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Lecture – 32
Linear regression (least squares) method to find the value of n and k in Avrami

equation

So, in the last lecture, we had we were discussing how to analyze experimental data with

respect to the Avrami equation, where we have a set of experimental data points of the

phase transformed fraction of the phase transformed as a function of time and based on

this  data  one  wants  to  determine  the  parameters  n  and k.  For  this  purpose,  we had

linearized  this  equation  the  Avrami  equation  and  then  reduced  it  to  a  simple  linear

equation of the form y equals a 0 plus a 1 x, where x was simply log of the time and y

was a double log log of minus log of 1 minus the fraction transform.
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So, we transformed the experimental data as well to these quantities that we did in the

last lecture then x versus y if you plot it should come as a straight line. Now the objective

here  is  that  we  want  to  determine  the  best  values  of  a  naught  and a  1  which  best

represents a straight line through these set of points x and y.

In order to do this we will use the method of linear regression or it is also called as

simply least squares technique and one shall see how that is done. Now in any equation



of  this  form where  experimental  data  is  also  involved,  there  is  always  a  statistical

variation of values. So, such a equation is also we add an error term to it, this error is

simply a statistical fluctuation of the response y when the independent variable x takes

up a certain value this we assume that this error follows a normal distribution the normal

distribution is a bell shaped curve with mean of 0 and standard deviation of sigma. So,

since it is a an error term mean is 0. So, the average of all the errors put together should

reduced on to 0.

Now, we wish to estimate or the best estimates the best estimates for a 0 and a 1, I will

denote them as a naught cap and a 1 cap once these best estimates have been made then

the predicted value of y from these estimates we will call that as y cap which is equal to a

naught cap plus a 1 cap x. Now if this is the i th value of the independent variable like x i

then this is the i th value response. So, I have a set of data here x and y. So, I have x 1

responses y 1 when x takes of the value of x 2 the responses y 2 and so on if it at the

response of the i th value of x is x i the response is y y i and so on up till n if you are if I

have n data  points that  I  have collected.  Now this  is  the predicted  value at  the  i  th

response and here this is the measured value at the i th value of the independent variable

x that I have experimentally setup in this case it is log time. So, I have this which means

I can write down the difference between the measured y i and the predicted y i cap that I

obtain.

If I have the estimates for a 0 and a 1 this difference is called the residual and I will

denote it as e i which is actually related to this e that I was discussing and this e i as well

would follow a distribution with mean equal to 0 and standard deviation equal to sigma

graphically one can understand what is happening here if I just plot my data points and

through this data I draw the best fit line and I look at different value; suppose this is my i

th this is x i, then this is y i while this point on the line is y i cap or the predicted value

and this is e i the difference between y i and y i cap e i will be positive if y i is above the

line the measured value is above the line; e i will be negative which in this case in this

case this is the measured value or the observed value and this is the predicted value in

this case e i would be the residual would be negative.

So, some of the residuals are going to be positive while the other residuals are going to

be negative. So, what we do is we do not work with a residual e i, but we square the



residual. So, instead of because some of them are positive and some of them are negative

if we square them then everything will become positive.
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So, e i square and then I sum up all of the individual residuals from i equal to 1 to n, this

sum I will call as SS sum of the squares of the residual. So, let me just make a point here

sum of the squares of residuals.

Now, or n let me just further expand this instead of writing e i, let me write it as y i

minus y i cap squared, we want to find now a naught cap values for or the estimate for a

naught and a 1 is a naught cap and a 1 cap such that S sum of the squares of the residual

SS  residual  is  minimized.  So,  we  need  to  minimize  the  sum of  the  squares  of  the

residuals. So, how do we do this how does well it is SS residual is a function of all of

this. So, we need to minimize it by taking certain derivatives and setting them to 0. So,

what we do let me expand this further y i minus now instead of writing y i cap i expand y

i cap as a 0 cap plus a 1 cap x i and hence this will become a 0 cap minus a 1 cap x i.

Now in order to minimize this sum of the squares, I need to differentiate SS residual with

respect to parameters a 0 cap and a 1 cap. So, getting the derivative dell SS residual dell

a naught set it to 0. Similarly, I take the derivative of sum of the squares of the residual

with respect to a 1 and set as well to 0.

So, let us take the derivatives, now if I first let me take the derivative of with respect to a

naught. So, if I do that and this should be square here I look at this function and take the



derivative with respect to a naught only keeping a 1 cap as constant this will taking a

partial derivative this will become minus 2 that comes from the power and a 2 comes

from the power the negative sign come from taking the derivative inside well derivative

of a with respect to a naught cap would be minus 1 and hence I get minus 2 summation

and the stuff inside remember we are taking the derivative with respect to a naught and a

1 and not with respect x this should be set to 0.

If I expand this further individually this 2 and negative sign will go and what I will have

is summation y i minus summation a naught cap minus summation a 1 cap x i equal to 0

well a naught cap is a constant and hence it is in a sense that in the this comes out of the

summation and hence this whole thing basically you are adding a naught cap n times. So,

this is simply become n times a naught cap where n is the number of data points this a 1

cap comes out of the summation and can be written as a 1 cap out here, then I can divide

this entire equation everywhere by n.

So, I divide this by n, divide here by n, divide here by n and the right hand side remains

0. So, this n and this n; this n and will cancel at what i am left with is this term what is

this term this is the average value of y simply add up all the y S divide by n giving you

an average y similarly this term here summation x i upon n is an average value of y. So,

let me call this value as y bar and let me call this value as x bar from this it is easy to

write  that  a naught cap equals y bar minus a 1 cap x bar. So,  this  is  one important

equation, I have which relates a naught to the average y which that is average of the all

the measured values average of all the independent values that I got from the experiment

while a 1 cap I still need to determine.

