Heat Treatment and Surface Hardening - 11
Prof. Kallol Mondal
Prof. Sandeep Sangal
Department of Material Science & Engineering
Indian Institute of Technology, Kanpur

Lecture — 33

Linear regression (least squares) method to find the value of n and k in Avrami
equation

Continuing with the last lecture, where we had shown how to obtain the best fit

parameters a naught and a 1 of the linearized equation of the Avrami relationship.
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And we had obtained a naught which is log natural log of k, as minus 26.99 and the
parameter a 1 which is nothing but the slope n in the avrami equation of 4.95. Now let us
see let us see the result by plotting this line on to the On to our graph along with points

we have.
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So, let me call the estimate for y for the individual x values as y cap, and below which I

will make a plot of a 0 plus a 1 x for the individual x values.

So, the first value that I will get I will choose the cell d 24, and anchor it plus a 1 which
is an e 24 anchor this as well multiplied by the corresponding x value which is there in
cell d 5. So, this gives me an estimate of minus 4.7 against what we got from our
measurement of minus 4.6. I will copy this formula to the other cells to get the estimate

for the other x values as well and this is what one gets.

So, for example, at an x value or log t value of 5.19 our measured response y was minus
1.5 well and the predicted response now is minus 1.27. Similarly at a x value of 5.7 the
response was 1.36 and the predicted response is 1.255. And on the right hand side you
can see the graph has been plotted with the straight line passing through these set of
points. This line now is considered as the best fit line obtained from this least squared

technique or the linear regression technique.

Now, we also want to get some kind of a measure of how good this fit is. So, there are
various measures for that and we will just take a look at one of the measures of the
goodness of fit. And let us see how the good does goodness of fit can be evolved on the

board first.



(Refer Slide Time: 03:39)

So, looking at the goodness of fit measure for our regression line. Let us consider the

variability in the response y.

The variability in the response y, the total variability in the response y can be understood
in the following way. Let us say this is the measured response and this is the predicted
response. So, I will have y 1 y 2 and so on till y n number of data points that I have
corresponding to each of them, I will have the response y 1 cap y 2 cap to y n cap. And
of course, this is corresponding to the independent variable x which in this case is log t is
x 1 x 2 to x n. So, the total variability in the response y 1 will write it as sum of the
squares total or some of the deviations of the square total can be written as summation i
equals 1 to n y i minus y bar square. This is the total deviation of the measured quantity

against from the average value of the response.

Now, this total response can be split in 2 components. What are these 2 components?
Well the first one is what we can call as explained variability. And what is this explained
variability? Well as our independent variable x changes our response y also changes.
That is as per the model as per the linear relationship this is called as the explained
variability and this could be written as summation 1 equal to 1 to n y i kept the predicted
value of y or the predicted value of the response at the I th response, minus the predicted
average value squared. This I will call it as SS regression. That is this is a variability that

is explained by the regression model.



Now it so, happens? That this is one of the properties of the least squares that, the
average value of the predicted response is the same as the average value of the measured
response y bar. And hence I can simply write this as i is equal to 1 to n y i cap minus y
bar squared. So, this is the first component of the total variability the response y. The
second component is what is called as the residual variability. That is an alternatively one
can also call it as the unexplained variability. And this is simply abbreviated as sum of
the squares of the residuals which we have already seen, and which is equal to sum over

one to n y 1 the measured response minus the predicted response and the square of this.

Now, it can be shown, it can be shown that SS total is equal to SS regression plus SS
residual. This is fairly easy to show by adding the explained variability and the residual
variability together and proving it that this is equal to the total variability. Now what
does all of this mean? When if my residual variability SS residual is equal to 0, if this is
the case, then I have a perfect fit which means the straight line passes through the point

all the points exactly.

However this would never really happen, because in all our measurements we always
have statistical error. And hence they will always be some finite non 0 variability for the
SS residual. Now this gives us a handle to define a goodness of fit, which is also called
as the coefficient of determination called as R square, and this is defined as follows R
square is equal to 1 minus SS residual divided by SS total. This is a goodness of fit
parameter. Let us try to understand what this means, when we have a perfect fit when the
sum of the squares of the residuals is 0 you can clearly see that R square is going to be 1,
when on n in all other cases SS residual is going to be some finite positive value less

than the total variability SS total and hence R square is going to be less than 1.

So, R square is going to be one for perfect fit for all other fits R square is going to be less
than 1 and R square is going to vary between 0 and 1. What this means is that closer the
coefficient of determination R square is 2 one better is your fit. Further away it is if it is a
very, very small number like 0.2, 0.3 then we can consider that the fit is not good and

perhaps the relationship, we have chosen does not fit the experimental data.

