
Introduction to Composites
Prof. Nachiketa Tiwari

Department of Mechanical Engineering
Indian Institute of Technology, Kanpur

Lecture - 50
Generally orthotropic lamina

Hello, welcome to Introduction to Composites. Today is the second day of the 9th week

of this course, and yesterday we had discussed the variation of different elastic moduli

and elastic constants of generally orthotropic lamina a thin generally orthotropic lamina

with respect to changes in the orientation angle of fibres which is theta ok. Now, what we

had discussed is how E x, E y, nu xy, M x, M y, G xy all these elastic constants vary with

respect to changes in the orientation of fibers with respect to the loading direction.

Now, what we will discuss are some more details on this and specifically we will talk

about balanced lamina and what that means, in this constant context.
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So, these are the relay plots for E x, G xy, G x, nu xy, M x, M y and so on so forth for

glass epoxy lamina, graphite epoxy lamina and boron epoxy lamina ok. 
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Now, what you observe something very significantly is that in these cases for all these

situations E x is not equal to E y because E x at theta is equal to here you know E for

instance for this thing. When theta equals 0 E x is equal to E L and when theta equals 90

degrees E x is equal to E T and E x in general is not equal to E y. And we can also say

that nu xy is not equal to nu yx and all this is happening because E L is not equal to E T

and nu LT is not equal to nu TL.

Now these kind, so if I have to use a single lamina for some structural application using

these types of lamina maybe disadvantages in several cases because if E L is very large

compared to E T, then we would also expect that the amount of load which it will be are

in the L direction in the longitudinal direction will much higher and it will be a very little

load in the T direction. But if it is just 1 layer we are relying on then we would like that it

should  have  similar  load  carrying  capabilities  and  stiffness  properties  in  both  the

directions. So, that can be accomplished if we have a balanced lamina.

So, by balanced lamina means that it is the value of its E L and the value of E T is same

and also the Poisson ratio E nu LT and nu TL they are the same. Physically this can be

accomplished by having equal number of fibers in L as well as T direction. So, if you

have same number of fibers in ln T direction then E L and E T will be same. And if that

is the case then we would also expect that for balanced lamina E x and E y will also be

same.



So, with this understanding let us look at the plots for E x, M x, M y and G xy for a

balanced lamina. So, here because it is a balanced lamina E x E L and E T are same

which is 20 GPa, G LT is 3.5 GPa and nu LT is equal to so this is this should be nu TL,

nu LT should be equal to nu TL and that is 0.2 and if that is the case then let us look at E

x. And how does E x change? It starts from 1 at 0 degrees and it keeps on going and

because this is my axis for E x it also ends up at the same value 1 ok.

So, E x is symmetric the curve for E x is symmetric at around at my at the line theta

equals minus 45 degrees, ditto for G x y, but G x y was anyway symmetric even for not

balance  unbalanced  laminates,  but  mu  xy,  nu  xy  is  also  symmetric  and  it  again  it

increases to a maxima, but it again becomes 0.2. So, it is 0.2 at 90 degrees and its 0.2 at 0

degrees and then M x and M y are also behaving. So, this is the relation for M x this is

the equation for M y and they also behave in a very symmetric nice way.

So,  these  kinds  of  individual  layers,  laminas  they  are  balanced  because  of  the

fundamental reason that the transverse and the longitudinal modulus of the lamina are

same and also because the Poisson ratio LT and TL they are the same. So, this is what I

wanted to discuss about balanced lamina.

Next what we will discuss is some constraints which exist on some of these materials.
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So, before we do that I like to show you once again that for boron epoxy lamina we have

seen that the minima of E x is not E T right, is not E T for graphite epoxy and for glass

epoxy the minimum value of E x was E t, but for boron epoxy as per this plot the minima

is not E T rather it is it the minima exists when theta is somewhere between 50 and 60

degrees it exists. So, for, so what we are seeing is that for some lamina E x. So, in this

case, so eg boron epoxy E x can be less than E T it can be less than C T and similarly for

some other lamina E x can exceed E L and E T ok.

So, for some lamina at least in case of boron epoxy we have seen that E x. So, so E x min

I am sorry I should have written min the minimum value of can be less than that of E T

and  E L and we can  also  construct  some other  lamina  special  lamina  with  specific

properties such that their max can exceed E L and E T. So, when does this happen? This

is what we are interested in.
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So, the question is first question when does E x min less than E L and E T. And the

answer to that has been given by an expert in composite Jones, who is also the author of

this RM Jones book on mechanics of composite material, and he has done mathematical

collusion he says that if G LT exceeds E L divided by 2 times 1 plus nu LT then E x min

is less than E L and E T ok. So, this is the first question. So, so if you find that in your

composite system this condition is being satisfied then you will have a situation that for a

certain value of theta the value of E x will be less than E L as well as E T ok.



