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Lecture – 33
Linear regression (least squares) method to find the value of n and k in Avrami

equation

Continuing  with  the  last  lecture,  where  we  had  shown  how  to  obtain  the  best  fit

parameters a naught and a 1 of the linearized equation of the Avrami relationship. 

(Refer Slide Time: 00:19)

And we had obtained a naught which is log natural log of k, as minus 26.99 and the

parameter a 1 which is nothing but the slope n in the avrami equation of 4.95. Now let us

see let us see the result by plotting this line on to the On to our graph along with points

we have. 
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So, let me call the estimate for y for the individual x values as y cap, and below which I

will make a plot of a 0 plus a 1 x for the individual x values.

So, the first value that I will get I will choose the cell d 24, and anchor it plus a 1 which

is an e 24 anchor this as well multiplied by the corresponding x value which is there in

cell  d  5.  So,  this  gives  me an estimate  of  minus  4.7 against  what  we got  from our

measurement of minus 4.6. I will copy this formula to the other cells to get the estimate

for the other x values as well and this is what one gets.

So, for example, at an x value or log t value of 5.19 our measured response y was minus

1.5 well and the predicted response now is minus 1.27. Similarly at a x value of 5.7 the

response was 1.36 and the predicted response is 1.255. And on the right hand side you

can see the graph has been plotted with the straight line passing through these set of

points. This line now is considered as the best fit line obtained from this least squared

technique or the linear regression technique.

Now, we also want to get some kind of a measure of how good this fit is. So, there are

various measures for that and we will just take a look at  one of the measures of the

goodness of fit. And let us see how the good does goodness of fit can be evolved on the

board first. 
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So, looking at the goodness of fit measure for our regression line. Let us consider the

variability in the response y.

The variability in the response y, the total variability in the response y can be understood

in the following way. Let us say this is the measured response and this is the predicted

response. So, I will have y 1 y 2 and so on till y n number of data points that I have

corresponding to each of them, I will have the response y 1 cap y 2 cap to y n cap. And

of course, this is corresponding to the independent variable x which in this case is log t is

x 1 x 2 to x n. So, the total variability in the response y i will write it as sum of the

squares total or some of the deviations of the square total can be written as summation i

equals 1 to n y i minus y bar square. This is the total deviation of the measured quantity

against from the average value of the response.

Now, this total response can be split in 2 components. What are these 2 components?

Well the first one is what we can call as explained variability. And what is this explained

variability? Well  as our independent variable  x changes our response y also changes.

That is as per the model as per the linear relationship this  is called as the explained

variability and this could be written as summation i equal to 1 to n y i kept the predicted

value of y or the predicted value of the response at the I th response, minus the predicted

average value squared. This I will call it as SS regression. That is this is a variability that

is explained by the regression model.



Now it  so,  happens? That  this  is  one of the properties  of the least  squares  that,  the

average value of the predicted response is the same as the average value of the measured

response y bar. And hence I can simply write this as i is equal to 1 to n y i cap minus y

bar squared. So, this is the first component of the total variability the response y. The

second component is what is called as the residual variability. That is an alternatively one

can also call it as the unexplained variability. And this is simply abbreviated as sum of

the squares of the residuals which we have already seen, and which is equal to sum over

one to n y i the measured response minus the predicted response and the square of this.

Now, it can be shown, it can be shown that SS total is equal to SS regression plus SS

residual. This is fairly easy to show by adding the explained variability and the residual

variability together and proving it that this is equal to the total variability. Now what

does all of this mean? When if my residual variability SS residual is equal to 0, if this is

the case, then I have a perfect fit which means the straight line passes through the point

all the points exactly.

However this would never really happen, because in all our measurements we always

have statistical error. And hence they will always be some finite non 0 variability for the

SS residual. Now this gives us a handle to define a goodness of fit, which is also called

as the coefficient of determination called as R square, and this is defined as follows R

square is equal to 1 minus SS residual divided by SS total.  This is a goodness of fit

parameter. Let us try to understand what this means, when we have a perfect fit when the

sum of the squares of the residuals is 0 you can clearly see that R square is going to be 1,

when on n in all other cases SS residual is going to be some finite positive value less

than the total variability SS total and hence R square is going to be less than 1.

So, R square is going to be one for perfect fit for all other fits R square is going to be less

than 1 and R square is going to vary between 0 and 1. What this means is that closer the

coefficient of determination R square is 2 one better is your fit. Further away it is if it is a

very, very small number like 0.2, 0.3 then we can consider that the fit is not good and

perhaps the relationship, we have chosen does not fit the experimental data.

So,  this  is  one  way  of  checking,  that  if  I  have  collected  experimental  data  to

experimentally  verify whether  the avrami relationship  is  valid  or not for a particular

system, I do this fit and then check the value of the coefficient of determination to see



how good the fit is. So, what we will do now is go back to the spreadsheet where we

already have the data and calculate for this given data what is the value of the coefficient

of determination.