So, this is one way of checking, that if I have collected experimental data to
experimentally verify whether the avrami relationship is valid or not for a particular

system, I do this fit and then check the value of the coefficient of determination to see



how good the fit is. So, what we will do now is go back to the spreadsheet where we
already have the data and calculate for this given data what is the value of the coefficient

of determination.

So, let us look at this data and try to get the goodness of fit R square. For that I need to

calculate now 2 parameters, SS residual and SS total.
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Now in order to first calculate let me calculate SS residual. In order to calculate SS
residual I will have to compute y minus y cap. So, let me put in this column here, and
this I individually calculate the difference between y and y minus y cap. So, this is ¢ 5
minus f 5 gives me the first difference, and similarly I just have to copy this all of these

formulae in the following cells. And I get the individual values of the residuals.
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Next let me put down SS total. In this column and let me put down SS residual in this
column. So, what is SS total? SS total is the sum of the squares of the deviations y minus
y bar, which is nothing but if you look at this column this is y minus y bar y minus
average value of y if a the individual. So, I will get it I will use the spreadsheet function
sum of the squares of all of these values, and this gives me the total variability of the
response y. Now the residual variability that I have to put here, again the same function I
can use some of the squares, but of these number y minus y cap. And I get 0.029 as the

residual variability.

Next let me get now the value of R squared, the goodness of fit for this particular set of
data now this we have already seen R square is equal to 1 minus SS residual divided by
SS total to be simply put this relationship 1 minus SS residual divided by SS total. And I
get a value of R square is 0.99. This looks like an excellent fit it is very close to 1 and
then we can conclude that the data that we had for transformation of austenite to pearlite
for at a temperature it was obtained at a temperature of 660 degree centigrade appears to
fit the avrami relationships quite. Well now so, far we have determined the parameters a
0 and a 1, but now we want to get the avrami parameters n and k. So, let me get the

avrami parameter k here and put the avrami parameter in this column.

So, what is n well if I look at this linearized relationship, n is nothing but the slope pop

this line which is nothing but actually a 1. So, we already have the avrami parameter as



4.953 which is quite close to 5. Let us try and see what should be the value of the
parameter k in the avrami equation. When the intercept a naught is natural log of k and
hence k is equal to exponential of a naught. So, I just have to put this function
exponential of a naught which is the value given in cell d 24, and I get a avrami

parameter k to be equal to the order of 10 to power minus 12.
Now, we can also see how well this n and k Fit to this data.
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So, let us quickly have a look at this as well. So, let me put it somewhere here. So, let me
put time here and the fraction transformed here, this time will start from 0. And the
fraction transform is simply the avrami equation 1 minus. And now I am going to use the
parameters a n and k that we have obtained. So, here I should put k anchorite multiplied
by time which is in cell a 14. No, I should be give you a good idea to put it in brackets. A
14 to power n which is in cell e 27 anchorite and close brackets. So obviously, for time t
equal to O I must get 0, and let me increments the time by 5 seconds each time. So, for 5
seconds I will copy this formula to cell b 15 and I get a fraction transformed which is a

very small value.
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Now, I can copy these values down here paste it here and I get I get a set of values up to
315 seconds. And on the right you will see a graph as I merged of a now the line passing
on a graph of fraction transformed versus time in seconds as a curve and it follows quite
closely to the experimental data. Now with this we have seen that how we can verify the
avrami relationship when we also seen that this technique of regression, can also be used
for in many other cases where I have to relate maybe some property to heat treatment or

maybe some other microstructural parameter to heat treatment and so on.

Now, with this I will I will close this discussion on the verification of the avrami
relationship using experimental data. But one of the things that we needed in order to
verify this was that we needed to measure certain microstructural parameters as a
function of time. In this particular case we have to measure the volume fraction of perlite
formed as a function of time, but they would be other situations where perhaps we have
to monitor the grain size versus time grain size versus temperature. And there are many
other situations when you give a certain heat treatment to materials we need to quantify

the microstructure.

So, what I will do next is that we will look at how we can quantify microstructures. We
will look at what is called as quantitative metallography, and this field of quantitative
metallography uses tools of an area called stereology. It is a fairly old area more than 50

years old where it was developed by metallurgist and material scientists, an and we will



look at various tools by which we can measure how to measure volume fraction, how to
measure grain size, how to measure for example, surface area of grain boundaries in a
material, how to measure density of dislocations how to measure density of line elements
like dislocations as line elements. How to measure number of grains in an area, how to
measure particles in an area and so on. It is a very powerful a set of techniques by which

we can do these various measurements.

So, what I am going to do would be in the next couple of lectures, I will be discussing
the tools used for making quantitative measurements of microstructure. So, I will bring
this to a close here this particular lecture, and in the next lecture we will discuss

stereology.



