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Welcome to the course on principles of vibration control. So now we will be talking about

linear viscoelastic materials and their models. So we will be discussing about how to model

of viscoelastic materials very specifically in this lecture so the things that we would like to

cover is first of all a brief introduction to the viscoelastic materials.
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And then we will talk about the stress-strain relationship of the viscoelastic material and then

we will propose certain models for example we will start with the linear elastic spring and

then linear viscous dashpot and something which will be derived out of these 2 by mixing

these 2 that is the Kelvin Voigt model and the Maxwell model.

(Refer Slide Time: 03:14)

So  that  is  what  is  our  learning  goal  today  now  first  of  all  we  will  be  giving  a  brief

introduction to the viscoelastic materials here with me we have 2 viscoelastic materials one of

them is more lossy that means it will behave in such a manner that it will dissipate more

energy and another is more elastic in nature. 

So let us see both of them are very much identical in terms of their shape and size etc but if

we just drop one of them from a certain height we can see that there is a ball like behavior

that means it is actually quite springy that means when I am dropping it. It is not dissipating

much of the energy it is getting it stored and that energy is helping it to bounce back and this

back and forth is happening for some time. 

On the other hand, imagine a material which has lot of loss associated in it like this one from

the same height if I drop it you can see that there is almost no bouncing in the material so that

would actually help us to do this conjecture that this material even though they are very much

identical in nature at room temperature is actually more viscoelastic in comparison to the

material. 



And  this  viscoelastic  ness  of  the  property  of  the  material  in  which  we  have  two  parts

associated in it one is the viscous part and another is the elastic  part,  the viscous part is

actually more predominant in this material which had shown very less amount of actually

which has dissipated more energy in the sense that which has shown very less amount of

jumping. 

Phenomena in comparison to the other one so this with the brief kind of an idea we will keep

with  us  so  a  very  brief  introduction  about  the  viscoelastic  materials.  First  of  all  this

viscoelastic  materials  actually  consists  of  polymers  which has variable  chain lengths  and

some of them can be of short chain lengths some of them can be of long chain lengths.

In fact  you know that the polyethylene that we use most of the times we divided into 2

categories one is called low-density polyethylene or LDP and another is called a high-density

polyethylene HDP. Now low-density polyethylene has actually short chain lengths and it has

low molecular weight and high-density poly ethylenes are having long chain length. 

And it has high molecular weight so like that in the same polymeric category itself you can

have variable chain lengths in it and the viscoelastic materials include natural and synthetic

rubber like substances which is more important for us from the vibration control point of

view such as butyl rubber silicone rubber poly urethanes etc.

And it is extensively used for controlling vibration because it has enormous resilience as well

as high energy dissipation capacity we have just seen shortly before that how high is the

energy dissipation capacity that just after the first bouncing it did not bounce back at all.

So that is what is the tell-tale sign of a good viscoelastic material now where from this high

damping capacity comes it is generally attributed to the in molecules which actually provide

internal frictions so imagine you have a long chain so suppose we consider a viscoelastic

material of this type a quite a long chain.

Now  what  will  happen  it  will  not  remain  straight  in  between  sometimes  there  will  be

entanglements of it and then the chain will continue so there are many such entanglements

possible inside the system like if it is a very long slender system now naturally there will be

internal frictions between these loops. 



So the chain to chain internal frictions will take place and not only that these chains also may

have lot of pendants in them lot of atoms from the main structure and then there will be

degree of freedom of these things as well so they may start to actually you know dissipate

energy  like  little  pendulums  which  are  fixed  with  the  system and  hence  they  will  also

contribute in terms of energy dissipation. 

So the very nature the very structure of viscoelastic materials is always in favour of energy

dissipation and that is why there are very good use to ask for vibration control however there

are some disadvantages of it for example viscoelastic materials are highly sensitive to loading

rate how fast I am actually you know loading of his viscoelastic material .

And what is the temperature at which I am working on the viscoelastic material in general we

say that a very high loading rate is not very good to see the viscoelastic materials in action

and it is also true from the temperature point of view a high temperature is also not very good

to see the viscoelastic materials in action neither a very low temperature.

It is somewhere in between we call it to be a glass transition temperature where you see the

best properties of the viscoelastic material now in the stress-strain curve I have already earlier

told you that actually the you know the elliptical form comes up in the which also depicts the

area under the ellipse also depicts the hysteresis or the energy that is lost per cycle.

