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Welcome to the second week course of principles of vibration control. So what are the things

that we will look you know focus to in this week. We will focus on dynamic properties and

selection of materials.

(Refer Slide Time: 00:25)

So we now know that, what are the various parameters of the vibrating system. You are also

familiar with different strategies of vibration control. So the first important thing now is the

that if I have to design a structure which should be safe from vibration point of view what are

the dynamic properties that I need to check. And how do I select materials for such structural

design. In this week we will focus on that very aspect.
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So the first thing that we will see is that if the structure itself can dissipate the vibrational

energy that is the best thing because there the vibration can get control very easily inside the

structure itself.  So we will first see that how the energy dissipation can take place in the

structural material itself. So that is what we will first focus on.

Now towards this direction I will talk about quite a few things first of all I will talk about you

know how to select a structural material from the vibration control point of view. Because

when we generally choose a structural material for a mechanical design.

(Refer Slide Time: 01:53)

So let us say that this is a mechanical d4esign we are looking for. Then we generally choose it

from say deflection point of view where the stiffness becomes important. In other words, this



also  means that  we also check properties  like  modulus  of  elasticity  and there  is  another

mechanical design which is actually strength based design.

So where things  like ultimate  tensile  strength becomes important  for us.  Ultimate  tensile

strength, shear strength, etc. Ok. Parameters like ssu that becomes important for us but we

really in fact that is very important that we apply regularly structural materials for vibration

control point of view. But we really keep that from the vibration control point of view what

parameters are important.

Is this modulus of elasticity is important or ssu are anything else that is important. So that is

what we are look into today and we are will also see that energy dissipation what is the stress

dependence  of  this  energy  dissipation.  We will  see  it.  There  is  also something called  as

material loss factor. I will introduce it today. You can even get it for composite material. So

that also we will see how to get it as a special class of material loss factor.

And then we will talk about how we can model linear hysteretic damping. So these are the

things we have planned to do in this particular lecture. Ok. Now the selection of the structural

material  corresponding to high inherent energy dissipation capability  they actually  farther

depend on 3 factors. 
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1 factor is called the material property of the structure. So that is what we will be I have just

touched on that. So that we have to see. We will also see that the energy dissipation depends

many a times on the geometric property of the structure member and.it will also depend on



the type of loading like whether the structure in under bending, torsion or combined bending

and torsion or axial loading etc. So in additional to the material property, geometric property

and type of loading also come into picture at times in this case.

(Refer Slide Time: 04:32)

Now the material properties first of all if you look into it because selection of material that is

the primary important thing for us. Then in the material property the first important thing for

dynamic application is actually the Inertia which in a in an indirect way depend on density

and cross section of course is not a material property but a density is a material property.

Similarly, when we talk about stiffness this is governed generally by young's modulus, shear

modulus. In some case it will be in addition to that there can be Poisson's ratio. There are

some negative  Poisson's  ratio  material  which  we will  call  oxidic  materials  which  as  the

Poisson's ratio variability also coming to picture.

And this stiffness of course it does not only depend on young modulus or shear modulus but

also depends on geometry and the mode of loading. For example, you consider a very simple

case that you have a kind of cantilever beam which is subjected to axial loading E.

So if this is of length L then we know that the deflection corresponding to this force B the

deflection delta that would happen in to it due to the tensile loading. The structure is going to

deflect and that is the modified these things and delta is the deflection and that equals to E L

over A B where A is the cross sectional area of the systems.



A is the cross sectional area and E is the young's modulus of the system. So that is what is the

deflection for the system. So we can see from here that the stiffness if we define that is the P

over delta K is P over delta and that is actually A E over N. 

So that means the stiffness not only depends on the modulus of elasticity but also depends on

the  geometric  properties  like  length,  area  of  cross  section  and  also  the  loading  because

corresponding to this axial loading its P L over A E and if I consider some other loading let us

we have you something like bending loading etc.

So then this is expression is going to get changed. Right.  So if we consider the bending

deflection  then  this  will  be  a  different  deflection,  variation  with  respect  to  the  loading

condition and all these things. So these 2 will differ.  So thus the stiffness itself will vary

depending on not only the material parameters but also geometry and the loading condition.

Now all these is fine as far as the Inertia and stiffness is considered but also the damping is

going to change and that also we need to look into it after we totally neglect this part of the

parameter that is what we will actually bring today to picture.
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So when we have to think of the damping capacity of a structural material then what is there

in the material inherit property that actually gives this nature of damping that we have to

think of it. Ok. So there can be many mechanisms inside the material. For example, there can

be dislocation movement which generally occurs due to the presence of slip planes in the

crystalline materials.



