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Lecture – 38
Evolution of TTT and CCT diagram from f vs. t plots

In this lecture I am going to introduce a very important concept; the concept of time

temperature transformation diagram or in short TTT diagram.
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Time-temperature-transformation  or  TTT diagram,  in  short  or  alternatively  it  is  also

called as an isothermal transformation diagram. Now what does this tell us? It tells us

very neatly in a very in a single diagram that under isothermal conditions of different

temperatures what would be the kinetics of transformation. So, if we have data for the

kinetics for the transformation then we can create such diagram.

For example if we know the avrami kinetics of a particular system where say a avrami

kinetics tells us fraction transformed as a function of time for a given temperature. Now

if I have the kinetics for many different temperatures then I can put this entire kinetics

into a single diagram which very simply tells me how fast things are going to change at

different temperatures and how long they are going to take and so on. So, let us see how

we can relate the avrami kinetics, and from the avrami kinetics I will show you how we



can create  such diagrams.  So,  starting  point  is  the  avrami  kinetics  which  is  fraction

transform which is f is equal to 1 minus e to power minus k t to power n now we are

going to consider once phase transforming to the product phase.

So, alpha transforming to beta this could be for example, iron FCC transforming to iron

BCC as we lower the temperature or it could be austenite undergoing a eutectoid reaction

producing pearlite alternative layers of ferrite and cementite or any other transformation.

So,  let  us  see  let  us  consider  a  temperature;  obviously,  we  are  going  to  consider

temperatures less than the transformation temperature where alpha can transform to beta.

So, let me sketch first the avrami kinetics for a given temperature.

(Refer Slide Time: 03:39)

So, I have my fraction transformed beta phase, this is my time axis and let us say at some

particular temperature this is fraction 1 this 0 and let us say this particular transformation

kinetics  given  by  this  curve  is  at  a  temperature  of  T 1  where  T 1  is  less  than  the

transformation temperature T r.

But  we keep this  T 1 quite  close to the transformation temperature.  So,  we are first

looking  at  the  kinetics  that  are  relatively  high  temperature  with  reference  to  the

transformation temperature, and then we will consider other temperatures lower than T 1

and see what happens there. Now in this let me mark out 2 points, one is let us say when

the fraction transformed as 0.01 or simply 1 percent beta phase is formed and let me



mark one more point 0.99 or simply 99 percent transformed. In a corresponding diagram

and here in this corresponding diagram my vertical axis is going to be temperature.

And the horizontal axis is going to be time my T r let me also mark the transformation

temperature T r, similarly let me mark the transformation temperature T r with reference

to  the  transformation  temperature  T 1  let  us  say  is  somewhere  here.  So,  this  is  the

temperature T 1, this 0.01 percent transformed is many times consider as the start of the

transformation  because  it  is  really  difficult  to  actually  figure  out  exactly  where  the

transformation really starts because you cannot measure very small quantity. So, very

often we say that one person is a point where the transformation start and similarly 99

percent is where the transformation is essentially over.

Now, let me reproduce these 2 points in the temperature versus time plot here, let me call

these 2 points as A and B. So, I reproduce these points on this corresponding graph and

call these points here as this point as a and this point as b. So, these are basically in this

temperature time plot a is representing 0.01 transformed b is representing 0.99 fraction

transformed now let us consider another temperature less than t one. So, let us consider a

temperature t 2 now as would be expected you remember that as we are reducing the

temperature  or  increasing  the  under  cooling  initially  the  rate  of  transformation  will

increase  it  will  go  through  a  peak  and  for  much  higher  temperatures  again  the

transformation kinetics will start to reduce.

So, let us say t 2 is a temperature where the transformation rate is actually increasing or

in fact, near the peak then what will happen to the avrami kinetics the avrami kinetics

would be much higher which means this curve will shift to the left. So, let me plot a

second curve showing the kinetics at temperature t 2 and this is at a much higher rate. So,

therefore, it is shifted to the left this is at temperature t 2 these 2 points on this represent

one percent transformed and 99 percent transformed now we copy these 2 points as well

let me first mark these points as c and d and let us copy these 2 points here and let us say

t 1 is somewhere here sorry t 2 temperature is somewhere here.