Now this particular ellipse the major axis of the ellipse is actually a measure of the material

stiffness while the ratio of the major to minor so if we know the major we know that how

much is this actually stiffness but the ratio of the major to minor which in some sense tells us

that  what  is  the you know ellipsoid nature that  would actually  give us a measure of the

damping of the material.
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Now with this little background of his viscoelastic materials we would also like to see that

how these  viscoelastic  materials  behave  with  respect  to  temperature  suppose  I  take  this

material  called  polystyrene  which  shows very good viscoelastic  properties  close to  room

temperature  now  this  particular  material  or  such  types  of  viscoelastic  materials  actually

shows five phases in terms of their physical nature.

So much unlike the metals which may in the solid state itself in a metal or a metallic or a kind

of a crystal will show at me at most one or 2 phases in it or maybe there will be some changes

in crystal structures which may be 2 or 3 times you know the change of crystal structure will

happen.

But here for this kind of viscoelastic materials there are total changes in terms of the nature of

the material itself for example for this polystyrene if you keep it at a very low temperature it

will be like in a glassy region so this is the phase one or the glassy region which will be here

at low temperature at this point.

You will see that the modulus of elasticity is relatively high means what is going to come up

at a later stage in comparison to that the modulus of elasticity is relatively high nearly close

to we say that to giga pascal or so it cannot be very high for you know polymeric materials

but close to that and it is very hard that is true you take any such material.

And you know for example simple polyethylene and then plastic sheet what you call  and

keep  it  in  the  freeze  and  then  you  will  see  that  it  would  become  very  hard  in  a  low



temperature region so with respect to low temperature this behavior also you will see and it

will have a high resistance to flow.

So that is your phase one and in fact this happens because all the chains which gives this

fantastic mobility to the viscoelastic materials they are even frozen at a low temperature so

that it doesn't really get an opportunity to so the viscoelastic behavior.

Now as the temperature is increasing this frozen chains are becoming active they are they.

They would start to move against each other so this is where we will get this leathery or glass

transition region and this is marked by a sharp decrease in the elastic modulus and they this

may also have deformation which will not be totally recoverable like your you know elastic.

You know recovery  may not  take  place  and that  is  what  is  this  transition  region or  the

leathery region now there are several theories for this transition some people say that let us

imagine that this is the main chain of a viscoelastic material then it can happen that these

main chain the part of the main chain will actually crank itself and will start to rotate with

respect to some equilibrium condition.

And thus gives a kind of a you know mobility in the system there can be another mobility

also as I told you that suppose if there is a you know a side chain from the main chain then

there  can be mobility  also in  terms  of  the motion  of  the side chains  so all  these  things

basically contribute towards the sharp decline in terms of from glass transition region.

And then we come to the region which is known as the rubbery region in this region both

elastic  and  viscous  components  are  present  of  course  viscous  component  will  be  more

dominant now and the modulus falling rate will be stabilized now because almost all the links

has become active so that will stabilize elastic it behavior will come at a high strain rate and

viscous behavior will come at a low strain rate.

So that means that the rubbery state if I apply the deformation at a very high rate then it will

not be able to follow it and it will show a kind of elastic behavior resisting that kind of a

change but if I do it slowly it will follow it and that is the viscous behavior at the low strain

rate.



So this is what is our phase 3 beyond that the viscosity will start to dominate because the

temperature has increased now so the rubbery flow will start to take place so and the modulus

will start to fall once again and finally when we are at phase 5 then we have the viscous flow

region and the modulus will drop very steeply.

Basically we will reach the fluidic region and the melting point is somewhere here so for

polystyrene less than 200 degree centigrade same you will see this kind of a change so thus in

a nutshell  once again we are going to see five regions of viscoelastic  behavior very low

temperature region one which is glassy at that time the modulus of elasticity is high.

 And then the modulus of elasticity starts to decrease that is the leathery or the transition

region or glass transition region and which happens because of I told you that the mobility of

the chains and the modulus of elasticity falls down significantly after that there is a kind of a

stabilized region which is marked rubbery region and then from the rubbery region.

Once again the you know beyond a certain temperature the viscosity will start to dominate so

we will be having a rubbery flow region and from rubbery flow region still in the rubbery

flow region there will be some resistance to deformation that means there will be some kind

of a elastic behavior but beyond a certain temperature from the rubbery flow region.

