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Lecture - 06 

Calculation of Configurational Entropy 
 

So, we start a new lecturer again, lecture 6. So, we just first do a bit of a recap of what we 

saw earlier. 
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So, in the previous lecture we basically started with the mixing of 2 components; A and 

B. Because in practical systems, we are dealing with impure system, which consists of 

more than 2 or more elements. So, we start with binary solutions consisting of 2 elements. 

So, we looked at the free energy ∆𝐺𝑚𝑖𝑥 that happens by mixing 2 elements. And this was 

basically ∆𝐺𝑚𝑖𝑥 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥. So, for G2; for G2 to be lower than G1 which means 

the free energy, if solution is a stable then G2 has to be lower than G1. And this ∆𝐺𝑚𝑖𝑥 term 

which is the free energy change upon mixing, that is free energy of mixing is nothing but 

∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥. So, ∆𝐻𝑚𝑖𝑥 is the change in the enthalpy or the heat content of system, and 

∆𝑆𝑚𝑖𝑥  is the change in the entropy of the system before and after mixing. And we first 

started with regular solution, which means that for regular solution we assume that 

∆𝐻𝑚𝑖𝑥 = 0, which means there is no change in enthalpy after mixing. And it remains the 

same which means H is 0, but there is a change in configurational entropy, there is a 



change in entropy which we were working out; we are also; and then we moved on to 

entropy. 

And we said that entropy is thermal and configurational. And we have chosen to ignore 

the thermal contribution to entropy because of; if there are if there is no substantial, if there 

is no; if there is very negligible change in the heat in the in the temperature of volume of 

the system, then we can say yes thermal is negligible. Especially in the solid state, and we 

only work with the configurational entropy. 

So now let us see how we evaluate the configurational entropy. 
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So we say, alright; so, we said that we will ignore thermal entropy. So, S = Sconfig. So, 

before mixing, so, we had pure A and pure B. And for both of these S1 so, S1=0, because 

whether you had pure A and pure B, the number of ways in which; because it is equal to 

𝑘𝐵 ln 𝑊 and W is 1 as long as it is pure A and pure B. As a result 

𝑘𝐵 ln 𝑊 = 𝑘𝐵 ln(1) = 0 

So, for both these states, the entropy was equal to 0. So as a result, if you take their waited 

sum then that will also be equal to 0. So, S1 = 0. 
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What about S2 which is after mixing? So, after; now we will look at after mixing, 𝑆2 =

𝑘𝐵 ln 𝑊2, ok. So, what is W2? W2; now what is the lattice like; you have; now let me draw 

the lattice here. You had situation like this. Now some of these are; frequency, this is A, 

this is B. So, A is in proportion XA, B is in proportion XB, but as far as; as long as it is a 

random solid solution which means position of A and B cannot be fixed. The A and B can 

be randomly distributed. 

If they can be randomly distributed, there are multiple ways you can arrange A and B and 

each manner can be different. So, this is one possible manner, in another possible manner 

you can have situation like this; just count the number of atoms; I have marked 5 atoms as 

grey. This is another configuration. So, you can have configuration. So now, this is only 

about you know, 16 atoms that I have taken, but our system has much more large number 

of atoms. If we take one mole, it will have 6 into 10 to the power 23 atoms. So, which 

means you have numerous ways of making distinct configurations of atoms by mixing A 

and B. 

So, if that is the case, then W can be defined as  

𝑊2 =
(𝑁𝐴 + 𝑁𝐵)!

𝑁𝐴! 𝑁𝐵!
 

𝑁𝐴 =  𝑁𝑜 𝑜𝑓 𝐴 𝑎𝑡𝑜𝑚𝑠 and 𝑁𝐴 =  𝑁𝑜 𝑜𝑓 𝐴 𝑎𝑡𝑜𝑚𝑠 

 



 

So, this gives me the total number of possible distinct configurations in which I can 

arrange; it should be NB. I can arrange A and B in a solid solution of AB distinctly. So, 

this NA is the number of A atoms and B is the number of B atoms.  