So, if I copy point c point c gets copied here I will call this c as well in this diagram

similarly, reproduce d point also on this and let us say this comes somewhere here. So,

these are point c and d on the at temperature t 2 corresponding to this particular kinetic

behavior or the rate of transformation behavior now let us consider third temperature



which is less than t 2 and let us call that as t 3 here that we are gone sufficiently low the

under cooling is large such that the rate of transformation has fallen down. In fact, it the

rate of transformation is even lower than the rate of transformation at t 1 then the third

curve  of  avrami  ah  behavior  at  temperature  t  3  would  now be  to  the  right  of  this

temperature t 1 and hence this becomes my third transformation curve let me extend this

line this point corresponds to 1 percent transformed.

And if I extend this line this point corresponds to 99 percent transform. let me call these

points  as  point  e  and  point  f  and  I  will  reproduce  these  2  points  as  well  on  the

temperature time diagram and let us say that this temperature t 3 is here. So, reproducing

point e would be here reproducing point f and this point would come here. So, if I look at

these points carefully particularly the points a c and e here a c and e these are 3 points

which correspond to the condition where only 1 percent transformation is complete then

the points  b d and f  b d and f  correspond to the condition  where 99 percent  of the

transformation is complete and you can imagine that I can draw many other fractions and

I can keep transferring them.

And then I can join all the 1 percent points together by a smooth curve I can join all the

points which are corresponding to 99 percent of the transformation complete together by

a smooth curve. So, I can join a c and e then this will come out like this I join b d and f

corresponding to 99 percent complete would correspond to a curve something like this.

So, all the points on the curve a c e so in fact, the even the inter measured points are

corresponding to the points where 1 percent transformation is complete all the points on

the curve b d f  correspond to 99 percent complete  this  is  what is  called as the time

temperature transformation diagram or the t t t diagram. So, now, what is this diagram

telling me?

So, let us I have this alpha transforming to beta below the transformation temperature

then if I look at if I look at let us say I am initially at a temperature above t t r and I

suddenly cool down very rapidly almost in 0 time that I reach a temperature t one and

then  I  hold  there  then  I  know  the  this  much  time  will  be  required  for  1  percent

transformation  to  take  place  and  this  much  time  would  be  required  for  99  percent

transformation to be complete similarly if I cool down from above the t t r temperature to

a temperature t 2 here then only this much time is required for the transformation to take



to for 1 percent transformation to take place and while this much time will be required

for 99 percent transformation to take place.

Similarly, if I go down to t 3 and isothermal hold there I require this much time for the

transformation to complete 1 percent and this longer time for 99 percent transformation

to take place similarly I could well hold on to some other temperature t and hold there

then  this  much  time  for  1  percent  to  complete  this  much  time  for  99  percent

transformation to complete. So, what we have manage to do here in this t t t curve we

have taken all of this avrami data that we can experimentally obtain by as we already

discussed that how we can do this by quenching samples in constant temperature baths

like a salt bath and then hold the sample for different times and then do quantitative

measurement of the micro structure to obtain volume fraction as a function of time.

Then we can obtain n and k data for different temperatures and from that we can get

these curves and these curves we can draw one single diagram which very readily tells us

how the kinetics are going to take place at different temperatures. now this in a briefly is

actually what the time temperature transformation diagram now what would happen if I

just  cool down very rapidly that I never touch these curve as you can see that these

curves are anywhere going and as we are going lower and lower temperature you require

anyway very long time for transformation take place. So, if I cool down. So, fast that I do

not touch even this first starting curve a 1 percent transformation then I can expect that

no transformation should take place well I can expect that no diffusional transformation

can take place in some systems.