We will come to the viscous flow region where it will be only viscosity which will resist the

deformation of the system so basically it will be proportional to the strain rate of deformation

and that is how we are going to get the five regions of viscoelastic behavior of course 

Finally you know if you increase the temperature much for some of the materials not for all a

decomposition can happen that means all these things will break down and the gases will

come out of it so that can happen in some of the materials.
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Now we come to  the  whole  thing  that  we  have  said  so  far  qualitatively  we  come  to  a

quantitative description of the fact. Now naturally if we want to say that we have to say here

that both the stress is proportional to the strain rate and from the another side also the strain is

proportional to the rate of change of stress so what it means is that we have for example the

stress proportional to strain part where A 0 and B 0 will come into picture there is a typical of

metals.

But then beyond that also we have this stress rate or strain rate or rate of change of that or

even higher order changes appears in the constitutive relationship of the system now this

particular thing we can actually sum it up in terms of a generalized Hooke's law as you can

see here that we can keep the first term separate A 0 Sigma + I equals to 1 to n.

we have the stress rate relate terms here and that equals to once again in the strain side first

term separate there is a reason I will show you because it will be easier for us to understand

b0 epsilon and then for J equals to 1 to M we have the strain rate terms that will come into

picture in short this is a you know law extension of the Hooke's law in which not only that

stress is proportional to strain.

But also many more intricate things will be you know kind of it will be expressed through

this relationship where stress and strain rates depending on the type of material will also play

an important relationship if all these coefficients A0 to AN and B0 to BN remain constant

then we will call the material to be a linear viscoelastic material.



For metals for example a 1 to n is 0 and B 1 to B M is 0 so what it means is that for metals a

0 Sigma equals to B 0 epsilon so if I divide both the sides by a 0 because a 0 is just a constant

so Sigma is B 0 over a 0 times epsilon and I can write it as e times epsilon so that is how for a

metallic case we do not get any other variation of rate of strains etc.

But simply stress proportional to strain which is our very simplified form of the Hooke's law

whereas in this case you get all these rates that will come into the picture now we will talk

about the testing of the viscoelastic materials so based on the stress strain relationships we

will show this testing of his viscoelastic materials.
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Now it involves loading a material either at constant stress and holding that stress for some

length of time and then removing the load that means at a particular time I have started the

load constant it is not changing holding it and removing it so this is what we say as a creep

recovery test.

So if we do this test on a viscoelastic material what we will find is that as soon as I apply this

trace the strain will start and then my stress is constant but the strain will not stop so this is

the instantaneous part of the strain after that my strain will start to show the secondary part or

tertiary part which is also known as the creep strain.

So if  I  keep the  load  fixed  or  in  other  words  the  stress  fixed  then  we will  fast  see  the

instantaneous strain followed by the creep strain that will happen to the system what will



happen if I remove the stress instantly some part of it will come down and that is what we

call it to be elastic recovery.

There is some part of it which will not come down instantly we are going to call it to un

elastic recovery and there is some part of it which will not be recovered that means it will not

come down to 0 at all so this is the permanent strain that may be fixed inside the system such

is the nature of a creep recovery test when we are subjected to the material to this kind of a

stressing of the system.
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Now let us look into the stress relaxation test which is this stress recovery or the creep and

the stress relaxation adjust to other types of the coil now in case of these we are going to

strain a material at constant strain not constant stress like the last time. So here this is epsilon

versus T curve where I am applying an instant strain.

Then  holding  it  constant  here  what  you  will  see  is  that  the  stress  required  to  hold  the

viscoelastic material the constant strain will actually decrease over time and these phenomena

is known as stress relaxation. So you can see here as I have applied the strain I am getting

some stress developed in the system and then this stress is actually coming down slowly it

may not come totally to 0 but it will come down constantly and this is what is known as the

stress relaxation in the system.
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Now let us look into some of the models that is a basically mechanical models we also call

them to be Rheological model that we actually use in terms of describing the behavior of the

system and also this models are some of the very simple form of the generic Hooke's law that

we had for discussed for standard linear solid.