So you know that in any crystalline material there are certain planes inside the material which

are actually pr1 for sleeping because they are so high density that. The layer can actually keep

away if there is a shear force. So this slip plane shifts and it goes towards the grain bounded.

This is what we call as the dislocation movement. Now during the vibration these, energy can

be supplied such that his slip plane movements occurs. 

And it goes towards the boundary the grain boundary. And hence this process will consume

some amount  of  energy  in  terms  of  this  location  movement  and effectively  that  will  be

reflected  in  terms  of  increasing  damping  of  the  system.  So  thus  dislocation  movement

contributes to damping. Similarly, there can be grain boundary slip.

So if you consider a small you know a structural material and if you look at it lets say using a

microscope with a hundred x kind of magnification. And if it is a metal, for example, ok what

you will see is that there are various such grains and the grains are actually you know the

crystal structures which has 1 single direction of orientation. 

May be 1 in this way another in this way etc. So there are directions of crystal orientation.

Now in the first case the dislocation movement if there is any failure inside this grain then

during  the  movement  it  goes  to  the  boundary  that  is  what  is  our  dislocation  movement.

Second case the grain boundary slip, the grains themselves particularly wherever there is high

angle of attack.

 Let us say, these grain has the crystal axis in this manner and this grain has the crystal axis in

a you know, the relative angle is very high between the 2. So then there will be a continuous

sleep between the grain boundary and that will also consume lot of energy and hence the

energy dissipation will increase also there can be magneto elastic effect. This I will explain in

a much in a much better manner later on.

But right now we can think of it that the magnetisation and strain actually are coupled in a

magnetic  material.  This was shown by joule long before.  That in a magnetic  material  its

depending on the grain structure, the grain boundaries etc the magnetisation actually changes.



So some part of the mechanical strain is converted in terms of magnetisation. Then that will

also dissipate energy which what is our magneto elastic effect. Similarly, you know about

phase transformation and other you know expansions anomaly expansions.

So that keeps lies to the thermo elastic effect of the system and finally there can be some

localised plastic strains for some presence of defects like shear bands which can entangle the

dislocations preventing the crystal from sliding or may be that you know if you consider a

particularly grain and then inside the grain suppose you have the dislocation here and you

have some pining by the interstitial position.

So these are the pinning, the pinning you call it the interstitial. atoms. So if that come into

picture so there will  be some localised plastic strain that  will  happen. And that  will  also

contribute to the damping of the system. Thus there are several kind of mechanisms may

happen that only 1 them responsible.

It may happen that there are many computing mechanisms happening inside the structure

which will all contribute to the structural damping of the system.
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Now be it what may. Whatever is happening is inside. If i take a structural material and let us

say I subjected to harmonic loading and then I look into the stress strain plot particularly at a

low stress level, then what i will see is that the stress strain diagram actually goes somewhat

like this.



It starts from here and with the reversal of stress the strain comes out but there is some you

know plastic  strain  here.  You  reverse  it  further  then  it  goes  the  other  side.  And then  it

continuing and this cycle continue on and on. So that is how you get this and this area under

itis actually the energy dissipated due to hysteresis we call it.

The reason for hysteresis could be all of those kind of internal dissipation that is taking inside

the system. Now suppose we define the energy dissipated per unit volume of a structural

material per unit cycle by dn, which is actually given by the area of the hysteresis loop then

this is also the mechanical hysteresis loop.

Then this dm, these has been found out experimentally mostly that these dm actually varies

with the applied stress sigma in a manner that dm equals to j times sigma to the power n

where the j is known as the damping coefficient and n is known as the damping index.

Usually it varies from 2 to 3 in the working stress range. So if n equals to 2 generally for very

low stress regime, n equals to 2 so that means the energy dissipation is varying with the

square of the stress it is subjected to and if it is at a higher stress range it may vary with the q

of the stress.

Actually there is another competing you know theory which says that you can in fact express

this dm as j cylon to the power n bar instead of sigma to the power n. So this is a strain

dependent coupling. And you can put a different constant here. So this is a better way is

because here you know this j is not actually stress dependent like in this case there is a unit

dependency that will come here.

But in this case it is not there. But somehow this particular form is more accepted due to

hysterical reasons and will continue with these particular descriptions. So at very low stress

level if i carry out so that means suppose I take a structural material and with respect to time I

am applying a stress sigma. Now suppose this is sigma is an alternating stress, right. That is

what is giving us the hysteresis. 

If that amplitude of the stress is quiet low, then we are going to see that this what will be the

energy dissipation per cycle.  Ok. Whereas if  we increase this  amplitude to a higher 1 of

course it should not fail then you would see this particular thing.



That means that this elliptic shape will go out it will vanish and it will become more like a

pointed shape at the two ends. And that what happens as the stress amplitude increases and

also the expression then becomes instead of sigma to the power s sigma square it  would

become sigma cube.