And particular example of that is the steel system the iron carbon system where even if

you do not touch these t t t curves the austenite would then transform into a metastable

phase called  the marten  site  on this  curves  those starting  marten  site  start  lines  and

marten  site  finish  lines  are  also  put  which  I  will  show little  later  now one  another

important thing that I want to talk about is that here these kinetics we can get from this

diagrams only if we are able to cool down very rapidly and after that we have to hold iso

thermally though these diagrams are important there are another set of transformation

diagrams which find even greater importance in industry because large number of heat

treatments



That  are  done  in  industry  are  not  heat  treatments  like  this  that  you  are  at  high

temperature you cool down very fast and then hold at a constant temperature. In fact,

most of the heat treatments though this is done in many cases, but very many larger cases

industrial heat treatments would involve not cooling in this fashion and then isothermally

holding it would be more like cooling continuously. So more like cooling like this So,

what can we do if we have a cooling characteristics which is a continuous cooling all the

way down to room temperature can these diagrams help us than the t t t diagram because

a t t t diagram are valid only if we have a cooling regime or the heat treatment regime of

this kind.

Well the t t t diagram can still help us where they can help us is that from the t t t diagram

we can generate another set of diagrams which are called as continuous continuously

cooled  transformation  diagrams  or  in  short  c  c  t  diagrams.  So,  in  the  case  of  the

continuously cooled diagrams let  me just  redraw this  little  bit  below suppose I  have

cooled like this it is possible then from the t t t diagram to generate these c c t diagrams

which I will show a little later that suppose I want to know at what point along this

cooling curve 1 percent phase would have transformed well I can calculate and it would

be at a point somewhere here a little lower and little to the right of this point.

Similarly, if  I  had  a  cooling  rate  like  this  then  I  would  have  transformed 1 percent

somewhere here another cooling rate I would have transformed somewhere here and in

this  in this  way I  can join another  set  of curves this one corresponding to 1 percent

transformed similarly I would have got another one here corresponding to 99 percent

transformed while correspondingly these white curves corresponding to the t t t diagram

this is 1 percent and this is 99 percent. So, I would have got similar looking shapes the

shape of a c or sometimes called as a c curve similar c shaped curves I would have I i

would get for the c c t diagrams as well and these are very very useful diagrams when

you are designing heat treatments. In fact, both of them the t t t as well as the c c t

diagrams are useful.

When one is designing heat treatment to obtain desired micro structure and to obtaining

desired mechanical properties or other properties. So, now, the next thing what I will do

is look at how to convert the t t t diagram to a c c t diagram and in order to do that we

have  to  understand  few  things  regarding  this  conversion  regarding  the  kind  of

transformation that would or rather the type of transformation determined by the avrami



equation it could be fairly simple for certain types of transformations and it could be

mathematically  more  complex  for  other  types  of  transformation.  So,  let  us  look  at

converting t t t diagrams to c c t diagrams converting t t t to c c t diagrams.
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So, t t t when the isothermal heat treatments is being done c c t when the material or the

sample is continuously cooled. So, this is isothermal and this is non isothermal there is a

widely used rule for converting t t t to c c t. So, first we will understand the rule and then

we will see under what circumstances under what conditions we can use this rule and this

is called as the rule of additivity. So, the rule of additivity or called as the additivity

principle can be looked at in the following manner let me just draw a schematic of t t t

diagrams let us consider a continuously cooled material.

And  what  we  do  is  we  approximate  this  continuously  cooled  behavior  into  small

isothermal steps that is I discretise this continuously cooled curve in this fashion. So, I

discretises it into large number of steps and there are small isothermal steps as you can

see let us consider this to be let us say the ith step and let me consider the temperature

here as t  I  let  me consider  the temperature the previous step as t I minus 1 and the

temperature for the next step as t I plus 1 corresponding to these to let us say t I there is a

time t I and corresponding to t I plus 1 there is a time t I plus 1 the difference between

these 2 times is a length of the isothermal step and let us call this as delta t I which is

nothing, but t I plus 1 minus t I now at this temperature t i.



