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Lecture – 05
Coulomb & Hysteretic Damping Model

We will  discuss today about  the few of the damping models.  So the damping models  of

course we will discuss today one of course that I have already discussed that is the viscous

damping.  Just  for continuation,  I  am keeping that  number 2 we will  talk  about coulomb

damping.

We will  also talk about  next tension of coulomb damping which is  known as nth power

damping and we will  talk  about  hysteretic  damping which is  sometimes  also referred as

structural damping.
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So these are  the four dampings that  we will  discuss.  Now first,  of all  about  the  viscous

damping.  I  have already discussed that  this  is  the symbol of viscous damping.  A typical

piston and you know a combination of a piston and then we will have the coulomb damping.

Coulomb damping is typically shown as 1 solid surface for which we have another surface

which is rubbing over it.

So, that is what the coulomb damping is. So here we have piston, cylinder, this is the cylinder

and this is the piston and here we have 2 surfaces which are relative velocities with each



other, surfaces with relative velocity. There also we have a special case of nth power damping

which looks very close to the piston damping but actually in this case the piston usually will

be having an orifice.

So hence we actually represent it in this manner. So essentially whenever the piston is having

small orifice in it then you know we will get this power damping in to picture. And then we

have the hysteric damping. This is also very much similar to the other damping system except

that we will put a block here. So it will be something like this.

 And we generally call it as Small C, capital H as the hysteric damping System. So there are

the four usual symbols of the various damping systems. Now we have talked about viscous

damping. So we may be one important results f viscous damping will keep here now and that

is what the energy dissipation per cycle. 

So that is the energy dissipation. And that we already know, that this is pi c omega x square

where x is the amplitude of the vibration system. So this energy dissipation for the viscous

damping we have  already derived and we have  known that  this  is  it.  Now for  coulomb

damping we would also like to find out what is the energy dissipated and then we would like

to see that you know how we can get an equivalent damping constant.

Also we will look into nth power damping and hysteric damping. So, keeping number 2 first

in mind that whenever two surfaces are in relative velocities with each other this is the case

of friction actually. This occurs as I have very in a very generalised way I have said if that the

surfaces with relative velocities with each other so this occurs in very many case where the

friction induced oscillation comes to picture.

For example, if you look at the tower bridge. The best (())(05:24) bridges where the entire

load of the bridge comes down to the bearing switch hold the bridge and here, you will see

that if there is a friction in these bearings then the entire bridge vibrates. In fact, the first

failure of the tower bridge happens because of this  kind of a bearing failure.  So friction

induced vibration is very common 

And a very simple way of representing the friction induced vibration is that we always say

that the frictional  force can be represented in terms of the constant fc and signam of the



velocity of the system. So that means if you consider to be your 2 systems which are in

relative velocity with each other and if this is our direction of movement let us say x. And

also this instant my direction of velocity is x dot.

So depending on the sign of this x dot, I am going to have the frictional force, the resisting

force which would be positive or negative. So that means you consider that there is a bit of a

harmonic motion happening in the system. Let us say, with respect to the mean position.

(Refer Slide Time: 06:35)

Suppose this is what our mean position and against this mean position we are going up and

then down. So up to a particular limit, this friction is what happening to the system and this is

what our mean point, O. And this is what is my next point, A and this is what is my point B.

So if i try to point this the frictional force with respect to the displacement because that is

what is important for me.

That is what is going to give me the total work d1 and that is what is going to give me the

what, you call the energy that is dissipated in to the system. Suppose I plot tad ifer as x, so

when I am at this point then my displacement is 0 Sign is not defined but the moment I will

start to move to the positive direction I am going to get a force here. So suddenly my force

will come in to picture and these force the magnitude of the force will remain constant.

So these force remain constant until I go to the point A. So from O we are going to the point

A and then the whole system is starling back so as the whole system is starling back, my



displacement is vanishing we are going to get immediately because from this point onwards

the displacement is vanishing but immediately the direction of velocity is changing. 

So this is becoming negative the reverse direction. Now this is my positive direction as we

have defined here. So immediately it becomes negative. So the constant remains the same but

it becomes negative.  And the displacement vanishes at this point, so when I am reaching

point O my displacement is vanishing again and then.

 I am going to the other extreme here, there is no change in amplitude but only thing is that

this is changing. This direction so from point B agin there is a direction change now. From

here again the velocity is becoming positive so there is a change now. It has become positive

and it has reached it neutral position and thus this is happening again and again. So, this is

what, is my force for this displacement relationship while in friction.

So this is in each and every case this maximum value fc which is remaining constant except

for the change of sign that is what is going to define for us that. What will be total work d1 in

the system so if we say that this particular amplitude is actually a mode of x so if I say be

capital X actually and denote it as mode of x this distance from here to here so then this is

what our mode of x so  this is what our x here.

