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Welcome to the course of principles of vibration control. Today we are going to cover some

of the basics of active vibration control let us discuss that in the board itself.

(Refer Slide Time: 00:25)

So we are going to talk about basics of active vibration control. To discuss this let us consider

a simple block diagram of  a  vibrating  system as a  plant.  So first  we will  take up block

diagram of an open loop vibrating system. Let us see how we can translate the kind of the

graphical representation of a open loop system in terms of a block diagram. So we have a

mass M, K is the stiffness.

C is the damping and this is moving on a fraction thus will and let us say that I am applying a

force ft to the mass and it is getting displaced towards this direction as xt. Also this Ft is

actually periodic in nature and you can write is as something like Fe rest to the power a

omega t where F is the amplitude and e rest to the power g omega t talks about the hormonic

variation of the system.

Now these type of a system if I have to represent it in terms of a block diagram how will it

come?. So we have to have a plant here this is also known as plant and that plant is actually

the system and we have an excitation force Ft working on the plant and the plant is showing a



response which is xt. Now the point is what goes inside this block diagram, to find that out

we refer to first write the equation or motion of the system which can be written as I am not

going into the POD diagram anymore.

We have discussed about it many times, so we can write is as Mx double dot+Cx+Kx equals

to ft. Now this is a time domain ordinary differential equation, we need to convert it in to an

algebraic  equation  by  using  laplase  transformation  by  using  laplase  transformation  and

considering  0  initial  conditions.  We  can  write  these  in  the  form of  s  squared  m Xs+C

sCXs+xs+K xs equals to f bar s.

In other words we can also write it as Xs times S square n+Sc+K equals to F bar s or in other

words Xs equals to F bar s divided by s square m+Sc+K. If I want to find out the transfer

function which is output Xs invert f bar s which is the input to the system so this is input and

this is output. Then this would become 1 over s square m+Sc+K. Now I can do a little more

work on it.

I can actually write it in terms of the model coordinates of the system by dividing all these

parameters with respect to say for example m if I divide it so it will be 1 over M and here it

will be s square+Sc over M+K over M. And that would mean that we can actually try to find

out that what are these other 2 things in terms of the model parameters. We know that the

natural frequency of a single degree of freedom system omega n is square root of k by m.

In other words omega n squared is actually k by n, so this is known to us and also we know

that C by M can be written in terms of 2geta omega n, you can cross check it, it is 2 times Cx

over CC which is 2 root Km times square root of K by M which means this K and this k gets

canceled,  2,  2  canceled  and  we  are  going  to  get  C  by  M.  And  that  means  this  is  also

acceptable for us along with omega M square equals to K by M.

So  we  can  very  nicely  substitute  these  things  in  terms  of  the  model  parameters  the

denominator s square+2 zeta omega ns+omega n square. So that is what we are going to get

from these and hence I can actually write these as something like in terms of the frequency

domain f  bar s  here and xt is  xs here.  And I  can write  these as the plant  structure of a

constant, let us call these 1 over m (()) (07:43) as a constant.



Some plant constant let us call it with kp or just simply K, so you can write it as K over s

square + 2 zeta omega ns + omega n square. So that is that will call the transfer function

representation of the block diagram of the system. If we look at this particular equation we

focus on the  denominator  itself,  there  are  several  things  that  we can conclude  from this

denominator.

What we can conclude for example is that, if we equate this denominator s square 2 zeta

omega ns+omega n squared equals  to  0.  Then this  is  what  we give  as  the characteristic

equation  of  the  system.  This  is  will  be  the  characteristic  equation.  Now  if  I  solve  this

characteristic equations I may get 2 roots s1 and s2 and these 2 roots can be something like in

case  of  you  know  a  stable  system-alpha+-j  omega  t.  We  can  try  to  get  a  graphical

representation of the system now with respect to these 2 roots.
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So let us try to clock these roots of the second order system and see what does it mean for us

in terms of vibration control. So if clock this 2 roots what I am going to see is that we can

start  with  an  assumption  that  in  a  generalized  case  there  is  a  real  part  and  there  is  an

imaginary part of these 2 roots. Now there are several possibilities of the roots. First of all

can these roots being this side no if we consider then it will be an unstable system.

Now generally  a  vibrating  system will  not  be  unstable  on  its  own.  So  hence  when  we

consider the passive system the roots will not be on the right plane it may happen that the

roots will be here, if it happens like that that means if the alpha part will be 0 and it will only



have the imaginary part and in such a case the corresponding situation is called undamped

vibration.

