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Lecture – 28
Growth kinetics cont …

We, continuing with our discussion from the last lecture on growth kinetics.
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We had  divided  growth  kinetics  into  2  processes  depending  on  whether  long  range

diffusion  is  a  rate  controlling  process,  or  if  the  long  range  diffusion  is  not  a  rate

controlling process then we get what is known as interface controlled growth and if the

long range diffusion is the rate controlling process then what we call as the diffusion

controlled growth.

So,  today we will  review what  we are done in  part  one of this  course the interface

controlled  growth  first.  So,  in  interface  controlled  growth  for  example,  gamma iron

which  is  a  phase  centered  cubic  structure  on  cooling  below 910  degrees  centigrade

transformers to alpha iron which is a body centered cubic structure. So, this is a single

component system in which a growth of a alpha nuclear that forms in gamma iron, then

grows we are the mechanism of interface control growth that we had seen in the last

lecture.



Now, in order to get to the growth kinetics under interface control we can look at the

what is the barrier involved in jumping of an iron atom from the gamma side to the alpha

nucleus, the alpha stable nucleus that is formed for it to grow. So, the barrier to jump is

delta G D. So, this is the jump barrier from an for an iron atom to jump from the parent

gamma phase to the product alpha phase. If I look at the overall changed free energy that

is involved in the process of growth from gamma to alpha.

So, let us look at this diagram and understand this. This is gamma iron and this is alpha

iron which is at a much lower energy state than gamma iron, and that is why the ferrite

for  other  the  body  centered  cubic  iron  should  form  from  the  gamma  phase  if  the

temperature is less than the transformation temperature that is 910 degrees centigrade.

So, what is the barrier to jump for an atom from the parent gamma phase to the product

alpha phase. This barrier is what we have called as delta G D. 

So, this is the energy hill that is involved for an iron atom to jump over this barrier and

beyond this  it  will  simply  go down to a  much lower energy level.  And what  is  the

difference between the energy level of gamma iron and alpha iron that is simply we

already know is the volume of the product phase multiplied by the absolute value of the

volume free energy change. So, hence clearly the thermodynamics favors the jumping of

atoms from gamma to alpha.  Now if  you wish to now compute or other estimate or

calculate what is the rate or what is the net jump rate of atoms from gamma to alpha.

We can figure that out and let us call that as d n pi d t the net jump rate the net jump rate

would be the difference between the forward jump rate of atoms from gamma to alpha

minus the backward jump from alpha to gamma. So, for atoms to jump from gamma to

alpha the energy barrier is only delta G D while for the atoms to jump from alpha to

gamma the energy barrier is some total of delta G D plus v times the absolute value of

delta G V.

So, writing this down n s which is the number of atoms that is surrounding the alpha

phase, as we had seen in the formation of the stable nuclear also. N s is the number of

atoms that is surrounding in the gamma iron surrounding the alpha iron. These are the

atoms that can jump from gamma to alpha multiplied by the by frequency multiplied by e

to power minus delta G D by k T. We had already seen such kinetic expressions being

written in the last lecture. So, this is the forward rate. There will be some number of



atoms that can jump from alpha to gamma, but the energy hill is much bigger for them.

And hence the backward rate would become n s nu e to power minus delta G D plus v

times delta G V divided by k T, this constitutes the backward rate. 

So, the difference would give you the net jump rate in the forward direction from gamma

to alpha. So, just simplifying this a little bit.
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D n by d t now can be written as n s nu e to power minus delta G D divided by k T

multiplied by I taken this term common, I can write this as 1 minus e to power minus v

delta G V divided by k T. Now instead of writing this rate in terms of number of atoms

jumping from gamma to alpha we would write to convert this into a growth rate in terms

of a measure of distance, and hence if I consider a spherical nuclei which is growing.

Then it is radius of change which is d r by d t which you can we can also call it as the

velocity of transformation in terms of meters per second. So, d r by d t can be written as

in a very similar way lambda nu e to power minus delta G D divided by k T and the same

bracket term, 1 minus v to power minus v delta G V divided by k T. Here lambda is

essentially atom to atom distance. 

