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Design For Enhanced Material Damping

Today  we  will  talk  about  the  structural  damping  with  respect  to  some  more  complex

conditions so let us look into that and towards the end we will also show you how we can

demonstrate the same thing experimentally so what we are going to focus today on how to

design or the structural damping such that we get enhanced material damping.
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So that we can extract maximum from a structure the structural level itself. So let us consider

this simple problem that this is a beam which is subjected to pure bending as you can see here

that the beam is subjected to bending here and you may consider that it is something like a

bending case like this where it is subjected to pure bending.

And having a symmetric cross section with respect to X and Y axis. So this is one axis that is

the longitudinal axis with respect to which it has a symmetric cross section that means up and

down or symmetric as well as with respect to the y axis it has a symmetric cross section both

the sides are symmetric so that is a simple case.

Now for this type of a case the simple theory of bending we have to keep in our mind and that

is M X the M is the bending so M X over IZZ that is the area moment of inertia about the zz,

z axis which is actually perpendicular to the plane here so that MX over izz set is actually

nothing but sigma x max over the distance. 

So basically you some cross-section is subjected to pure bending like say this is the beam that

we are considering and this is the section then in that section you will see that a completely

equal and opposite stress distribution about the neutral axis will take place and this distance is

actually half of the thickness so that is why in any of the extreme fibers you are going to see

the maximum stress which is Sigma x max and the corresponding distance from the neutral

axis is T / 2.

And that is also equal to the stress at any other location let us say I choose some interim

location the stress at that location divided by the distance from the neutral axis which is y in

this case ok so that means if I consider a small cross section here then this is at a distance Y

and for this if the stress here is Sigma X this Sigma X by Y is actually equal to Sigma X max

at this point divided by T / 2.
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So that is the simple theory of bending so with this kind of conditions if we next actually look

into it that our relationship the first equation is MX over izz as Sigma X max over T / 2 which

is equals to Sigma X over Y that is what is our first equation.

Now let  us  find  out  also  we will  use  this  equation  but  let  us  find  out  that  what  is  the

maximum elastic energy that is stored in the beam for a complete cycle of vibration and with

some assumptions like L as the length of the beam and E as the Young's modulus.

Now we can actually get this equation here as W S as half one over 2E IZZ times integration

0 to m mx square dx. So that is the total energy elastic energy that is stored in the beam

because we are considering it as a conservative system. Now if I use this equation 1 and

equation 2 together then what we are going to see is that we will find that this relationship

will come now in which this MX square we are replacing by this equation and that means

MX square can be represented as Sigma.

So MX as Sigma x max times IZZ divided by T by 2 so 2 goes to the top so that is what you

know we are having here that is where the 2 is appearing for us and this is what is Sigma X

max square is coming and IZZ square is not a function of DX because the cross section

actually remains constant.

That is what we have assumed in this case so that is why IZZ square is out of the integration

itself and of course the 2E IZZ is there so this E IZZ is actually remaining again modulus of

elasticity and IZZ remaining constant in this particular equation. 



So with this you know we can actually simplify it and we will get a relationship of WS as we

have seen here in which will be having variables like ZZ WS as a function of IZZ the Sigma

X max square integration 0 to LDX and E and D Square so some geometric parameters and

some material parameters of the system.
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Now we also know that the damping stress amplitude relationship which I said in the very

beginning that is what we are heading to is that a Loss Factor definition so in which we need

the damping the energy that is dissipated which is J Sigma to the power n so the energy that is

dissipated per cycle is J Sigma to the power n by 2 pi and the ratio of Plodder loss factor is

this divided by w s.

So this is what we are finding in this expression. Now d s we can try to integrate it because J

Sigma to the power n is actually per unit volume so we need to find out that if B Y is at any

point the width of the system the strip then so B Y and dy is the area of the system and that

from - T by 2 to T by 2. 

So this is - T by 2 to T by 2 we are integrating this thing so that is kind of giving us the area

and then Sigma X to the power n comes into the picture because that is also varying with

respect to Y the stress is not going the same so this thing together from - T by 2 to T by 2 and

then from the length of the entire you know sample the area which is subjected to the length

that is subjected to pure bending say it is 0 to L.



So that we need to integrate that is the second integration for and that is multiplied by 2 J that

is how the 2 J the 2 term is coming because we are doing it from - T 1 to 2 T by 2 or

otherwise we have to do it from 0 to T so that is why the 2 is coming and J is of course the

damping constant that we had earlier discussed for structural damping.