So the first model towards this direction is the linear elastic spring model so in this case we

have a spring here it is a linear and elastic spring and I am applying stress to it and I am

getting  instantaneous  strain  into  the  system  so  the  response  of  this  material  to  a  creep

recovery test let us say to undergo an instantaneous elastic strain upon loading to maintain

that strain.

So long as the load is applied and then to undergo and instantaneous this straining up and

removal of the load so if you look at it that here we are applying the stress and then I am

getting an instantaneous strain so this is the load or the stress this is the strain so you are

getting some instantaneous strain. 

We are holding the load here we are having the strain also to be constant because this is

spring this is not showing any viscosity and then I am removing the load at that same time TR

time of relaxation the strain also will come down and it will come to the best state.

So that is how an elastic spring should behave and that means I can defeat it by a very simple

relationship where the stress is proportional to strain epsilon is Sigma over E or you also call

it as s times Sigma where s is also known as the compliance model of the system.
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So this is you're very much simplified Hooke's law that a spring shows now if I go from these

to a viscous dashpot how the scenario is going to get changed well I told you earlier that a

dashpot  is  a  piston  cylinder  arrangement  as  you  can  see  here  this  is  a  piston  cylinder

arrangement and which is filled up with some kind of it discussed it.

We have not shown it here because there's just a symbol but this is the way you can consider

that the dashpot is filled up now a strain is achieved by dragging the piston through the fluid

this we can easily understand that if I try to pull it this way it will come out and that means a

strain will be achieved. 

So if I subject these to a test of something like that I am applying a stress to the system

keeping the stress fixed for some time then removing the stress and bringing it to 0 how will

this fellow behave well at the very first instant when I have applied the stress I want the

dashpot to move.

But have you ever seen a door closer which you can instantly close the door you cannot so

there it is this very same thing you apply the stress but the strain is 0 initially that means the

dashpot will  refused to move at  the very fast instant  because it  takes some time for this

molecules to rearrange themselves.

So that refusal will come and then gradually it will give up so gradually you will see that the

strain is happening in the system and it will come to a point of maximum strain when I am



having this stress constant beyond that point even if I remove the stress the deformation is

going to stay there why because there is no springiness in the system.
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There is nothing through which the system will recover itself that now naturally as you can

see here that in this particular region it is actually the strain rate which is actually constant

and hence we can actually express it with respect to this kind of a formulation that the stress

is proportional to the strain rate. 

So that means epsilon dot rate of change of strain with respect to time that equals to Sigma

ETA where eta is not actually the loss factor here you have to keep in mind there is some kind

of a damping coefficient or viscosity of the material so epsilon equals 2 so if epsilon dot

equals to sigma over ETA what happens if I integrate it.

I will get it as epsilon equals to Sigma over ETA T + some constant now if I assume 0 initial

strain condition that means at T equals to 0 T equals to 0 if I assume there was no press strain

in the system that means this constant will be 0.

So that means with respect to strain the relationship would look like if epsilon equals to

Sigma 0 over ETA times T so the strain is seen to increase linearly that is what we have seen

here that with respect to the strain temperature behaviour strain is increasing linearly so that

the slope of this curve is actually Sigma 0 over ETA.



So that is how it is going to behave and when the load is removed there is no stress to move

the piston back so the piston will actually remain at that state and the strain built up will be

permanent so that is what is our linear viscous dashpot model now what if i mix that that

means what if I make a Kelvin Voight.
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There are 2 ways in which I can mix the spring and the dashpot one is that a spring and a

dashpot as has been shown here as parallel and another possibility is that the spring here and

in the dust potties in the same line itself so this is a parallel circuit and this is a series circuit.

So I can build up these 2 models now we have to see that what is the you know kind of

implication of building up these 2 models so in the first case then see the spring part Sigma

one is e epsilon one and stress in the second part in these part is Sigma 2 as ETA D epsilon 2

D T.

Now because it is a parallel combination that means whatever suffering or whatever good

thing or bad thing that is going to happen it has to happen together so that means the strain

that it will be subjected to from both the sides it is same both for the spring as well as for the

dashboard.

So epsilon is epsilon 1 equals to epsilon 2 on the other hand the load is actually shared by

both of them so if I try to pull it then the resistance there will be some resistance here some

here it will be shared by both of them so that means the stress is actually partly the stress in

the spring and partly this stress in the damper.