The second question is when does E x max more than E L, E T. And again Mister Jones

answers that it is more than E L and E T if G LT is less than oh I am sorry. So, this

condition I specified incorrectly if G LT is less then this then this is less than this and if

G LT is more than E L divided by 2 times 1 plus nu LT then E x max it exceeds E L and

E T, ok.

So, these are 2 important conditions which help us understand what could be the extreme

value of E x extreme of our E x. And how do they get it this based on mathematical

analysis not very complicated analysis, but we will not discuss this at least in this class,

but if you are interested you can refer to the paper by Jones and also his book and you

will find the details in there. So, this concludes our discussion for this particular topic.
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Now, what we will do is we will move on to the next topic and that is about generalized

Hooke’s law, generalized Hooke’s law. So, why what are what do we mean imply by

imply by this? So, our conventional Hooke’s law which we have talked about it says that

for isotropic materials; for isotropic material what is the Hooke’s law? That if I have a

bar and I apply a stress on it and because of that it experiences a strain, then the Hooke’s

law says that stress by strain equals the Young’s modulus which is E, ok. So, this is the

Hooke’s law for isotropic material.

And an and similarly if it is in shear then tau by gamma equals G and then if it is if the

material  is  being  compressed  from all  the  6,  all  the  sides  then  pressure  divided  by



volumetric strain is K, bulk modulus and then. So, this is for isotropic material. So, the

question is for an isotropic material we have what we have discussed till so far is only for

orthotropic material and an isotropic materials. It does a similar Hooke’s law exist for a

fully anisotropic material that is what we are going to discuss.
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So, what we are going to discuss is generalized Hooke’s law for anisotropic materials.

So, before we look at it let us define our access system and what we will also do is so

what we will do is what is that we will define our axis system, what are our 1 2 3 axis

and with respect to axis systems we will also have a consistent way of specifying stresses

and strains.  And using  this,  such a  system then we will  then generate  a  generalized

Hooke’s law for an isotropic materials, ok.
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So, this is the axis system which we use for stresses. So, you have a block of material

and this material can be fully anisotropic. So, it will it may have different properties in

different directions, it need not be orthotropic or isotropic because those are just special

cases of an anisotropic material and we will use a Cartesian system of reference. So, this

is our axis number 1, this is our axis number 2, this is a axis number 3. All the stresses on

this plane this plane can expressed can experience 3 types of stresses sigma 21, sigma 22

and sigma 23.

So, the first index sigma 2 corresponds to the direction which is normal to this plane ok.

So, this direction of normal and the second index is the direction of force, direction of

applied force ok, because stress is force divided by area. So, I am applying force in a

particular direction and I am also applying it on a particular plane. So, the first index tells

the direction of the plane and the second index tells the direction of the force. And as I

had explained earlier the stress is associated with two different directions direction of

normal of the surface and direction of applied force. So, it is a second order tensor. And

in general I can specify it as sigma ij, where i represents the direction of the normal of

the phase on which it is acting and j represents the direction of the force which is applied

on that particular surface ok. So, this is how I define stresses.

So, we have sigma 21, sigma 22, sigma 23 on plane number 2; sigma 31, sigma 32,

sigma 33 on plane number 3; and sigma 11, sigma 12, and sigma 13 on plane number 1,



and likewise we have other stresses on the opposite phases also. So, these are my stresses

sigma 11, sigma 12, sigma 13 and this is the stress tensor and it is represented by a 2 by 2

matrix. And in general I can also represent it as sigma ij ok. So, this is the stress tensor.

Similarly, this is our strain tensor epsilon ij. So, epsilon ij is epsilon 11. So, so what are

these? So, again, so before we go to strain tensor these stresses are extensional stresses

and  all  others  these  are  shear  stresses  because  the  direction  of  the  normal  and  the

direction of the applied force are not aligned with each other. Similarly, on the strain

tensor these are shear strains and these are extensional strains ok. So, this is our overall

framing of the problem.

And what we have to develop is the relationship that how does sigma ij depend on, how

does it depend on epsilon ij. So, this is the relation we will develop and then we will call

that relation the Hooke’s law for generally isotropy anisotropic material and then we will

start  working on that and we will  finally, come down to isotropic and much simpler

materials. So, that is what we plan to do in our next class. So, please remember this

terminology and this is the terminology we will use starting from a next class. So, that is

pretty much it for today and I look forward to seeing all of you tomorrow.

Thank you. 


