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Hello,  welcome to Introduction to Composites.  Today is the 5th day of the on-going

week, which is the 9th week of this course. And we have been discussing over this week

about generalized Hooke’s law and what we have shown is that for a fully anisotropic

material  we  require  21  independent  elastic  constants,  because  the  total  number  of

constants initially we have calculated was 81, because of stress symmetry it came down

to 54 because of strain symmetry it came down to 36. And then for the strain energy

consideration reasons the number finally, came down and settled at 21.

Now, we will look at some special  types of materials and see that for those types of

materials, what is the total number of elastic constants? So, we will start with anisotropic

material 21 constants and for special materials how does this number come down to.

(Refer Slide Time: 01:16)

So, the first case we will look at is the case of special orthography ok. Now, what did we

discuss in case of a special orthography? That if I apply an extensional stress sigma let us

say I apply only sigma 11 then it will only generate epsilon 11, epsilon 22, epsilon 33,

but it will not generate any shear strains ok.



So, only, so extensional stresses cause extensional strains and shear stresses cause shear

strains similarly if I pull it in epsilon 11 directions only then it will generate only stresses

in other directions, but it will not necessarily generate shear strains it will not generate

shear strains ok. This is what it means. Physically why would that be? Possible suppose

the material is a piece of wood ok, and let us say this is my 2 axis to be consistent with

this picture this is my 3 axis and this is my 1 axis and suppose all fibers are parallel to 2

axis.

So, when I look at this picture and I then the fibers add this and they look like this we

just see the tip of these fibers and the fibers run parallel to the 2 axis this. So, this is the

physical structure and if I pull such a structure in 2 direction if I pull such a structure in 2

direction and I only I am pulling it in the length direction there is no need that we should

expect that it should deform in a shear right, physically intuitively that is what we would

expect and that is exactly what we see in actual experiments. So, if fibers are aligned the

material axis is aligned to the 2 axis then I will not see any coupling between extensional

strains stresses and shear strains and shear stresses and extensional strains related to the

two direction.

Another scenario could be, another scenario could be that all fibers are parallel to 1 axis

then also the coupling between shear and extension will  not exist.  And another  case

could  be  all  fibers  are  parallel  to  3  axis  in  that  case  also  the  same thing  would  be

expected and then the 4th condition could be combination of these.

So, here all fibers either parallel to 1 axis or 2 axis or 3 axis. So, it can be, so you have

some fibers going vertically up, another bunch of fibers could be going like this along

parallel  to the 2 axis, and the third set of fibers could be going perpendicular that is

parallel to the 1 axis. But they are not at any angle they are only running either parallel to

1 axis or 2 axis or 3 axis they are not at any other angles. And even in this case if you

pull a thing it will only become longer, it will not you know shear stresses will generate

only shear strains extensional stresses will generate only extensional strains and that is

all dependent on the structure of the material and the direction and if the direction of the

forces is aligned to the material axis. Even in such complicated material system even

then shear stresses will produce only shear strains extensional stresses will produce only

extensional strains right. So, this is what it means.
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If that is the case then how do these equations work out? Now, earlier we had shown that

the number of because of strain energy considerations these are the only independent

elastic  constants  right  because  this  matrix  is  symmetric.  So,  for  anisotropy  full

anisotropy we have 21. Now, if it  is especially orthotropic what will happen? If it  is

especially orthotropic let us see how these number of what is especially orthotropic, for a

material  where  fibers  are  running  parallel  to  1  axis,  2  axis,  3  axis  or  all  of  them

simultaneously, but not at some other angle ok. So, it is not that some fibers are at 45

degrees to 2 axis they are either at 0 or they are at ninety those are the only two options

available.

So, if that is the case then shear strains and extensional stresses will not be coupled and

shear stresses and extensional strains will not be coupled that is what it means, which

means that this term will be 0, this term will be 0, this term will be 0 because this term

couples sigma 11 with the shear strains ok.

Similarly, this term will be 0, this term will be 0 this term will be 0 ok. Similarly this

these 3 terms will be 0 because all  these terms all these terms they couple the shear

stresses with shear strains. So, I will put that in a different color. So, all these terms they

will be 0. Why? As they couple extensional stresses to shear strain ok, and if we want

that their connection should be not existent then these terms have to be 0 ok.



And then there are some other terms which are also going to be 0. So, what would those

be? So, these terms will also be 0, these terms will also be 0. Why because if you, so

consider a situation this is a material and suppose this is a simple material all the fibers

are running in this direction and I apply a shear strain like this, this is my 2 axis, this is 1

axis, this is 3 axis. So, I am applying tau 23, when I apply tau 23 in such a material the

only first thing is there is no going there is no extensional strain which will be generated

because I am applying only tau 23 and it is especially orthotropic. The second thing is it

will this tau 23 will only generate. So, initially the block is like this and later the block

will become like this. It will not shear in the 3 1 plane or in the 12 plane and these terms

23 31, 23 12, 31 12 they couple shear in other planes also. So, they will also be 0 ok.

So, tau 23 will only generate epsilon 23, tau 31 will only generate epsilon 31 and tau 12

will only generate epsilon 12 ok. So, if that is the case then the total number of elastic

constants in such a case is 1 2 3 4 5 6 7 8 and 9. 
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So,  a  3  dimensionally  especially  orthotropic  solid  will  have  9  independent  elastic

constants. So, a 3-D specially orthotropic material, 3-D specially orthotropic material it

will have 9 independent elastic constants, ok.