If I had held this sample at temperature t I how long would I take let us say for the

fraction to transform by let us say some fraction f naught it could be 1 percent it could be

99 percent it could be 50 percent whatever, but some fixed fraction. So, at fraction f not

if this is the curve for the fraction f not transformed how much time it would take if I had

to isothermally transform at t i. So, I quench directly to t I and then hold it well that

should be clear the time would be this much let me call that time as tau and superscript t t

t that this is the isothermal time at the I th step or basically at temperature t i. So, now,

the additive principle is as follows that I take at t I the fraction of the time spent delta t I

delta small t I fraction of the time over to the total time required for the transformation at

t I is delta t I divided by tau t t t i.

That is this denominator is the time required to isothermally transform at temperature t I

while  delta  t  I  is  the  time  spent  in  this  particular  isothermal  step  of  the  continuous

cooling. So, now, the rule of additivity states that if I sum up all these small fractions. So,

delta t I upon tau I t t t I going from the first step starting right from the beginning of the

transformation temperature to let us say some step n 0 such that n 0 is that many step

required such that the sum of all of these small steps become equal to 1 then we would

say that along this cooling curve at the n 0 th step the transformation of fraction f 0

would have taken place this is the simple rule of additivity.

After that I can simply add up all of these time increments of delta t 1 plus delta t 2 plus

delta t 3 all the way to delta t and not that would give me the time required at which

fraction transform would be f not. So, I add up all of this and then as a result of all of

these addition I will end up at some point here that this could be well the n 0 th step. So,

this  would  correspond to  the  fraction  transformed f  not  if  I  go  and trace  along this

cooling curve now I will show you the calculation later, but will take up one example to

actually calculate certain points along different cooling curves using a spread sheet to see

how the shape of the c c t curve.

And how and at what position the c c t curve gets shifted, but before doing that what I

would like to now show is that what under what condition this additivity principle is

applicable it is not applicable in general it is applicable only in some specific conditions.

So, let us quickly have a look at those conditions. So, the condition under which the rule

of additivity So, validity 
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Of the additivity principle validity of the additivity principle is very easy to state that the

additivity principle is valid for all transformations.

Where the kinetic follows the following relationship d f by d t the rate at which fraction

transformed as per unit time d f by d t the rate of transformation should be a function like

this capital g is 1 function which is a function only of the fraction transformed at that

instant of time h is another function and this is purely a function of temperature if the

rate kinetic create the rate of transformation follows such a general equation where these

2 can be separated as 2 separate functions then it can be mathematically shown that the

principle  of  additivity  is  valid  now  I  just  want  to  examine  is  avrami  relationship

following this principle of this condition or not.

So, let us start with avrami equation avrami equations is one minus e 2 power minus k t

to power n I take the first derivative. So, d f by d t equals n k t to power n minus 1 times

1 minus f this we have already done in an earlier lecture now what I can do is I can from

this equation I can write down I want to eliminate time from this equation. So, from here

I can write  down an expression for time an expression for time would simply be as

follows time is equal to one upon k to power one upon n times minus l n 1 minus f to

power 1 upon n now this is simply rearranging the terms in avrami equation and writing

it.



So, first take logarithms and then write down an expression for time this time then I can

substitute here to get my rate d f by d t as follows I am go to directly write this and then

you can actually expand and actually show that this is indeed the case this can be writ10

as k to power one upon n times n times minus l n 1 minus f to power n minus 1 upon n

times 1 minus f n the square brackets closes here now this particular term let me call this

if I if I look at this let me call this as this is purely a function of f it is also a function of n

by the way, but I am just writing it as a function of f this let us say that k way k can vary

with  time  temperature  if  k  varies  with  temperature  then  this  becomes  a  function  of

temperature.