𝑁𝐴 + 𝑁𝐵 = 𝑁(𝑡𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠) 

𝑁𝐴

𝑁
= 𝑋𝐴 𝑎𝑛𝑑 

𝑁𝐵

𝑁
= 𝑋𝐵 
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And if you take for 1 mole of solution, if I take 1 mole of AB, then  

𝑁𝐴 = 𝑋𝐴𝑁𝑎  𝑎𝑛𝑑 𝑁𝐵 = 𝑋𝐵𝑁𝑏 

where, Na is nothing but Avogadro’s number which will mean 6.023 * 1023 atoms per 

mole. So, we are just going to take for 1 mole because a free energy is a molar quantity 

and that will be simpler later on as you will see. 

So now to solve this expression, we have seen that 

𝑊2 =
(𝑁𝐴 + 𝑁𝐵)!

𝑁𝐴! 𝑁𝐵!
    𝑎𝑛𝑑     𝑆2 = 𝑘𝐵 ln 𝑊2 
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Which means,  

𝑆2 = 𝑘𝐵 ln
(𝑁𝐴 + 𝑁𝐵)!

𝑁𝐴! 𝑁𝐵!
 

To solve this, we need a approximation which is called as sterling’s approximation, which 

says that ln 𝑋! = 𝑋 ln 𝑋 − 𝑋 and another thing that you may; and we can also define gas 

constant as 𝑅 = 𝑁𝑎𝑘𝐵, which is product of Avogadro’s number and Boltzmann constant is 

R, which is gas constant. So now, when you do that? 
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Now, 

𝑆2 = 𝑘𝐵[ln(𝑁𝐴 + 𝑁𝐵)! − ln 𝑁𝐴! − ln 𝑁𝐵!] 

𝑆2 = 𝑘𝐵[(𝑁𝐴 + 𝑁𝐵) ln(𝑁𝐴 + 𝑁𝐵) − (𝑁𝐴 + 𝑁𝐵) − (𝑁𝐴ln 𝑁𝐴 − 𝑁𝐴) − (𝑁𝐵 ln 𝑁𝐵 − 𝑁𝐵)] 
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And if you solved it 

𝑅𝑒𝑝𝑙𝑎𝑐𝑒  𝑁𝐴 = 𝑋𝐴𝑁𝑎      𝑎𝑛𝑑    𝑁𝐵 = 𝑋𝐵𝑁𝑏 

you will get                

     𝑆2 = −𝑘𝐵𝑁𝑎[𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵] 

= −𝑅[𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵] 

As a result,  

∆𝑆𝑚𝑖𝑥 = 𝑆2 − 𝑆1 = −𝑅[𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵] 

So, this is the free energy of mixing that you get after applying; after working out the 

expression for configurational entropy, assuming that thermal entropy change is equal to 

0. 
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So, you can see here, since  

𝑋𝐴 𝑎𝑛𝑑 𝑋𝐵 < 1, 

∆𝑆𝑚𝑖𝑥 > 0 

So, you can see in the above expression; since XA 1, XB 1; log of these are going to be 

negatives; as a result negative negative will become positive. And as a result, ∆𝑆𝑚𝑖𝑥 > 0; 

so which means that entropy increases after mixing. So, mixing results in increased 

entropy, ok. 

So, we can write now; the expression for ∆𝐺𝑚𝑖𝑥, for a regular solution because Hmix was; 

so, for a regular; for a; sorry not for a regular solution I am sorry, for ideal solution of A 

and B; for an ideal solution of A and B, 

∆𝐺𝑚𝑖𝑥 = −𝑇∆𝑆𝑚𝑖𝑥; 

∆𝐺𝑚𝑖𝑥 = 𝑅𝑇[𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵] 

This is delta G mixing. 
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So now, if you plot it; you can also plot it. We can see from the above expression that since 

𝑋𝐴 𝑎𝑛𝑑 𝑋𝐵 < 1, lower than 1, ∆𝐺𝑚𝑖𝑥 is going to be negative. So, as a result I am going to 

plot this below 0. So, this is 0, this is pure A, this is pure B and this is change in XB. So, if 

you plot ∆𝐺𝑚𝑖𝑥 as a function of XA and XB. So, if I put G for; So, you can see that ∆𝐺𝑚𝑖𝑥 for 

XA = 1 is 0. 