And hence we are able to now right growth in terms of a growth velocity. So, this could

be considered as growth velocity. If I look at this expression we can try to see, what

happens for small driving force? Small driving force means that the term v delta, G V is

much, much smaller than k T. Now this if you are had a very small driving force then I



can simplify this  write the velocity  or the growth velocity. S simply lambda nu e to

power minus delta G D divided by k T times velocity multiplied by delta G V upon k T.

That is the term in the brackets can be approximated by v delta G V upon k T. 

For large driving force the growth velocity becomes for large driving force this term

becomes very small much smaller than 1, and hence that this term can be neglected and

hence  the  growth velocity  simply  becomes  lambda nu e  to  power  minus  delta  G D

divided by k T. Now looking at any of these expression whether this expression or this

expression or this expression. 

There is one conclusion that we can draw directly from here and that is that a growth

velocity is not a function of time. So, for a given temperature growth rate is a constant.

So,  one  major  conclusion  regarding  interface  controlled  growth  is  that  at  a  given

temperature, growth rate is a constant. Now let us examine we have seen we have briefly

reviewed.

How interface  controlled  growth works.  Now let  us  examine and compare  this  with

diffusion controlled growth, which is a little bit more involved as you shall see. 
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So, looking at Diffusion controlled growth. So, examples of this one important example

of  this  is  austenite  transforming  to  ferrite  or  pearlite.  So,  for  that  matter  diffusion

controlled growth will be present in may los systems, where long range diffusion in the



parent matrix would become important. So, consider a hypothetical binary system A B.

Let us say that we have alloy A B of composition c naught on this phase diagram. And

we start we hit this alloy at to a temperature of T 1.

So, that the entire sample is a single phase sample of let us say alpha phase. We suddenly

quench  the  sample  or  we  rapidly  lower  the  temperature  of  this  sample  to  some

temperature T. So, we go from T 1 to t very rapidly effectively in no time. As a result we

reach this point; however, no transformation is taking place and we get a supersaturated

solid  solution  of  B in  A,  and let  me mark  out  the  equilibrium composition  that  are

expected  at  T  we  expect  to  get  an  alpha  phase  of  compositions  c  alpha  and  beta

precipitation of composition c beta. So, this is the 2 phase alpha plus beta phase field. 

Now looking at this system. We have at time T is equal to 0 let me draw this diagram

separately that if I look and I am going to look at one dimensional growth of beta in

alpha. 
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So, at time T equal to 0 when I rapidly change the temperature from T 1 to t I have alpha

everywhere of composition c 0. After sometime T, I will get a following situation, I will

get some beta that is formed of composition c beta. So, I have a linear growth of the beta

phase, and beyond this is the distance x. And it has grown by a distance x for some time

T greater than 0. Let me also mark out if this is the composition c naught, let me also

mark out the composition on this diagram of c alpha. 



Now what we expect is that in this region beta will have the equilibrium concentration

dictated by the phase diagram of c beta. Very far away from this alpha beta interface my

composition is going to be c 0, but locally we will have equilibrium; that means, we

expect at the interface the alpha composition to be of c alpha. N s be go away from the

interface into the alpha phase the composition will move towards c naught. And I can

draw this concentration profile within the alpha phase something like this. So, this is at

some time let us say T 1. Now after some more time has elapsed the beta will grow

further, by let us say or distance delta x.

Hence  now  say  composition  at  this  this  new  interface  of  alpha  beta.  The  local

equilibrium will hold and the alpha composition at the new alpha beta interface would be

c  alpha.  But  as  we  move  into  the  phase  they  would  be  a  concentration  will  move

towards, and well within into the alpha phase we will again reach c naught. So, that is

how the beta phase will keep growing and the concentration profiles will also change.

Now once we have this this picture this model of the growth of beta through a diffusion

controlled process, which means that now B atoms have to diffuse over long range from

within the alpha phase to the interface, and then those atoms have to jump across the

interface to enable beta to grow into the alpha.