So, in this relation now I am try to write it in this form now when can I write it in this

form I can write it in this form when n is a constant. So, n is independent of temperature

and only k is a quantity that varies with temperature. So, all those avrami curves that I

had shown for different temperatures are could result if k is a function of temperature

while n is a constant now is this really true well in many system this could actually be a

approximately true in the sense n represents a mechanism of a of the transformation you

know  whether  the  mechanism  is  heterogeneous  homogenous  whether  there  is  site

saturation or not site saturation.

If you remember if you go back to the starting lectures we had shown that if there is site

saturation you get a certain value of n if you get if you have constant kinetics you get a

certain kind of certain value of n why k could vary. So, we could make statements on n.

So, if we assume that this entire set all the at many different temperatures of the t t t

diagram that I have if mechanism is a same then I can say that n is a constant and if n is a

constant then this is purely a function of f an independent of temperature and k is a only

one  then  that  is  left  to  change  with  temperature  hence  this  one  is  a  function  of

temperature under this condition then the avrami kinetics and in fact, all kinetics which

follow this are called iso kinetic reactions ok.

So, now what we will do now is look at a example where we assume that n is a constant

and  k  varies  with  temperature.  So,  that  we have  an  iso  kinetic  reaction  of  1  phase

transforming to the second phase and look at how we can in excel itself in a spread sheet

how it is possible to convert a t t t diagram to a c c t diagram here this is a little involved.

So, I have already.
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Have a lot of data I gave already input this is for a particular plain carbon steel here we

are looking at austenite to pearlite transformation and what I have here is in this column I

have temperatures starting from just below the eutectoid transformation temperature and

then going down to over a entire large range of temperature out here is the value of k

which varies as a function of this temperature.

If  we  want  to  just  quickly  look  at  how  k  varies  with  temperature  well  I  can  plot

incidentally this k values have been obtain from data of t t t diagrams now this k if I

make a scatter plot and let me just remove this formula box here for a minute I insert I

already sorry I I click on this select data in the plot add a graph and first add x values my

x value are going to be temperature and then add to the y series the k values and click ok

and let us look at what kind of a graph I got well wait a second I did I plot till no these

are temperature I have plotted only up to 692 I must increase my temperature range in

the graph let me just go to select data edit somehow got click to forty it should have gone

to 356.

So, this is going from c 6 to 356 and the temperature values and the k values are going

from a 6 to 356 if I get this now you can clearly
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See  how  k  varies  with  temperature.  So,  you  can  see  that  as  we  are  reducing  the

temperature the k initially increases goes through a peak and then comes down this is

also clearly showing that as k is increasing our transformation kinetics is increasing the

rate of transformation is higher as we already know and as k reduces the kinetics reduces

and this is to be expected. So, this is the behavior of k with temperature now let us come

down just a second I just kept this out of the way and bring this formula box here to help

us.
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Now, what I want to do I have now k values I have the temperature values now I want to

calculate the time isothermal time for at different temperatures.

That at if I hold the sample at 726 how long is it going to take for the transformation to

complete 0.01 or 1 percent or 50 percent or 99 percent. So, let us begin with the time

calculation  now  if  you  look  at  the  first  equation  this  is  gives  me  the  time  of

transformation or what I have just written on the board tau t t t and this is nothing, but

rearrangement  of  the  avrami  equation  and  I  will  just  simply  quickly  put  down this

relationship natural log of 1 minus the fraction transformed I am interested in is 0.1 and I

will anchor it to row 4 divided by the corresponding k value at the temperature of 726

and this at this would have to be if you look at this ah relationship.

This will have to be raise to 1 upon n. So, cap representing to power 1 divided by and I

have the value of n here in column a 2 which is 3.76 and I need to anchor it. So, that it

does not change when I copy it to different cells and I get a value of 14 5 4 8 14548

second. So, a long time now I will just copy this time just a second copy and paste up to

376 and paste it to get now different times as you can see that initially large time and the

time is reducing and if we keep going down time is reduced small values and then now

time start increasing again as expected as we increase keep increasing the under cooling.

So, as we under cooling is increasing time is initially decreasing for the transformation

and then increasing all I have to do now to calculate the times for 50 percent and 99

percent I will simply copy this column.