(Refer Slide Time: 19:31)

Now 1 important thing however in this discussion is that dm, is independent of frequency. So

hysteresis loop does not alter with respect to frequency. This is a very important property of

structural damping. Why i am telling is that in case of a viscoelastic material or a damping

you know a rubber damping etc the excitation frequency matters a lot.

So suppose the stress level in this case even if it is a relatively high frequency or if it is a

relatively low frequency in all the cases this energy dissipation there will be no change as

long as the amplitude remains constant, there will be no change. Whereas for Viscoelastic

material, there will be a tremendous change between and the these low frequency and high

frequency.

And I told you earlier that for viscoelastic material if the frequency changes let us say omega,

and then you would see that the modulus of elasticity for example changes very much and

low frequency remember  is  always  like  a  high  temperature  situation  and high frequency

always behave like a low temperature situation.



So that is the way it is going to behave. And since the modulus of elasticity is changing so

corresponding to that  everything will  be changing. Now if  you compare the performance

between  the  viscous damping and this  damping then energy dissipated  per  cycle  here  is

proportional to the square of the amplitude.

So,  in  viscous  damping,  energy  dissipation  increases  linearly  with  frequency.  So  it  is

frequency dependent. It is actually pi c omega x square and in this case it is not frequency

dependent. It is it only is proportional to the square of the amplitude. So that is the difference

between the 2 systems and over that you can actually find an equivalent viscous damping

expression.

So keep in mind that for viscous damping it is pi c omega x square where that means it is

dependent on the square of the amplitude. It is dependent on the frequency. It is dependent on

the damping constant whereas for this type of structural damping material you would see that

it is not the same. Here, the d, I will come to it how we can get the equivalent damping but

before that if the n is greater than 2 then for the stress dependence.

Some there are some other representations also which is for the sake of completion we should

keep in our mind that you can actually represent it by using 2 damping constants. 1 is j1

sigma square and another is j2 sigma to the power n. So basically 1 is related to the elliptical

area of energy dissipation and the rest part that takes is taking care of by the j2 sigma to the

power n. Now if the stress becomes multiaxial because there are many cases where the stress

may remain actually uniaxial. 

In such a case if the stress becomes multiaxial then this sigma is to be actually replaced by

sigma equivalent square otherwise if you look at it that our expression is ame. It is again j

sigma equivalent to the power n. So only thing we are now writing it as a equal to j sigma

equivalent square to the power n by 2. So basically it is j sigma equivalent to the power n and

where the sigma equivalent square is actually that depends on the stress constants.

 lamda1,  the  lame's  constants  and  also  the  stress  invariants.  I1  nad  I2  so  these  are  3

parameters actually you know if you know you will be able to find out the equivalent stress in

case of a multiaxial loading where I1 as the stress invariant. This is sigma1 plus sigma2 plus



sigma3 and I2 is sigma1, sigma2, sigma2, sigma3 and sigma3, sigma1 where sigma1, sigma2,

sigma3 are the principal stress amplitudes.

 So  for  multi  axial  case you can  handle  the  situation  by  know all  these  principal  stress

amplitudes then finding out I 1 and I 2 and also we know this lame's constant lamda1 and its

value is usually between 0 to 1 in this case and we should be able to find out the sigma

equivalent square. 

Now the material loss factor could be expressed as eta m that is the material loss factor as the

energy dissipated per cycle that is dm divided by the e2 pi wm where wm is the maximum

elastic energy per unit volume in the cycle. For you know a very simple case where it is there

is only uniaxial loading you know the wm is actually the area under the stress strain curve

which is sigma square by 2E.

And that itself becomes lightly more complicated for multi axial loading and it becomes here

as I1 square by 2E minus I2 into 1 plus mu over E where mu is the Poisson's ratio. E is the

young's modulus I1 and I2 we have already defined here. So you should be able to find out

that what is the wm and dm. You can calculate corresponding to this particular formula so we

should be able to find out the material loss factor for any particular case 

If  we know these you know stress invariants  and the other  mechanical  properties  of the

system. Now so we can calculate the wm and dm. We can actually get the material loss factor.

(Refer Slide Time: 22:50)



Now  if  you  if  the  same  happens  to  be  a  composite  specimen.  Because  composites  are

generally  I  will  come in  to  a  discussion  at  a  latter  stage  but  they  are  generally  layered

structures and they are also used very much for you know many such vibration controlled

systems because they have excellent internal damping property.

 So this suppose this is like a composite beam and this actually would look very much like

your sliced bread. So this slicing can be in different mannered you can you know depending

on the situations. It can be either like this. This is 1 way or it can be something if you look at

it something that it can be in some other manner. 