So, let us look at this data and try to get the goodness of fit R square. For that I need to

calculate now 2 parameters, SS residual and SS total. 
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Now in order to first calculate  let  me calculate  SS residual.  In order to calculate SS

residual I will have to compute y minus y cap. So, let me put in this column here, and

this I individually calculate the difference between y and y minus y cap. So, this is e 5

minus f 5 gives me the first difference, and similarly I just have to copy this all of these

formulae in the following cells. And I get the individual values of the residuals.
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Next let me put down SS total. In this column and let me put down SS residual in this

column. So, what is SS total? SS total is the sum of the squares of the deviations y minus

y bar, which is nothing but if you look at this column this is y minus y bar y minus

average value of y if a the individual. So, I will get it I will use the spreadsheet function

sum of the squares of all of these values, and this gives me the total variability of the

response y. Now the residual variability that I have to put here, again the same function I

can use some of the squares, but of these number y minus y cap. And I get 0.029 as the

residual variability.

Next let me get now the value of R squared, the goodness of fit for this particular set of

data now this we have already seen R square is equal to 1 minus SS residual divided by

SS total to be simply put this relationship 1 minus SS residual divided by SS total. And I

get a value of R square is 0.99. This looks like an excellent fit it is very close to 1 and

then we can conclude that the data that we had for transformation of austenite to pearlite

for at a temperature it was obtained at a temperature of 660 degree centigrade appears to

fit the avrami relationships quite. Well now so, far we have determined the parameters a

0 and a 1, but now we want to get the avrami parameters n and k. So, let me get the

avrami parameter k here and put the avrami parameter in this column. 

So, what is n well if I look at this linearized relationship, n is nothing but the slope pop

this line which is nothing but actually a 1. So, we already have the avrami parameter as



4.953 which is  quite close to 5.  Let  us try and see what  should be the value of the

parameter k in the avrami equation. When the intercept a naught is natural log of k and

hence  k  is  equal  to  exponential  of  a  naught.  So,  I  just  have  to  put  this  function

exponential  of  a  naught  which  is  the  value  given  in  cell  d  24,  and  I  get  a  avrami

parameter k to be equal to the order of 10 to power minus 12.

Now, we can also see how well this n and k Fit to this data. 
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So, let us quickly have a look at this as well. So, let me put it somewhere here. So, let me

put time here and the fraction transformed here,  this  time will  start  from 0. And the

fraction transform is simply the avrami equation 1 minus. And now I am going to use the

parameters a n and k that we have obtained. So, here I should put k anchorite multiplied

by time which is in cell a 14. No, I should be give you a good idea to put it in brackets. A

14 to power n which is in cell e 27 anchorite and close brackets. So obviously, for time t

equal to 0 I must get 0, and let me increments the time by 5 seconds each time. So, for 5

seconds I will copy this formula to cell b 15 and I get a fraction transformed which is a

very small value.
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Now, I can copy these values down here paste it here and I get I get a set of values up to

315 seconds. And on the right you will see a graph as I merged of a now the line passing

on a graph of fraction transformed versus time in seconds as a curve and it follows quite

closely to the experimental data. Now with this we have seen that how we can verify the

avrami relationship when we also seen that this technique of regression, can also be used

for in many other cases where I have to relate maybe some property to heat treatment or

maybe some other microstructural parameter to heat treatment and so on.

Now, with  this  I  will  I  will  close  this  discussion  on  the  verification  of  the  avrami

relationship using experimental data. But one of the things that we needed in order to

verify  this  was  that  we  needed  to  measure  certain  microstructural  parameters  as  a

function of time. In this particular case we have to measure the volume fraction of perlite

formed as a function of time, but they would be other situations where perhaps we have

to monitor the grain size versus time grain size versus temperature. And there are many

other situations when you give a certain heat treatment to materials we need to quantify

the microstructure.

So, what I will do next is that we will look at how we can quantify microstructures. We

will look at what is called as quantitative metallography, and this field of quantitative

metallography uses tools of an area called stereology. It is a fairly old area more than 50

years old where it was developed by metallurgist and material scientists, an and we will



look at various tools by which we can measure how to measure volume fraction, how to

measure grain size, how to measure for example, surface area of grain boundaries in a

material, how to measure density of dislocations how to measure density of line elements

like dislocations as line elements. How to measure number of grains in an area, how to

measure particles in an area and so on. It is a very powerful a set of techniques by which

we can do these various measurements.

So, what I am going to do would be in the next couple of lectures, I will be discussing

the tools used for making quantitative measurements of microstructure. So, I will bring

this  to  a  close  here  this  particular  lecture,  and  in  the  next  lecture  we  will  discuss

stereology. 