And it is also 0 for XB = 1. So, actually it is not exactly going to touch the; So, it is not 

going to exactly be equals to 0 it will be actually asymptotic, but nevertheless because if 

you take the gradient the gradient will not be equal to 0. So, basically it; for a schematic, 

it will be something like that. So, this is at fixed temperature T1. If you increase the 

temperature T2, it will go to; because it is; this is T2. So, 𝑇2 > 𝑇1 leads to higher; So, you 

can see that this is; this depth has increased as the temperature increases. So, we can see 

the ∆𝐺𝑚𝑖𝑥 of phase you are mixing, becomes more and more negative at higher 

temperatures. 

So, that explains why things are mixed better at higher temperatures than at lower 

temperatures. Of course, there are kinetic arguments as well but thermodynamically, a free 

energy of mixing is more negative at higher temperature than at low temperatures and 

mixing is preferred at higher temperatures as compare to lower temperatures. 
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So, let us now move on to; so, basically this free energy of mixing, delta G mixing; you 

can say is the driving force for mixing, ok. And this is very obvious I mean we try to mix 

for example, very simple things like sugar and water or salt and water, they mix far more 

easily at high temperature that low temperature; of course, there are solid solubility 

arguments as well. But let us say we are in the solubility limit; even then; and kinetic 

arguments; leaving aside the kinetic arguments, the mixing is; mixing has higher driving 

force at higher temperature then at lower driving force, and that is why you see them in 

practice as well. 

So, the actual free energy now; we said,  

𝐺2 = 𝐺1 + ∆𝐺𝑚𝑖𝑥 

And this  

𝐺1 = 𝑋𝐴𝐺𝐴 + 𝑋𝐵𝐺𝐵 

𝐺2 = 𝑋𝐴𝐺𝐴 + 𝑋𝐵𝐺𝐵 + 𝑅𝑇[𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵] 

and this has an additional term now, 𝑅𝑇[𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵]. So, this is the overall free 

energy of the solution, and you have to appreciate that this term actually is negative. And 

that is what makes the free energy of mixed solution lower than the pure solutions. 
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If I now plot it; so, on; so, this is molar free energy G, ok.; So, if I plot for example, at a 

given temperature, the free energy follows this kind of behavior. This is GA, this is GB, 

and if I; so, let us say this is a temperature T1, if I do the same now at temperature T2 which 

is higher. Now free energy of course, has decreased so, this is at T, T1 this is at T1, this is 

at T2, this is at T2. And this will be the; now the free energy of; so, you can see that this is 

the ∆𝐺𝑚𝑖𝑥
𝑇1 , this is ∆𝐺𝑚𝑖𝑥

𝑇2  which is higher. So, ∆𝐺𝑚𝑖𝑥
𝑇2  is; so, higher means it is more negative. 

So, it is; so, 𝑇2 > 𝑇1 

So, one thing that; that you have to note is that the intercepts on the; on the; on the y axis; 

they are not exactly intercepts; the curves, the free energy curves actually go tangential to 

the y axis at XA and XB. And that you can verify by; so, if you look at the free energy 

expression, take 
𝜕𝐺2

𝜕𝑋𝐴
 𝑎𝑛𝑑 

𝜕𝐺2

𝜕𝑋𝐵
. You will see that it will not be; it has to be asymptotic 

which means the curve goes on X and Y axes as if it touches. 
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So, if you zoom it what you should obtain is basically; if I just zoom it; let us say this is 

XA, and the curve will go like this, show in that, ok. So, it does not actually intercept, it 

just goes parallel to; so, this is G. So, here it is; you can say asymptotic. And for this you 

can just take  

𝜕𝐺2

𝜕𝑋𝐴
 𝑜𝑟 

𝜕𝐺2

𝜕𝑋𝐵
 

and you can see, the gradient will be will be infinity. So, it is not exactly cutting the y axis. 