That means for example it can be in this manner also. So if you have thus various types of

this layers then you have to calculate this for a each of the layers. So as the result as you can

see here that suppose it has this n layers then you have to calculate the energy that is getting

dissipated in each of the layer by this expression. 

And then integrating it over the whole length. So first you calculate along this layer so and

then integrate it from this to this the whole length and similarly you can actually find out that

how much of you know energy is stored and that also you can do over the whole length. 

So basically  that  is  the way in which we do it  for a  composite  specimen.  As far  as the

materials are concerned, the kind of you isotropic materials like say aluminum or steel etc for

them the order of loss factor I already discussed earlier, that aluminum is possibly the lowest

and concrete or cast iron they are possibly the highest in terms of the order of the loss factor.
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So that is how we can actually calculate the loss factor and compare it with the loss factor of

some of the very materials. Now let us come to a situation where we would like to find out

hat for a linear hysteric material what are the selection criteria for the system.

(Refer Slide Time: 25:05)

In order to do that what we d1 is that this is an equivalent kelvin Voight representation. Why

equivalent it is because simply that that damping parts you know equivalent damping of a kv

model. The damping part we have actually replaced by a c equivalent here. 

Now how do I know this equivalent. where for the first point is that the energy dissipated per

cycle you know that it is proportional to the square of the amplitude. So which means if you

use alpha as constant you can write d equals to alpha mode of x square. 



Now compare that with the energy dissipation had it been a viscous damping. And you know

that for a viscous dashpot. It takes the expression of pi c omega x square. In this case only

thing is c is  equivalent  because we are actually  trying to find out what is the equivalent

viscous damping constant that can actually replace this.

So we can you know put c equivalent here. And since the x square is going to get cancelled in

both the sides we will get c equivalent as alpha over pi omega and these alpha over pi is

actually denoted as the hysteric damping coefficient h. So that is how we come as here as the

equivalent damping constant which is actually h over omega where h is the hysteric damping

coefficient. 

Now with this you can also calculate the loss factor remember that the loss factor expression

has energy dissipation which you can write F as m alpha x square proportional to you know

square of the amplitude as we said earlier and the work d1 is actually 2pi times half k x

squares that is you know energy that is stored in the system. 

So basically you are going to get it as alpha by pi k and since alpha by pi is h your hysteretic

damping coefficient so you can write this as h over k. That means the loss factor depends on

the hysteretic damping coefficient h in this case and also on the stiffness of the material. 

(Refer Slide Time: 27:38)
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Now let us look in to the equation of motion of the system with this change. So we know that

in case of a I have earlier shown you that in case of a conventional damping system, the

equation motion is mx double dot plus c x dot plus kx equals to fe raised to the power j

omega t. This simply comes if you consider the equilibrium of this mass m, this is your mass

m and.

Then this is subject ted to f e raised to the power j omega t, harmonic excitation and because

of that there is a inertia force mx double dot and there is kx and there is cx dot. So basically

all these things together you know if i make the equilibrium equation I am going to ge this

particular equation where the only thing that I have d1 is that this c now i have replaced it

here by h over omega by using the equivalent damping constant.

Now here if we are only interested on the steady state solution then i can substitute this x as

capital x e raised to the power j omega t and then this capital x will become f by k over if you

just do this everything. So we can just try for this particular case for example, if I just write it

somewhere her for your ready reference, so we have d1 it earlier also.

 That means it will become minus omega square m x ok e raised to power j omega t will get

cancelled from both the lass sides plus h by omega and this is again j omega x plus k x which

will be f itself and then if i take all of these things together I can write it as k minus omega

square m plus j h over the omega gets cancelled 



So plus j h times x equals to f. And then if i take the k if i divide it by the k all along then this

will become 1 minus omega square m by k plus j h by.k. ok. and that times x will be f over k.

If i divide everywhere by k. And then I can get this expression because just a simple you

algebraic extension will give u this particular expression where x is f by k1 1 minus m omega

square by k plus j h by k. And I can now also write this h by k as the material loss factor j eta.

So the amplitude of x will be what the amplitude of x will be the amplitude of the numerator

that is amplitude of force over k and denominator what we are going to get is amplitude of 1

minus m omega square by k square. So it has to be 1 minus omega square square plus eta

square and the whole thing will thing will have a square root.

 This omega of course omega over omega m so a little bit of simplification will give you this

non  dimensional  excitation  parameter.  So  this  is  what  will  be  our  amplitude  of  the

displacement for the system. So thus we can get n expression for the whole system.
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And in the next lecture I am going to talk about the selection criteria now corresponding to

this linear hysteretic material. So we will discuss this with respect to a numerical problem,

also we will talk about how to design this for enhanced material damping. Thank you.