So that would mean that in terms of the 5 domain the response of the system xt so xt with

respect to time itself, so this side is with respect to the time if I plot it, it will be typical of an

undamped system, that is what it will be once the roots are on the imaginary axis. Now if  the

roots change from this location to let us say as there are complex poles in the left of plant,

righter plane the roots are not there but these 2 roots are in the left of plane.

In that  case what we will  see is that these roots are going to show a different  type of a

response  it  is  going  to  come  down  exponentially  with  respect  to  time.  So  there  is  a

exponential profile and that is corresponding to when the roots are we will say under damped.

So these are under damped. This is the case which we will frequently observe in terms of

vibration control. Of course in extreme cases it can be that the roots are directly on the real

axis itself.

And those type  of  responses  in  which  it  will  be on the  real  axis  itself  t  and xt  and the

vibration will essentially you know start and die down and it can be if it is say for example a

pier in this real axis then it will be over dam system, so it can happened that the vibration is

actually die down, so this cases are actually critical and so this is a case of let us say this is

the case of over dam system.

And this is the case of critically damped system. These cases will not come across usually but

in active control it can happen that post active control this case will happen to the system

critical damping. Now considering that the most important case that you are going to come

across is the case of an under dam situation, so there are certain things that we can try to see

that what is this alpha and what is this omega d first of all.

So naturally this distance is alpha, we can see and this ordinate is actually omega t. So you

can graphically place you know from the root where the system is and if I do like that then

several things we can conclude from it. Say for example if you look at it then that what is

these radial distance from the origin till this plant, we will see that this is nothing what omega

A.



We can verify it because you know that omega d is equals to omega n into square root of 1-

theta square. Now this alpha, this distance alpha equals to actually zeta omega n. So you can

see that omega d square+zeta square omega n square equals to omega n square that is the

Pythagoras law, so you can see that omega d square which is this distance+zeta square omega

n square is going to give this radial distance, that is the omega n itself.

So  that  means  the  placement  of  this  particular  you  know  pole  depends  on  the  natural

frequency, if the natural frequency is very high then it will be far away, if it is very close to 0

etc. then it will be closer to the origin. The second thing that we can also conclude from here

is that what is this root theta. If you take a tan theta then as per our definition the tan theta is

zeta omega n divided by omega n into square root of 1-zeta square which will be zeta because

omega n is not equal to 0 you can cancel zeta over square root of 1-zeta square.

And that  means that  for  small  zeta,  tan theta  is  approximately  zeta  itself.  Thus you can

neglect thing this zeta square, so it will be approximately zeta, so this slope actually gives us

the  measure  the  damping,  that  is  why  when  the  slope  is  0  then  you  have  non  damped

vibration and as it is rotating towards this direction and the roots are reaching here on the real

axis.

You have you know critical damped and over damped conditions, so that is how this slope

tells us about the damping and the radial distance takes tells about the natural frequency of

the system. So, this several implications we have to keep in our mind because when we will

be judging the performance of a system, then these things will be important for us.
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Now keeping these point in mind let us try to find out what are the possibilities for us in

terms  of  developing  different  types  of  active  controller  under  the  domain  of  first  of  all

classical control system. So first of all we will look into classical control systems and what

we will see is that there are 3 or 4 possibilities for us corresponding to the classical control

system.

So this is an open loop configuration. Now in the classical control we will go for close loop

systems of course that is one system which is not totally close loop, so we will call that as

feed forward system. What we will see is that there are 4 such possibilities to build up the

control as far as. So one possibility is the one which will be discussing most that you have a

referral signal Rs let us say positive.

And you have a controller here, so let us call it something like Kcs and then we have the plant

here, that plant is our k over s square+2 zeta omega nx+omega n square and then that is the

output we tell the output as Cs let us say and then we have a sensor here, that is what is Hs,

and we are taking that sense signal back, that is with a negative feedback control. So keep in

mind that this is the controller.

Where is my actuator, the actuator can be actually integrated with this plant itself, so this is

the plant and this is what is our sensor. The actuator can be in terms of a simple gain here it

can be adjusted or it can have a complete transfer function of the system, but this is one

system which we will call it as a feedback control system. This is the lowest system that



means you feel it there is some disturbance in the system it can be prove that this works much

better than any other possible systems.

However, there are several varieties of the for example you can have a feed forward system

and the feed forward system works very well when you know what is the disturbance the

system will be subjected to.

