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Hello.  Welcome to Noise Control  and its  Management.  Today is  the  last  day of  the

eleventh week of this course. And starting today we will introduce a new way to control

and actual reduce noise and in this case we will be talking about resonators.

Now these resonators are devices which are used in several applications, but typically

they  are  good  in  terms  of  reducing  noise  if  there  is  a  particular  frequency,  which

dominates the overall noise spectrum. If the noise is pretty much broad band then these

resonators will still  work, but only around a particular frequency to which they are a

tuned to, but for all other frequencies they will not be effective at all.

(Refer Slide Time: 01:11)

So, what we are going to discuss today is Helmholtz resonators. So, these resonators

there these devices are known as resonators, because they have a single resonance point

and they behave very effectively around that resonance point. But before we discuss that,

I wanted to draw the analogy of a spring mass dash pot system. So, consider a mass and

excuse me here I have to redraw it.



So, this is a mass and it is moving on a friction less surface and the mass is connected to

a rigid frame, and it has a stiffness of k the spring stiffness and there is also a damping.

Then  the  overall  governing  equation  of  this  system,  if  I  measure  x  in  this  positive

direction and x is a function of time and suppose I apply a force F t then the overall

governing system governing equation for this system is m x dot plus c x dot. So, its mass

times acceleration m x double dot plus c x dot plus stiffness times is equal to F naught of

t, where x is a function of time it changes with time.

Now if you solve this equation suppose this system is such that it is being excited by a

sinusoidal force, then my F naught t in that case will be. So, this is not F naught t, it is

just F t then my forcing function or external force is equal to F naught times e to the

power of minus j omega t or you can have minus or negative it does not really matter; so

e j omega t and because this is a linear system. So, I can also write x t and this linear

system is being excited by a sinusoidal or a harmonic excitation. So, I will also have my

solution of a similar form. So, that equals x naught e j omega t, where x naught can be a

complex entity ok.

So, if I put this x naught in to my system then what I get is x dot equals j omega x naught

e j omega t,  and the second derivative of displacement with respect to time is minus

omega square x naught e j omega t. Now, what I do is I can put this these all these 4

relations in my original governing equation and what I get is m omega square negative of

that plus c times j of omega plus k x naught equals F naught excuse I have to multiply e j

omega t on this side e j omega t equals F naught e j omega t and this exponent to the

power of j omega t they cancel out.

So,  my  solution  which  is  the  amplitude  complex  amplitude  of  the  displacement  is

nothing but F naught divided by k minus m omega square plus c j omega.



(Refer Slide Time: 06:08)

Now, if I plot x naught as a function of omega what happens. So, if on x axis I plot

omega and on y axis let us say I plot x naught divided by F naught, let us say I am

exciting  it  suppose  by  some Newton’s  times  exponent  j.  So,  x  naught  divided by F

naught I am plotting on the y axis. So, at m at when there is d c or constant force then

there is constant force then omega will be 0 when omega is 0 then these terms these

terms will not exist.

So, at omega equals 0 my this thing. So, what is this my ratio? My ratio is x naught

divided by F naught which is the transfer function is equal to 1 over k minus m omega

square plus c j omega and when omega equals 0, then my ratio x naught over F naught

will be 1 over k right and then what happens is that as I keep on increasing my omega

this term, starts becoming less because initially omega is 0. So, in the brackets I have k,

but as omega increases this term starts becoming less and this also, but this term starts

becoming more, but anyway.

So, the solution if I plot with respect to omega it looks like this. So, what I am plotting

here is I have to clarify, I am not plotting I am plotting x naught divided by F naught its

ampli magnitude. So, it looks something like this. So, essential what this says is that it

this thing becomes maximum when k is equal to m omega square. So, when k is equal to

n m omega square then the ratio  of  x naught  and F naught  in  terms of  its  absolute



magnitude is 1 over c omega RES and I will call that resonance frequency, resonance

angular frequency. So, this is resonance frequency c omega RES.

