve segment, there would be a resulting

C1 continuity between the two polygon segments 1 and 2 which are being connected as you can

see here in the figure.
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So let us look at  how we obtain this expression. So let  us say when we talk about the first

condition necessary for a fit to be Bezier it says that V dash 0 should be equal to n times of point

V 1 – V 0 okay and the other conditions says, condition number two says V dash 1 equals n times

of V n – V n-1. So if I supposing if I suppose the number of points to be 4 and the index n to be 3

so the Bezier function V t in that even can be written down as i varying between 0 and 3 C 3i t to

the power of i I am sorry, 1 - t to the power of 3 - 1 V i.



Which essentially means that if you substitute now the values of i's, the various values of i's we

can represent this in terms of C 3 0, 1 - t to the power of 3 times of V 0 + C 3, 1 times of t 1 - t to

the power of 2 V 1 + C 3, 2 times of t square 1 - t to the power of 1 V 2 + C 3, 3 t to the power of

3 V 3 so on so forth. And if I wanted to now solve this corresponding to t equal to 0 just to find

out what is going to happen to this V dash 0, so the V dash 0 here could be represented as first of

all let us calculate what is V dash t.

So this is actually now if I just differentiate C 3, 0 which is 3 actually times of minus 3 times of 1

- t square V 0 + C 3, 1 times of 1 - t whole square plus or minus twice t 1 - t times of V 1 + C 3, 2

times of twice t 1 - t minus let us say t square V 2 + C 3, 3 times of 3 t square V 3 and so on so

forth. So if you put a value of t equal to 0 here for example I would be left with V dash 0 equal to

C 3, 1 V 1 – 3 C (3, 0) V 0 and that will further be boiling down to 3 times of V 1 - V0 which is

actually equal to n times of V 1 – V 0. So that is how you can actually look at V dash 0.

Similarly, if I were to look at what is V dash 1 in this particular case it can be represented as C(3,

2) times of minus V 2 + C (3, 3) times of 3 V 3 which actually comes out to be 3 V 3 – V 2

nothing but n times of V n – V n-1. So we can see that both these conditions V dash 0 and V dash

1 are satisfying for something to be called a Bezier curve. So we will actually like to end the

particular module here.

But in the next module I am going to let you fit in a realistic situation a Bezier fit and try to

estimate what are the in between points based on different values of t’s so that we can locally

plot a very complex surface and then generate a family of those surfaces or family of those

curves based on the initial Bezier fit. So as of now thank you very much and see you in the next

module.