So; now let me summarize this particular point once again. So, we started with; let me go; 

let us go; this is a very complex, this is interesting thing to understand. So, we started with 

calculation of configurational entropy. So, configurational entropy is basically about the 

number of ways in which you can arrange the atoms within a lattice. So, before mixing it 

is pure A and pure B. So, there is only one way of identifying the mix; there is only one 

configuration in which you can see the atoms. As a result, S1 = 0 for both A and B, as a 

result the net entropy before mixing is equal to 0. 

 After mixing; however, you can have different configurations, if A and B are randomly 

distributed in the lattice. And as a result if you have NA number of A atoms and NB number 

of B atoms. Then the W2, the parameter of randomness is nothing but  

𝑊2 =
(𝑁𝐴 + 𝑁𝐵)!

𝑁𝐴! 𝑁𝐵!
 



where NA and NB are nothing but; if you have 1 mole of solid solution, then XANa  and XB 

Na, which is Avogadro’s number. So, W2 can be further modified using Stirling’s 

approximation. And what we will get is entropy which is; so, if you do analyze it, we get 

S2 as  

= −𝑅[𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵] 

And as a result, the delta S of mixing  

∆𝑆𝑚𝑖𝑥 = 𝑆2 − 𝑆1 = −𝑅[𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵] 

So, we can see that here since 𝑋𝐴 𝑎𝑛𝑑 𝑋𝐵 < 1, the entropy change is always positive. So, 

when you are going from pure A and pure B to AB state, the entropy change actually is 

positive. So, basically we are saying that mixing results in a positive increase in entropy. 

So, for an ideal solution of A and B, 

∆𝐺𝑚𝑖𝑥 = −𝑇∆𝑆𝑚𝑖𝑥 =  𝑅𝑇[𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵] 

And when you plot this ∆𝐺𝑚𝑖𝑥 as a function of temperature, what we see is that, for pure A 

and pure B; of course, there is no mixing so, X = 0. But for any intermediate composition 

range, there is a decrease in free energy of mixing which means there is a negative free 

energy of mixing which results in; which is what makes the; makes mixing possible. If it 

was not negative, you would not have mixing happening. And as you increase the 

temperature, the ∆𝐺𝑚𝑖𝑥 also decreases further, which means the driving force for making a 

solution increases as you increase the temperature. And this is what is important to 

understand. So, ∆𝐺𝑚𝑖𝑥 is nothing but driving force behind mixing. 

And G 2 is basically nothing but 

𝐺2 = 𝐺1 + ∆𝐺𝑚𝑖𝑥 

G2 is XAGA plus XBGB, this is the original component before mixing, and what you have 

added the third term is 𝑅𝑇[𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵]. And this term is negative and this and so, 

this is this is what is true for most systems. Though which are; which make a stable solid 

solution that when you mix them together, it results in a free energy where G of mixing 

is negative. 



And if you plot now the overall free energy, the molar energy. The molar free energy 

shows this kind of trend. So, you can see that you were somewhere here, and you; now 

you have gone somewhere here. So, this is what is the driving force. 
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So, if I draw in a separate plot, this is delta; this is GA, this is GB, and if I just take the 

weighted average, sorry this is GB. So, if I take a composition XB, this is what is the 

weighted average. Now weighted average basically says that I am at a free energy which 

is higher than that of A. Now it does not; so, you cannot really mix. 

The mixing is made possible only because you had a decrease in the free energy from this 

state to that state. And this is Gmix. And this is basically negative. And that is what makes 

the mixing possible, because now you are in a free energy state, which is lower than the 

free energy of the mixture. As a result, you have a stable solid solution. So, this will make 

stable solid solution. 
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We will see later on. Now so, what we will do next is, not today, but in the next few classes 

we will; in the next few lectures we will look at the concept, such as chemical potential, 

which is necessary to understand the effect of compositional changes in the regular 

solutions. Because what we have talked about until now is the ideal solution. And now we 

will look at the chemical potential; we will look at the regular solutions. In the regular 

solutions, we will study chemical potential; we will study the effect of deviation from 

ideality. And that will make us understand what happens in reality. In reality, whether what 

makes a solution stable or unstable, because not everything is mixable; so, not everything 

makes a stable solid solution. So, we will see that in next lecture as to what do we mean 

by; what are the practical implications of deviation from ideality. So, we will do that in 

the next class. 

Thank you. 