So, its maximum at c omega RES and what is the condition that omega is corresponds to

resonance kind of  thing when k minus omega RES square times  m equals  0,  which

means that omega RES or angular frequencies resonance angular frequency is equal to k

over m or if I want to find out the frequency not angular frequency, then it is equal to 1

over  2 pi  k  over  m.  Now one thing  we should  understand that  when the  resonance

happens then we do not need a lot  of force to excite the system, the system is very

excitable at resonance frequency and this is what we see in the graph also that for any

value  of  F  naught  this  ratio  of  x  naught  over  F  naught  becomes  maximum  at  the

resonance frequency at resonance frequency.

Now,  what  we  will  do  is  we  will  a  have  a  similar  understand  develop  a  similar

understanding  in  context  of  acoustics  because  the  theme  of  today’s  discussion  is

Helmholtz resonators. So, this resonator which we have discussed is in the mechanical

domain  it  is  in  the  mechanical  domain,  but  in  acoustical  domain  also  we  have

resonances. So, in acoustic domain one of one such resonator is known as Helmholtz

resonator. So, how does it look like?

(Refer Slide Time: 10:49)

So, typically we can say that a Helmholtz resonator looks something like this. So, what

this is a closed volume and this is a pipe short pipe short open pipe. So, this is a typical



acoustical  Helmholtz  resonator.  So,  this  entire  thing  is  Helmholtz  resonator  and like

mechanical resonators it also has its natural frequency, but before we discuss about that

natural frequency, we should understand why does it have that natural frequency. So,

think about. So, what does it what is it made up of. So, this is made up of a short opened

tube and also a small volume it is made up of a short opened tube and a volume. So, this

is volume closed volume and this is open tube and both of these are small in dimensions.

Now, what is the property of an open tube? Now if you go back to our one dimensional

equations we have already discussed it, but we do not even have to go back this open

tube is full of air and if I excite it with the piston like this then what will happen to the air

the air will try to move in if the piston is going in, and it will try to come back if the

piston is moving out. So, this thing, if the tube is long the amount of air which will be

moving back and forth will be larger if the tube is short it will be smaller. So, this open

tube acts as mass it acts as mass a short open tube acts.

So, I will say short this is important thing and this is small volume. So, a short open tube

acts as rigid mass and now consider this small volume. So, here again consider a small

piston which is placed at the opening of volume, and let us say this piston moves in and

out now this air is sealed. So, when the piston moves what will happen a air will try to

compress, it has nowhere to go. So, air tries to compress and when the piston moves in

the back direction air will try to expand, because they will you will create some vacuum

which will be filled by this small amount of air.

So, if you press the piston too deep, air gets compressed more and it tries to push back.

So, this air in a small volume acts as a spring, in a small volume closed volume it acts as

a spring. So, this resonator it has a mass and a spring connected in series. So, this looks

similar if you think about it to this picture, you have a mass and a spring and the spring is

fixed at the other end and you also have a spring which is fixed because the ends of the

volume are closed. So, this acts as a combination of spring and mass in series.

So, it  has its one resonance.  Now this is in the area of acoustics.  So, this  mass like

property of a short spring cube is called acoustic mass. So, we do not call it regular mass

we call it acoustic mass because we use some other parameters to compute mass not just

the actual mass of the air and the springiness of this small volume is known as acoustic



compliance. So, what is compliance? Compliance of a spring is nothing but one over its

stiffness.

So, in context of small volumes the you can have they have an acoustic stiffness or the

inverse is called acoustic compliance the other thing which is here is that when. So, these

are the 2 elements, acoustic mass and acoustic compliance. So, this is the ideal situation,

but  in  real  situations  there  is  always  damping  also  involved  whether  in  mechanical

system or in acoustical  systems. So, this  tube is not only mass, but it  also has some

acoustical damping. So, there is also an acoustical resistance associated with the tube.