So with all these definition of the terms now we can put Sigma X to the power n as actually

Sigma X y at such TY to the whole to the power N and then dy dx and we can find out that

what is this you know the final explanation and now we can use this expression in D S and

also we have already found out what is WS.

So we apply all these things together the terms look little bit algebraically involved but it is as

such it is very innocuous because it is just simply that we have several integrations to carry

out that song so what you will find is that this is how the entire you know system would look

like that 2 to the power n into 4 J this J of course will be capital divided by T to the power n

times this integration 0 to L Sigma X max to the power M DX. 

And the other integration is 0 to t by 2 BY Y to the power n dy so that is what is my top part

and in the bottom part it is d by 2 pi w so 2pi is here and then the work done which is to IZZ

0 to L Sigma X max squared DX so if we now you know simplify all the things and we can

get the 2 term out the J out modulus of elasticity out.

Basically those terms we are taking it out which are not going to change either with respect to

X or with respect to Y so that is how our this expression will be coming up and which can be

further simplified and clubbing all these terms together all the constants and all the variables

in one side then the integrations one by one that 2 integrations are there.

Now in this integration there is this term sigma x max which will be coming out and we

would  like  to  normalize  it  we would  like  to  normalize  it  with  respect  to  the  endurance

strength which is the strength against fatigue so instead of sigma x max we would like to put

it Sigma X max divided by Sigma E N and then this is how it will come into picture.

Now that you are normalizing it here it should also come out as a particular property here you

are  pre  multiplying  the  same  so  that  the  effect  will  not  be  altered  only  thing  we  are



normalizing the Sigma X max so this will be our final normalized relationship of the system
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Now with this if we actually evaluate ETA S what we are going to see is that ETA S is going

to have 3 parts in it 3 clear parts.

The first part here and that this part is if you look at it that the first part here with respect to

the ETA S components that defines ETA S then the first part has all the material properties in

it then we have a stress related part which is the loading related part you may say and then we

have a third part here which is actually the geometry related part.

So we have the first factor we will call it as the material factor B time even though there are

some constants in it but the most important we 3 material factors are there J E and Sigma Y n

to the power n - 2 the second factor is actually the stress distribution factor because that is

talking about how Sigma x max is distributed all over the length of the system 

So that is the longitudinal stress distribution factor and the third factor if you look at it that is

a cross sectional shape factor and that talks about that how these cross section is changing so

you have BY Y to the power n dy / T to the power n - 2 times IZZ. So clearly speaking our

loss factor has actually dependence on 3 factors now.

Material factor longitudinal, stress distribution factor and cross sectional shape factor which

we will be calling in smooth as beta M Beta S and beta C now let us look at it that for the



same material and loading condition how different cross sections that means beta C how that

will create a variation in ETA S itself. 
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Let us see that type of a case so here we have considered 3 cross sections one is a rectangular

cross  section  another  is  a  circular  one  and  the  third  one  is  a  diamond  cross  section  so

rectangular circular and diamond cross section and their thickness is the same in all the 3

cases now the beta C for N equals to 2 is actually also same if you try to evaluate we will see

beta C for N equals to 2 is not changing but Beta C will change for N greater than 2 like for N

equals to 3. 

Here you can see that rectangular section is going to give you about 0.75 diamond is going to

give you about 0.6 and circular of course you have to carry out this integration but if you do

all  these  things  then  what  you  will  find  is  that  among  this  particular  cases  of  course

rectangular is definitely better than the Diamond cross section.

In fact, the reason why it is better is because with respect to the you know neutral axis if you

compare between the 2 in the rectangular cross section there are relatively more materials

which are away whereas here diamond cross section more materials are close to the neutral

axis  and  less  materials  are  having.  So  as  a  result  the  beta  C  is  actually  more  for  the

rectangular cross section and less for diamond.

Now if N equals to 2 if you keep and beta C also equals to 2 then for all the cross sections the

ETA S would become the same as je over PI that will system the geometry dependence will



not be there the last factor will only depend on J and modulus of elasticity. On the other hand

for other values like for beta C for N equals to 3 you will see that this separation is coming

out. 