So  I  already  know  that  Sigma  1  is  proportional  to  strain  so  epsilon  and  Sigma  2  is

proportional to strain rate so it is ETA D epsilon DT so if I compare that with my you know a

0 to n model and B 0 to b n model of a standard linear solid model you will see that this

implies that for this model ao has to be unity.

B 0 has to beE only. A1 is to be 0 and Bi is to ETA. So if you put all those things is 0 as 1 so

that means it is 1 times Sigma + a 1 is 0 so that second term does not come into picture at all

that equals to B 0 is e so it is e times epsilon + V 1 is ETA which is the damping coefficient.

So ETA times D epsilon DT and we are going to get back the same equation here so it is a

special case of the generic Hooks model where these are the parametric values of the system

so that is what is our Kelvin Voigt mechanical model of the system now if I look at the

response of that Kelvin Voight model.
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There are 2 response that I will discuss today one is if a load Sigma 0 is applied suddenly to

the Kelvin Voight model and then what will happen then the spring will want to stretch but it

cannot stretch because the dashpot is there it whatever has to happen I told you in a parallel

model has to happen together

So since the dashpot will not allow it to get strained so that means the dashpot will take the

load so that means in the very fast part the creep car will start with an initial slope of Sigma 0

over ETA because this is where the dashpot will first be prominent it will come into picture.



Now as some strain will be occurring to the system so that is your Sigma 0 over it apart some

strain  is  occurring  to  this  system  and  then  what  will  happen  some  stress  will  be  then

transferred from the dashpot to the spring the spring will have now some space to deform

So now the spring can actually squeeze because the dashpot has moved forward so that it will

that squeeze will take place and then that means that the second part of the stress will now

start to show its effect so this will have the Sigma 2 part that will come into the picture of the

system and where so Sigma 1 part will come into the picture.

And Sigma 2 the dashpot part will be actually ever decreasing on the other hand the Sigma 1

part will become gradually Sigma 0 over heat so that is what is happening here that the spring

has taken the domination and that is why if I remove this trace then the spring starts to show

the initial deformation.

And then the rest of the deformations gradually it is coming down to 0 so this part is actually

dashpot dominated initially and this part is actually spring dominated so with us in the creep

recovery response we get the manifestation of both the properties of the system.
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So we have the relationship that is e epsilon + ETA times D epsilon DT now if I try to solve

this with an initial condition that there is no pre strain in the system you will see that at any

point of time you will get epsilon which is we defeated by this kind of a relationship where

there is Sigma 0 over E.



And then there is an exponential part 1 minus e to the power minus e by ETA T which you

can write it as Sigma 0 times JT and JT is known as the creep compliance function which is 1

over e 1 minus e to the power minus ey ETA T you can even write it as the ratio of the time

the time of relaxation where TR is the ETA over e and this is also known as the retardation

time for creep strain to accumulate.

So when the kv model is actually unloaded the spring will want to contract but again the

dashpot will  hold it  back the spring will however eventually pull  the dashpot back to its

original 0 position and pool recovery will start to occur. So there is a transient type creep and

an elastic recovery in the system but no instantaneous or permanent strain in the system so

this is what is the Kelvin Voigt model system. 
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And if you look at the stress relaxation in the Kelvin Voigt model then in this case you are

subjecting the material to a constant strain that means epsilon 0 at T equals to 0 the you know

the constant strain is coming to picture. So d epsilon DT is 0 and then you get the relationship

as Sigma equals to epsilon 0 from this relationship if I give you know put D epsilon DT to be

0 this term vanishes. 

And he is this so Sigma equals to e epsilon 0 thus the stress is taken up by the spring and is

constant. So there is in fact it shows according to this model that there is no stress relaxing

over time but actually this Kelvin Voight model undergoes an instantaneous strain of epsilon



and an infinite stress needs to be applied to do this so in practice this would never happen

because in order to show an instantaneous strain like this relationship shows that. 

And instantaneous deformation is possible in the system this is only possible if infinite stress

is applied to the system otherwise this will not happen and hence we can say that the model is

good with modelling creep which we have shown in the last present part of it that this is good

but it is not good in terms of showing the instantaneous strain. 
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So with regards to relaxation the model is much less accurate and its application is in organic

polymers in rubber woods when the load is not too high so this is where we will put an end to

this lecture because here we have only talked about Kelvin Voigt model in the next lecture we

will talk about the Maxwell model. 