So, predominantly it  is mass, but it also has some resistive component.  So, we label

acoustic  mass  as  M A acoustic  compliance  as  C A,  A being acoustical  and acoustic

resistance as R A and when you connect them then the overall system looks very similar

to this spring mass dashpot system. So, then the next question is what are the values how

can we calculate this acoustical compliance acoustical mass and acoustical resistance.

(Refer Slide Time: 17:13)

So, to understand this you have to understand the theory of a this lumped parameter

models of acoustical systems. In one of few of my earlier courses on NPTEL actually I

have covered this lump parameter modelling, but in this course we will not discuss this,

but we will directly discuss talk about the results.



So, if we go and look at this approach what we will find is that the acoustical mass is

nothing but rho naught Lc divided by pi a square. So, this is acoustic mass for a short

tube and this tube has a length L, but here I am using L c and its diameter is 2 a. So, the

equations says rho naught which is density of air inside the tube times L c, but this L c is

different than the length of the tube divided by pi times a square where a is the radius of

the tube a is the radius of the tube.

So, then the question is what is L c? So, it turns out that when you do experiments and

you do also lot of analysis you find that it is not just the air which is inside the tube

which moves in and out rigidly, but also because you have atmosphere outside also. So,

some air outside at both ends also moves some air also moves which is on the outside.

So, this additional length is called L a and this additional length of air on the other side is

called L b. So, L c equals L a plus L plus L b and then how do you figure out what is the

value of L a and L b.

So, once again you can have a tube like this and let us say in one case the end of the tube

could have a flange like this it could be a flanged end. So, this is the thickness of the tube

and. So, this end you can call it flanged end because there is a flange. So, this tube has

one end which is having a flange and the other end is having no flange. So, if there is

flange at the end then L a or L b depends you know L a or L b if the flange is in the

beginning, then I will worry about L a if the flange you know. So, what we are doing is

we are trying to find what are the incremental values of what are the values of L a and L

b. So, L a or L b is equal to 8 a over 3 pi this people have figured out from analytical

methods and finite element analysis, ok.

If there is no flange, then L a or L b equals 0.613 times a; so if the tube. So, we will

compute. 
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Suppose the tube is just like this both of its ends are having no flanges, then L c will be

equal to L plus L a L a is what? 0.613 times a plus L b and there again at this end also

there is no flange. So, it is 0.613 a if the tube looks like this now its starting has a flange,

but it end point does not have a flange then L c equals L. So, L is the basic length plus 8

a over 3 pi plus 0.613 a and if the tube both the ends of the tube if they are having

flanges then L c equals L plus 8 a over 3 pi plus 8 a over 3 pi. 

So, this is how we compute. So, if we can calculate L c I can calculate the acoustical

mass.
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We will see acoustical compliance C A. So, the relation for C A is pretty much simple,

volume divided by rho not c square where c is the speed of sound oh by the way the units

of acoustical mass are what they are not kg’s because it is not exactly mass, but it is

something like mass. So, it is kg per meters to the power of 4. So, these are the units of

acoustical mass.

So, the next one is compliance. So, we said that whatever is the volume of the enclosure

divided by rho naught which is the density of air times C square speed of sound and the

units  here  are  meters  to  the  power of  5  divided by Newton’s  and finally,  acoustical

resistance of the system is equal to and it will depend, you can use you have to select the

right relation. So, the first relation is R A equals 2 pi f square rho divided by c rho naught

if  k  times  a  is  less  than  square  root  of  2  where  k  is  the  wavenumber  and  what  is

wavenumber lambda over 2 pi.

So, if the frequency of interest is such that k a divide is less than square root of 2 then we

use this relation or else this is equal to rho naught c divided by pi. So, that is there. So,

this is if k a is more than square root of 2. So, this is our acoustical resistance and the

Helmholtz  resonator.  So,  what  is  Helmholtz?  It  has  a  mass  type  of  thing  known as

acoustic mass it has acoustical compliance it has acoustical resistance and the resonance

or its resonant frequency resonance frequency of a resonator is we will call that f naught.