Mode of x, so we can very easily write down the total area that means the energy dissipated

as 2 fc times 2 mode of x that it is fc that is the energy dissipated in this particular case. So

we can write here that this is four fc mode of x. So what is you know if I say suppose as you

know that this is signam function is a linear function.
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So modelling sometimes in all linear function is difficult. So suppose I want to keep my life

simple, sometimes I want to use still the relationship of the viscoelastic system. So I just want

to find out what is the equivalent damping constant. In that case what I will do is that I will

find out what is this area which is this four fc x 

(Refer Slide Time: 11:38)

And that let our pi c equivalent viscoelastic damper dispel the same amount of energy per

cycle. So pi c omega x equals to now c is equivalent this equals to our four fc x So if with the

case, then I can very easily find out that our c equivalent will be four fc over pi omega x.

Right. The square x is going to get cancelled X is not trivial.  So this is what will be my

equivalent damping constant for the system. 



So, I can write that c equivalent or my system is actually four fc by pi omega x. So that is

what is about the frictional damping. Right now we will keep this much only with us. Later

on we will try to solve a governing equation with frictional damping as fc signam x dot and

we will also see that what is its application but this is a simpler way of tackling that whenever

the damping comes into picture we do not going to the non linear part. 

We will simply find out what is the equivalent damping constant and then from we actually

post the problem as a viscous damping problem and then solve the system. Now, that is as far

as the coulomb damping goes. The next is nth power damping. This is a very special case.

This happens particularly in recoil mechanisms. 

For example, all the big guns whenever you actually you know discharge a canon shot from a

gun,  then  you  must  have  seen  that  the  canon  actually  recoils  back.  Now,  this  recoiling

distance we sometimes try to keep it as small as possible.

(Refer Slide Time: 14:00)

So in such a case this is a very special case where we will get actually the damping force fd

as a nth power damping and in this case we write as fd as Cn mode of x dot to the power n.

So this is  the power of the amplitude times signam x dot.  So this  is  a velocity  powered

damping. And the value of N is generally greater than 1. 

It can be 2, 3 you know cube damping or any other high values are possible with it. Now, in

this case if I use this formulation then I will simply write that the C equivalent in this case

involves  a  bit  of  mathematically  treatment  but  the c  equivalent  nth power is  actually  cn



gamma n omega to power n - 1 mode of x to power n - 1. Where gamma n is 2 by square root

of pi times a gamma function of n + by 2 by 2 divide by a gamma function of n + 3 by 2. I

will be not going to the derivation. This is just simply for your reference that corresponding

to the nth power damping. 

This will be our equivalent damping system. Just like we have d1 the equivalent damping in

the other case here also this is the you know, equivalent. This is the actually resistive force

and this is the equivalent damping that we will get in this kind of a case. 
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Now, actually all these first 3 things together you can plot them in fact. You can plot them in

terms of the shape of the resistive force. So all these first 3 cases together, if you actually plot

the  shape  of  the  force  verses  displacement  so  fd  verses  x  the  damping  force  verse

displacement  then as we just  shown that  the very constant  case is  the case for  coulomb

damping.

So this is what our coulomb damping case and that is for n equals to 0. This is a special case

of the power law when the n equals to 0 so that is what the coulomb damping case. Now if

we want to plot the equivalent m viscous damping case then the equivalent viscous damping

is actually having an inscribed ellipse inside it.

That is what will be a shape of it. This is the case of viscous damping. So in this n equals to

unity. And if I go for higher damping cases then we get actually flattening here and again a



sharpening here and again it happens like this flattening here and a sharpening here. So this is

what n is greater 2 etc. 

That is what is my actual power damping cases that will come in to the picture. Now, of

course a you can also get a viscous damping case in terms of that you know a complete

ellipse the equivalent  viscous damping where the area has to be equal to the area of the

rectangle.
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So accordingly we have to adjust the ellipse size but that is how you know if we have to find

out  the  equivalent  1  that  is  how  you  have  to  do  it.  So  this  is  more  or  less  a  graphic

representation of the first 3 damping case that we have you know just now discussed. The last

1 is the hysteretic or the structural damping. 

(Refer Slide Time: 19:00)



Now for this a bit of derivation can be d1 And I will cover it up in the next lecture but in this

lecture I will actually take meme results of that and we will try to construct the governing

equation  corresponding  to  this  particular  case  of  hysteretic  damping.  So,  for,  hysteretic

damping which also called the structural damping 

The governing equation of motion of a single degree of freedom system this will be an x

double dot + the effect of the hysteresis will come. So this will H over omega X dot + KX

equals  to  some harmonic  excitation.  Let's  say  fe  to  the  power  j  omega  t.  So  that  these

damping kind of constant coefficient that is in this case that is actually frequency independent

coefficient and this is h over omega and this is what you know I will be discussing in the next

class.

But if this is the model that we actually consider for this single degree of freedom system

then for these model. So equivalent representation, if I try to draw it would look something

like this  that and. I have a K here and I have a block here.  Right.  That  is  the structural

damping part and that what is why h by omega and then I have the mass here, the inertia of

the system and the x is the displacement of the system.