So, that would come from this relation that we take the derivative of the sum of the

squares of the residual with respect to a 1. Now when I do this, I get y again differentiate,

but this time I differentiate with respect to a 1 cap and I will get the following result

minus 2 summation y i minus a naught cap and this time this minus is coming from here

when I differentiate a 1 cap, but i will be left with minus x i. So, minus i come out of the

summation, but x i will remain in the summation as you will see. So, I am let me first

write down the whole thing a naught cap minus a 1 cap x i times this x i that is coming

when I differentiate with respect to a 1. So, x i will be left and it will be remain inside the

summation this would be set to 0.



 I can forget about this 2 and this minus sign, I am just expand this, when I do this, I will

get summation x i y i minus a naught cap summation x i minus a 1 cap summation x i

square. Now in order to this is equal to 0, now in order to solve this, I can substitute a

naught cap from this; this result can be substituted into this equation and when I do this, I

get summation x i y i minus y bar.

I am put coming here. So, I will get y bar summation x i and then a 1 cap will also come

here as a result, I will get plus a 1 cap and I can take this brackets here and I can write x

bar summation x i minus summation x i square and this is equal to 0. So, now, I have an

expression in which only the parameter a 1 cup is there which means I should now be

able to solve for a 1 cap from here and then that value can be substituted here to get a 0

cap.

Now, I am not going to prove this, but it is somewhat longest, but we can show that the

term here in square brackets can be written as minus summation x i minus x bar square

while the term this term can be written as summation x i minus x bar multiplied by y i

minus y bar the way you can prove it is you expand this and eventually show that this is

equal to this same thing do here you expand this and show that this is eventually equal to

this term from this we can find right a 1 cap as summation x i minus x bar times y i

minus  y bar  divided by summation  x i  minus  x bar  square where the  summation  is

running from i equal to one to n i equal to 1 to n.

Now, just we can abbreviate this and write this expression as the numerator summation x

i minus x bar times y i minus y bar a, I will write it with the symbol S x y sub S subscript

x y and the denominator, I will write as S subscript xx. So, this  forms an important

equation which from the experimental data of x and y i will get a 1 cap. Similarly, once I

get the value of a 1 cap, I will put it plug it into this expression and I know what is y bar

and x bar and hence I will get the value of a naught cap. So, these are the 2 best fit values

of the a model or the linear equation a naught plus a 1 x. So, once I have this, then I will

have the straight line and I can draw the line and see how that line fits the data.

So, what I do now is actually look take our data of the eutectoid steel when fraction

transformed as a function of time and see how we can fit the straight line through that

data.
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So, now let me start to look at this data. So, I have the same excel sheet that I had earlier

in which I had already transformed log t and logoff minus log one minus f. So, let me

this I will call it as x this is my x and this is my y and my equation is a naught plus a 1 x

at these are the equation that I just wrote down on the board a 0 is equal to y bar minus a

1 x bar and a 1 x is equal to a summation x i minus x bar times y i minus y bar divided

by summation x i minus x bar square which I have every abbreviated as S x y upon S xx.

So, the one of the first things that I think; I need to do in order to calculate all this I need

to give the average y and average x. So, let me write down first the average values. So,

my x bar average is simply I can use the average function of this spreadsheet and this

5.259 that is shown is the average of all of these values. Similarly I will just copy this

formula here and this gives me the average of all of these y values.

Now I need to calculate S; oh, before I calculate S xx I need to calculate x i a set of

values x i minus x bar and a set of values y i minus y bar. So, let me call this as x minus

x average and y minus y average now this set of values would be de e f the first x value

is in cell D 5. So, D 5 minus the average x and I will anchorite. So, that it does not

change when I copy the formula this gives me the first x minus x average value the

second or rather the first y minus y; y average the corresponding y minus y average value

would be the first y value which is e 5 which is 5 minus the average of all  the y S

anchorite and thus gives me the first pair. Now I just have to copy this at populated.



So, I have now just I had these 5 data points on I have correspondingly 5 sets of x minus

x average and y minus y average.
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Now, let  me calculate  S xx and S x y. Now S xx is  the sum of  the  squares  of  the

deviations x i minus x bar square. So, this is simply equal to the function called sums

squared what it will do is the a set of values that are given in the arguments each of them

are squared and then summed and that should do the purpose because I need to square

these  x  minus  x  average  values  first  and  then  add  them up.  So,  this  gives  me  the

denominator of this equation for a 1 and then S x y, I will get by another function in

excel which is sum of the products of the corresponding sum of the product of the of the

corresponding a values. So, the first set of values x minus x average comma I give the

second set and what this spreadsheet will do it will correspondingly first multiply this

and this add to the product of the second pair and the third pair and. So, on this gives me

S xx and S x y.

So, now I should be in a position to determine the parameters a 0 and a one. So, let me

write a 0 here and a 1 here and below these, I will calculate the values of a 0 and a 1 well

first I need to calculate a 1 then only I can get a 0. So, a 1 is equal to S x y upon S xx. So,

S x y is this e 21 divided by the value in the cell D 21 which is S xx and this gives me the

value of a 1 of the slope 4.953 a very close to 5. Now I will estimate a naught which is

the average x average y, y bar; this is the equation minus value of the upper estimate a 1



multiplied by the average value of x and this gives me the value of minus 26.995. Now

this is in a nutshell a sigma, the method of linear regression; we will look at this method

a little bit in more detail as to how good the fate as and so on and in the next lecture. So,

I will stop here; in the next lecture, I will discuss the values of n and k that I get out of

this linear regression and look at how well the data fits to the experimental data points.