Now, either we can express the equations in the tensor form which we just saw or now I

am going to make my notation a little simpler because otherwise I have to write sigma 11

and then I have to write E 11, E 11 12 and all that you know 4 notations. So, in non-



tensor notation, in matrix non-tensor form I will just write sigma 1, sigma 1 means sigma

11, sigma 2, sigma 3, tau 23 and here again remember I am not writing sigma 12 I am

writing explicitly tau 23, I am not writing sigma 23, tau 31 and tau 12. So, these are 6

engineering stresses and they are related to a big matrix which is of size 6 by 6 and these

are and the strains are epsilon 1, epsilon 2. So, this is not tensor notation its engineering

notation epsilon 3 and here I write gamma 23 engineering strain gamma 31 gamma 12

and the elastic constants are. So, we are now going to get rid of E notation and we will

use C notation C 11.

First index relates to stress second index relates to strain, and there are total 9 right. So,

C 12, C 13 this matrix is symmetric C 22, C 23, C 33, C 44, C 55 and C 66 and all other

terms  in  this  matrix  all  other  term  this  is  all  symmetry  ok.  So,  these  are  the  6,  9

constants, ok.

So, this is the stiffness matrix for a specially orthotropic and its 3-D orthotropic material.

So, these are not tensor equations. So, we have developed used the concept of tensors we

reduce the number of constants to 9. And now we are expressing it in non-tensor notation

you are not using. And this is special orthotropic which means that the material axis are

aligned to the direction of loading, this is important to understand.
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The second case is we will talk about is transverse isotropy, transverse isotropy. So, first

case which we had discussed was fully anisotropic then we simplified it and especially



orthotropic in 3-D, now we will reduce it make it even simpler and this is the case for a

transverse isotropy. So, this is again for 3-D materials. So, what does that mean?

So, so I will explain this by example. Suppose there is a material. So, let us take a rod let

us say it is a wooden rod and this is my axis 1, this is my, so I have just changed the

orientation of the axis this is my axis 2, this is my axis 3 and this is a wooden rod. So, all

the fibers are there and they are running along the length of the rod along the length of

the rod. So, when I see from this end I just see dots each dot represents a single fiber and

it is the end of the fiber, and all these fibers are held together by an adhesive a raisin or a

matrix material, ok. 

Now, think about it suppose I take a material like this sample I take a sample like this.

So, I am looking at the rod and I am cutting I am cutting a material from the end and I

take a sample like this ok. So, in this case, so this is sample A. So, in sample A, in

sample A this is my 2 axis. So, it has a thickness, so actually sorry, I will just erase this.

So, I will. So, let us just assume let I take I cut a sample which is of like this orientation

ok, this is sample A and it is a thickness in the 1 direction ok.

So, how does sample A look ok? This is how it looks, and all the dots are here this is my

2 axis, this is my 3 axis and this is my axis 1. And now in this if I test it. So, 2 axis, so 1

axis is what it is the longitudinal axis the direction of fiber right. What is 2 axis? It is let

us say transverse axis and 3 axis is transverse prime right. So, if I want to find E T and E

T prime just by looking at the structure we will see that E T and E T prime will be same,

ok.

Now, what I do is instead of this sample I take another sample, but, this is sample 1 and

then I take another sample and here. So, just to make picture clear this is my this thing

this is 1, this is 2, this is 3 and my sample is somewhere like this like this. So, sample 2 is

like this ok, so but this normal to the surface is still direction 1, normal to the surface is

still direction 1 and if normal to the surface is still direction 1 then I still see all these

fiber ends and if I pull it in this thing in this direction. So, let us say this is direction 2 A

and right this is direction 2 A, then E T in direction 2 A will be same as E T ok. It will be

same, because it is essentially the same material and I have just the orientation and all

these things does not matter.



So, regardless of this angle theta, regardless of this angle theta as long as I am rotating

the sample in the 23 plane, right. So, if I am just rotating the sample in 23 plane that

material properties in along the length of the sample will not change and this will. So, the

material properties E T and E T prime will remain exactly the same as long as I keep on

changing the material in 23 plane ok, which means that the material is isotropic in TT

plane which means that the material is isotropic in TT plane. That is why it is called

transverse isotropy as transversely isotropic and if the material is transversely isotropic

then we have to go and see what further simplifications we can make.

So, if the material is transversely isotropic then what does that mean? So, suppose the

material  is  transversely  isotropic  then  C 22 and C 33 they  will  be  same because  2

corresponds to the T axis and 3 corresponds to the T prime axis. So, C 22 and C 33 will

be the same. So, far for transverse isotropy C 22 is equal to C 33. The other condition is

C 12 and C 13 will be same C 1 is 11 corresponds to l direction, 2 corresponds to T

direction, 3 corresponds to T prime direction. So, C 12 equals C 13 that is C LT equals C

LT prime ok, so that is there. And C 55 and C 66 are same and finally, we can show that

C 22 minus C 33 divided by 2, divided by 2 equals C 44. So, this is equal to C 22 minus

C 33 divided by 2.

So, in this case how many constants we have? 1 2 3 4, 4 constants, everything else is

expressed in terms of others.
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So, for a transversely isotropic material, so for transverse actually it is 5 I counted wrong

5  met  constants  for  an  for  especially  orthotropic  in  3-D,  9  transversely  isotropic  5

constants. So, and this is in 23 plane. And what are, so what are these constant? C 11, C

12, C 22, C 23 and C 66, these are the 5 constants. What is C 22, C 33? C 33 equals C

22, C 13 equals C 12, C 55 equals C 66 and C 22 minus C 33 divided by 2 is equal to C

44, ok. So, for transversely isotropic material, let me think. 

So, we will continue this discussion tomorrow. And tomorrow we will cover two more

different  types  of materials,  one is  isotropic material  and the other  one is  especially

orthotropic material in a plane stress straight which is the most important material from

the standpoint of this course. And that is what we will discuss today tomorrow, and till

then please have a great day, have a great time and we will meet once again tomorrow at

the same time.

Thank you. 