So this is what and the force that is working on the system in this case oppose fe raised to the

power j omega t. Ok. So depending on the direction of the force actually we will get the

resistive displacement.



So let us say that right now we will keep x in this direction. So that there resistive forces

work If you look at the (( ))(21:30) diagram of the system as you have d1 in the earlier cases

then you have a KX and you have a resistive force which is h by omega x dot and you have

an inertia force which is opposite to this .

 So this is m X double dot. And you have the force fa e raised to the power j omega t. So that

equilibrium is going to give you this equation of motion of the system. So this is what is our

case hysteric damping and how will it look like in this case. 

If I actually try to just plot the damping force with respect to displacement, then it will look

something like this. That means it will go straight and come here and then it will be going to

continue. So, that is what is our structural or the hysteretic damping case. In this case, the

energy that will be dissipated is actually pi h x square. In fact, what we have d1 is that simply

the c omega if you look at it.

This c is now c equals to h by omega in this case. Correct. C equivalent is actually h by

omega in this case. So in our expression of this where we had this c equivalent omega that is

simply h. So that is why I said that this is actually h. So in this case energy dissipation is

actually pi h x square. That is what is the energy that will be dissipated in this particular you

know the case of hysteretic damping model. or the structural damping model.

So these are the four important damping models that come in to the picture. Now along with

that I will like to explain a few of the basic terms which are related to damping which we

have to use in this particular course again and again. So that is what I want to discuss now. 

Some of the very common terms and how these very common terms will be actually used.

What is the expression of them? That is what we would like to discuss. So, first of the most

important term that will come in to picture is called loss factor. As the name suggests, that

this is a factor. 
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And this factor which is generally shown as eta and this eta is actually energy dissipated per

cycle, per radian. Let us make it proper dimensionless and then we have the maximum strain

energy stored in the system. That is what is my loss factor, eta. 

The energy dissipated per cycle per radian and maximum store energy stored in the system so

for  example  for  simple  viscous  case  you  can  do  it  for  yourself.  You  have  the  energy

dissipated suppose it id D. Then it is per radial so D by 2 pi. Because is the energy dissipated

per cycle that means for 2 pi radian.

And then the work d1 let  us call  it  W in face we can work it out for a single degree of

freedom system which is something like this you have K here. You have damper here and you

have a mass here which is on a frictionless system and for this kind of a case we can very

easily evaluate it.

Our D is pi c omega x square. So X is the displacement and capital x is the amplitude of it.

SO pi c omega x square divided by 2 pi times work d1 which is half k x square. So that is,

what is my total expression. So, if I cancel these 2's pi's they will get cancelled.

Of course x square so what I am going to get is c omega by k. So this is what is my eta which

c omega by k. Now this is also I can write it terms of the damping ratios. Because if you try

to work it out that if you take 2 zeta omega that is 2 c over cc times omega over omega L.



And just work it out that this is nothing but 2 c over 2 root km times omega over root k over

m. So this m should cancel. 2 will cancel for us. So what we are going to get is actually c

omega by k. So that means I can write this eta, loss factor as 2 zeta omega where this is

damping ratio and this is the non dimensional lap frequency ratio.

We have to use this terms again and again. So I am deriving it here itself. Keep in mind that

damping ratio equal to unity for critical damping. It is greater than 1, it is over damping. And

if it is less than 1 which is the usual case, then it is under damping. So these are the things

that we have to keep in our mind. 

Then there are various ways in which we can actually find out these of course there is 1 way

is if you the damping coefficient, you know omega k or if you know the damping ratio and

the non dimensional frequency ratio.

You can find out the eta. Another way of just doing this whole thing which I will just very

quickly talk about is with the help of what we call the up power point technique. So if i use

this power point technique then it would look like we have to draw what we call a frequency

response function for the system.
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So we have to draw a omega verses the transfer function of the system. Now this transfer

function could be F over X or you know there are  many transfer  functions which I  will

discuss.  It  can  be  a  displacement  transfer  function.  It  can  be  a  force  transfer  function.

Essentially, it is a ratio of output to the input of the system.



So if I draw that then this for single degree of freedom system. It will come like this. If it is a

linear 1 it will be perfectly symmetric and this is the resonating point we have to note it

down. That this is the resonating point and 2 other points also we need with us and this 2

points if this is having an amplitude A, these 2 points will have an amplitude of A by u2. So if

omega 1 and omega 2 are the 2 frequencies at these 2 points.

I can get an expression of ets from this experiment in which it will be omega 2 - omega 1 by

omega p and of course I can get the damping ratio from this experiment which will be half of

eta is 2 zi. So zi will be half of this eta. So you can get from this kind of an experiment. From

the transfer function plot with respect to omega, you can get the entire system and you can

get the loss factor from it.

So this is where we will put an end to the system and in the next class we will more about

structural damping. Thank you.