So, essentially the growth is going to be controlled by the time it takes for the solute

atoms to move from large distances in the alpha phase right to the alpha beta interface.

So, what is that how can I calculate at what rate they would be that atoms will be moving

that to simpler given by the fixes first law that the flux of B atoms in the alpha phase

would be given by the diffusion coefficient  d times the concentration gradient in the

alpha phase dc by dx. Now these profiles the concentration profiles that are shown here

in this model,  these are the actual  concentration profiles that are expected.  And their

functional dependence can be obtained. In fact, the solution to this concentration profile

is the error function.

Now, that makes the calculation derivation on this model to be quite complicated, hence

we make a very simplifying assumption. And that simplifying assumption is as follows,

that instead of taking these kind of concentration profiles we assume that the profiles are

can be assure to be linear in the alpha region like this. There for the flux j then becomes a

constant at all x, and that makes the subsequent derivation very, very simple at end. And

that simple model also gives us very close to the actual picture that is showed in the



model. So, using this the flux equation and also knowing that invoking mass balance that

no  mas  is  added  or  lost  by  the  system,  using  these  2  we  arrived  at  the  following

expression for velocity of the interface.

So, velocity of the interface v, v is equal to dx by dt is given by the diffusion coefficient

d times c 0 minus c alpha square upon 2 times c beta minus c alpha times c beta minus c

naught times 1 upon x. This equation was derived in detail in the lecture or the part one

of this course. We integrate this we arrive at the following expression for x how x or the

thickness of the beta phase changes as a function of time, and that is given by c naught

minus c alpha divided by square root of c beta minus c alpha times c beta minus c naught

times square root of d t. 

This shows this being a constant at a given temperature the concentration she c naught c

alpha c beta are already taken from the phase diagram and they are fixed. X is directly

proportional to square root of dt. And hence this is also called as called as a parabolic

growth. And then the interface velocity v dx by dt becomes if we simply differentiate this

as half c naught minus c alpha divided by square root of c beta minus c alpha times c

beta  minus c  naught  times  square root  of d upon t;  that  means,  now the  velocity  is

proportional to square root of the diffusion coefficient divided by time. This equation

very  clearly  shows  in  contrast  to  the  interface  controlled  growth  that  at  a  given

temperature growth rate was a constant.

If interface controlled growth mechanism is present; however, in the case of the diffusion

controlled growth velocity clearly is the no longer constant, but it varies as a function of

time.  And  In  fact,  it  gradually  reduces  as  the  transformation  or  the  as  the  growth

progresses. So, this is a very important factor to realize that the 2 mechanism a interface

controlled growth rate diffusion controlled growth gives us a growth which is dependent

on time. What else what other conclusion can I draw from this expression that I have

written. If I look at c naught minus c alpha this is at a temperature t c naught minus c

alpha represent the super saturation at time T is equal to 0. That is the growth velocity is

directly proportional to the super saturation, higher the super saturation we expect higher

the growth velocity.

Now, the conclusion that the growth rate reduces as a function of time why should that

happen of course, mathematically this comes out that it reduces as time progresses, but



that can also be seen from this model of diffusion controlled growth, this is at sometime

T 1 this profile this profile is at sometime T 2 which is greater than T 1. If I look at the 2

slopes  as  time  progress  the  slope  of  the  concentration  profile  or  the  concentration

gradient slope is reducing if I look at the fixes equation which gives me the flux. So, flux

is  directly  proportional  to  the  concentration  gradient.  Hence  as  time  progresses  the

concentration gradient dc by dx is reducing. 

So, flux is  reducing and therefore,  the growth velocity  is  reducing. Now in the next

lecture we will briefly look at how under cooling will affect the growth rate that as I

change  the  temperature  to  different  temperatures  under  cooling,  how  under  cooling

affects the growth rate that we will have a look and then we will look at the overall

kinetics of phase transformation. We will stop here.