Now, oops I must have made little mistake here this is yeah I should anchor a 6 in such a

way that the column does not change, but the row should be allowed to change. So, I

must put the dollar sign in front of a I will just recopy this formula again in this cell and

that takes care of this and then now let me copy this entire column and then paste it here.

So, now, we have the times for 50 percent transformation and then similarly if I paste

this one here this gives me 99 percent transform now if I would to plot this as now a t t t

diagram; that means, it will have to be temperature versus time well I already have.

So, as soon as I calculated the data the graph shows me the 3 curves the blue one is for 1

percent transformation the red one is for 50 percent transformation and the green one is

for 99 percent transformation now this curve represents this data the red line represents

this data and green line represents the 99 percent data. Ok so, now, I have the t t t curves



I want to convert them into c c t diagram for this I need to impose a cooling rate. So, let

me keep a very simple cooling behavior of the sample. So, of the cooling curve that I am

going to  describe  here  is  time  is  equal  to  some constant  b  times  the  transformation

temperature minus t. So, as so, this is a linear relationship between temperature and time.

So, I am just assuming a straight line and if I put this formula here for a given value of b

So, let us say b is 100 then the time would be h 4 now this should be anchored. So, that

the row does not change multiplied by the transformation temperature well eutectoid ah

temperature 727 minus t. So, so this would be t r minus t. So, hence I should start from

let say 726 anchors this also such a way column does not change and I get a value of 100

and  I  just  copy  this  value  down  here  and  paste  it  here.  So,  I  get  these  various

temperatures or other various times at different temperature. So, my cooling behavior

and if I want to show the cooling rate well this is how the cooling rate shows up now this

cooling rate does not look like linear.

And the reason is because we are looking at very large time scale. So, the x axis or the

time axis as well put as a log scale and that is why this does not look like a linear curve if

I now want to find out how much time it is going to take for the transformation to end I

must  calculate  on this  side.  So,  let  me just  take this  out  and use now the additivity

principle. So, the additivity principle means I have to add up delta t I upon this. So, now,

if  you look at  it  the first  interval  would be 100 the next  interval  would also be 100

because it is 200 minus 100 then next one is 300 minus 200 and. So, on first one is 100

minus 0. So, if I have to put this formula in here. So, I will put this to be equal to well the

first  one  is  actually  100  I  can  take  it  like  this  divided  by  time  at  this  particular

temperature.

How much time it takes for the transformation to complete and this time and we are

going to do it for 1 percent transformation well this time is only this much So, this brings

me to a very small fraction as you can see at the temperature of 726 only a small fraction

has  gone  next  formula  would  be  add  the  previous  fraction.  So,  that  I  can  get  the

summation taking place plus what is delta t I well delta t I is h 7 minus h 6 multipl not

multiplied divided by time for 1 percent and let me anchor the column. So, the dollars

sign at d and that is it this becomes 0.014 and all I do now is simply copy this. So, if I

look at it basically it is showing increasing fraction and let us see where it becomes one

well it becomes almost one here at 3000 seconds.



Because if I copy this formula here well it goes a little beyond So, as an a approximation

we can say it takes 3000 seconds for the transformation to complete now what I will do

is we can do this now for different values of b. So, all we would have to do is simply

copy these columns to value of b as 50 then 25 10 and 5 and I already have a calculated

sheet to show you the entire calculation in one short and you will see this these are for

different  values  decreasing  values  of  be  these  are  the  cooling  rates  and they  are  all

terminating at the point where the summation term goes to almost 1 hence if I join all

those with the smooth curve this becomes my c c t line

So, what this is telling me is this line outside here is 1 percent transform for and this is a

corresponding c c t line for 1 percent transform. So, as you can see there is a significant

shift of the c c t curve from the t t t curve towards the right to longer times and they are

shifted to a slightly somewhat lower values of temperature as well with this is how we

can convert all t t t diagram to c c t diagrams and with this I come to an end to this

lecture.