Also keeping in mind that it is the best if you go away from the neutral axis possibly this type

of configuration where you are maximum away from the neutral axis will be always good for

this system so these are actually called I sections and these are found out to be having better

damping capacity than Diamond or circular or rectangular section.
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Now based on the expressions of the overall Loss Factor we have talked about how you can

use  beta  C  but  we  can  also  see  the  effect  of  this  term that  is  the  you  know the  stress

concentration part of it ok so the stress distribution factors the beta S itself. So we can have a

look at this particular term 
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So towards that direction if you look at it you will see that you have some options there for

example this is what I am going to experimentally prove unit on that for example instead of

having  a  single  structural  material  what  if  we  actually  put  groups  here  the  groups  will

increase  the  stress  concentration  and in  these  groups what  if  we fill  it  up with  the high

damping material.

So tentatively we are going to get 2 advantages because we have the groups so we have

higher  stress  so  there  will  be  stress  concentration  so  the  cross-sectional  property  related

damping would  increase  and also  because  we have replaced this  material  by some solid

viscoelastic inserts which is itself a high damping material so my damping is going to be

doubly benefited by this type of system.



Now in some cases they have also tried another variation of it that means they have used a

annular one instead of having full area they have used an annular one this is also a good way

of doing the things because at least you know you are using the partly the material and stress

concentration you are generating anyway because of this particular you know use of this what

particular cross-section.
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I told you that the structural damping can be actually improved if we can control the stress in

the cross section of any structural member and further to that in the region where you are

actually concentrating the stress if you can have viscoelastic material then the loss factor will

be even more in those region and as a result by actually altering the load path and as well as

by applying damping materials.

We can enhance the structural damping enormously now today I am going to show you one

experiment to which we can demonstrate it so this one is an aluminium bar as you can see it's

a solid aluminium bar and this aluminium bar we are going to put it on this particular test

setup and we are going to heat this aluminium bar with a small impact hammer.

This  entire  test  procedure  is  actually  used  to  find  out  the  modulus  of  elasticity  and the

velocity of sound in a solid and this follows a particular ASTM code which is known as

ASTM e one eight seven six now according to that code we have designed the supporting

system and there are where's there and all we have to do is to actually keep this system here

nicely suspended on these and then we have to heat it with this impact hammer.



And this sound system is going to pick up the sound that will be generated from such a

system and it is we are going to show it to you the data that will be captured in a in the

computer and we will show you that the structural insert what is the level of damping and if

we change the structure inside if we is for solid aluminium what is the level of damping and

if we change the solid aluminium by something which has actually the structural inserts how

this is to get changed.

So we actually take this solid and we actually hit it so you can see this clear and loud sound

which aluminium having quite no damping you know you get this so these 3 recordings we

have done with this solid insert now we are going to replace this solid insert where this solid

gel aluminium bar by another aluminium bar and you should look at it very carefully that this

aluminium bar has actually this small holes here. 

These are not through holes only up to a certain level the hole done and the reason is that in

the top level then there will be further stress concentration in the system and this small holes

we have actually filled it up with viscoelastic material and we are going to put it in the same

region here and we are going to carry out the same experiment with this system. 

You  can  see  that  the  sound  got  changed  meaning  thereby  there  is  much  more  energy

dissipation in this system so thus we have hit both of these samples now we are going to see

the recorded result so now we can focus into the results that we are getting into the system.
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We are now going to show the frequency response function first for this solid aluminium bar

and as you can see. Here that there are several frequencies that is appearing as we hit this

system and we have chosen this frequency the second frequency which is 3366 harge and its

amplitude is 23.7 and the quality factor is 7.79 into10 to the power - 4.

So this is when we are considering a solid aluminum bar and we hit it this is the frequency

response function a frame and this is the amplitude that we are finding which is 23.7 and the

resonating frequency correspondingly is  3366. Now from there if  we go to the other bar

where  we  have  developed  the  stress  concentration  and  where  we  have  applied  this

viscoelastic material artificially.
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Now if we go to that then we will see that the frequency has actually reduced it is 3289 harge

and also the amplitude in comparison to 23.7 now the amplitude is 4.29 so the amplitude has

actually come down. One-fifth of the amplitude that it had when there was no such holes and

the viscoelastic inserts that was there in the system so that is a fantastic improvement that we

can see.

In fact, if we look both of them then you can see that this blue part is actually when it is not

damp and the red one is actually when it is damp and we can see that how fast it is damping

with the red one and it's this particular frequency are you have seen that the amplitude has

come down very sharply.
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So this is what we can say as a very good strategy in terms of enhancement of structural data

for this particular analysis we have used a trial version of buzz or sonic software this we have

used and using that we have carried out this particular analysis but we are going to talk about

viscoelastic materials and linear viscoelastic models. Thank you. 