So, F naught is what 1 over 2 pi divided by 1 over mass times compliance.



We know that for a spring mass system it is k over m 1 overs compliance is nothing but

stiffness. So, it is mathematically equivalent. So, this is the resonant frequency of the

system. So, if you want to use a Helmholtz resonator to absorb sound of a particular

frequency,  you  have  to  design  a  resonator  which  has  a  resonance  frequency  which

matches the frequency of your interest. So, we will do very quickly an example.

(Refer Slide Time: 27:11)

So, here the question is that  we have to design a resonator and we are told that the

resonator looks something like this. So, this is a cylinder and it has a short neck it is

something like this.

So, this distance is diameter is D and the height is H and we are given we are told that D

equals H and we have to design the resonator, the other thing we know in this problem is

that this height which is L. So, L equals 1 millimeter. So, it is a very slender neck the

diameter of this neck is 2 a and 2 a equals 20 millimeters and we are also told that this a

flanged  end  the  neck  has  a  flange  at  the  end.  So,  it  is  connected  to  the  other  side

something else through a flange and we have to design such that the resonance frequency

of the system is 250 hertz. We are told that c equals 343.8 meters per second and the

density of air in the system is 1.2 kilograms per cubic meters.

So, with all this information we have to design. So, what does it mean? Basically we

have to find D because if we know D then it is same as H, but we have to find the value

of D such that the resonator gets its resonance at 250 hertz. So, what do we. So, we say



first we will compute L c. So, L c equals L plus L a plus L b now what is L? L is one

millimeters plus L b L a L a is what? Both the ends in this case are flanged. So, L a will

be same as L b and that is equal to 2 times 8 times a is ten millimeters divided by 3 pi ok.

So, if we do the math you get 17.98 millimeters or in meters it is 17.98 times 10 to the

power of minus 3 meters. So, now, I know L c. So, acoustic mass equals rho naught L c

by pi a square and that equals rho naught is 1.2 times 17.98 into 10 to the power of minus

3 divided by pi into 10 to the power of minus 3 whole square. So, this comes out to be

68.68 kilograms per cubic per meter to the power of 4. Similarly acoustical compliance

is v over rho naught c square and that equals v divided by 1.2 into 3, 43.8 whole square.

So, this works out to be 7.05 into 10 to the power of minus 6 v. So, F naught is 250 hertz

is equal to 1 over 2 pi, 1 divided by 68.68 times acoustical compliance 7.05 into 10 to the

power of minus 6 v.

So, everything in this equation is known except for v. So, I compute V to be 8.37 into 10

to the power of minus 4 cubic meters.
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So, now I know v and I know that v equals pi times D square times height divided by 4

equals because D equals H. So, it is pi D cube divided by 4 and that equals 8.37 into 10

to the power of minus 4. So, solving for D, I get D equals 0.1021 meters ok.



So, this is how we can compute the a particular dimension for a resonator. So, now, we

have learnt how to compute the resonance frequency of a Helmholtz resonator, but we do

not now right now how to actually use this. What we has said till so far is, that if I have a

Helmholtz resonator which looks something like this, then I can in some way use it to

suck in up sound of particular frequency, but how will it suck in that particular sound

how should it be connected to the area where sound is being generated all that stuff we

will learn in our next class. 

What we have learnt today is how to design a resonator which is tuned to a particular

frequency, next we will learn how to tune a resonator or use a particular resonator to in a

particular situation and how effective it is; because whatever what we have learnt does

not tell us what is the transmission loss or the how much energy it is going to suck in all

we have learnt is it will suck in acoustical energy at its resonant point. Will it suck in 100

percent of the energy, 90 percent, 80 percent we do not know.

So, that is something we will  learn in our next class. So, with that we conclude our

discussion for today and have a great week end and then I look forward to seeing all of

you on the coming Monday.

Thank you very much. Bye.