(Refer Slide Time: 20:42)

So for this kind of a system we have the reference signal here and then suppose it has there is

a disturbance here Ds and that disturbance is coming to the I mean junction here. So that is

the positive part of it and then the get output, we are going to call these many times this

transfer function Gs. So this going to the Gs and the Gs is giving me an output Cs of the

system.

Now this disturbance is coming so I need to reject it and if I know the model of the system I

can actually develop a transfer function which will exactly replicate the disturbance by the

phase and the gain and it is going to work on it. So that effect of the disturbance is gone and

then you know this system is actually free from the disturbance, so this is what is known as a

feed forward system.

However, the condition is that Cfs Ffs that is the gain for the feed forward system must match

the gain and the phase of the Ds, so you must have the complete knowledge of it. Sometimes

you may not have that, in that case we would rather go for a system which is a hybrid control



system, so that would look something like this let us try to draw that kind of a system, so you

have a Rs coming of reference signal positive and you have a feed forward here.

So let us call this to be Cffs that is what is our feed forward loop, that is going and working

so this is a positive part and let us say this is how my disturbance is coming and we have a

forming junction here, now on root we have these feedback gain, that is what is our Kcs, so

Kcs is coming here, this is positive, this is positive in the forming junction, okay and if we

consider this to be positive then this will be negative. 

That is what is our Ds Cffs cancelling each other and then we have a you know Kcs coming

up and this system is going to my plant which is Gs and then that I am going to take out that

Cs, I am going to put a hs here and then I am going to put it back here with a negative sign,

so here we get the advantage of both feed forward, so the tough part is the feed forward loop

and the bottom is the feedback loop.

This is the hybrid control system. We can have one more variation of the system which is

actually known as a Notch filter of a system. So which is something like an extension of the

feedback control system?
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So let us try to dray this last system and for that we have Rs as the reference signal, we have a

forming junction as usual, we have error which fast goes through the notch filter, so C notch

s, then it goes to the controller, feedback controller, Kcs, then it goes to the plant that is Gs



and we have the output of the plant Cs, that comes back, we have a gain here for the sensor

Hs the transfer function and that closes the loop.

So this is feedback control with notch filter, so thus there are this 1, 2, 3, and 4. A 4 basic

types of classical active vibration control system, that is possible you know for us to design.

No we will however, look into only one of this system that is this particular system and let us

try to see that what happens to this particular system, if I choose, if I make certain simplified

assumptions and then try to see what will happen to the response of this particular system.
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So in this case we will make 2 assumptions one is that this Hs will consider it to be unity, that

means the sensor will have 2 dynamics, it will be proportionately feedback the output and

compare to the Rs and then the whole system will run. So that is one thing and secondly this

is tabulated in such a manner that this simply became unity for us calibrated in such a manner

and that is what let us say is the very simplified system for us.

Now for this kind of a system let us first consider the Kcs as a proportional gainer, so just a

constant gain which is known as the proportional gain. That means Kcs as simply a constant

Kp. Under such conditions what will be close look transfer function CLTF which we have

discussed in the last class, that it is actually KpG divided by 1 + KpG, that is what is by close

root transfer function.

Remember that the H is unity here, that is why it is KpG over 1+KpG. So if I write we know

the structure of G, so that means it will become Kp and below what we are going to see is S



square+2 zeta omega ns+omega n square+Kp. In other words the close loop transfer function

will be simply Kp over S square+2 zeta omega Ns+something which we may call it as the

changed national frequency omega bar square where omega bar square is actually omega n

square+Kp.

Now because this is identity nature so we can see that with the help of the proportional gain

we can actually increase the new close loop natural frequency of the system which means we

can  actually  the  proportional  gain  can  actually  increase  the  stiffness  of  the  system.  So

whenever we have a vibrating condition where we do not go up to resonance that means it is

control by stiffness we can use the proportional gain technique very well under such a case.

(Refer Slide Time: 29:58)

So if I try to draw this in terms of something which we controller designers very routinely do

that call it to be root locus diagram. Then this is our real of s and this is what is our imaginary

of s and we will call this as a S plane and then both of our roots will be initially placed

somewhere like these and as you are increasing the gain they are going this is the close loop

direction.

So that means for a particular gain what you were going to get is may be the close loop pole

locations will be like this and what it means is that this distance form the origin is increasing.

If  you remember this  is  what we call  a natural  frequency of the system, correct.  So this

distance  the  omega  M bar  the  new natural  frequency  with  respect  to  the  earlier  natural

frequency, which was this one?



You can see that  that  is  increasing at  the cost of what  at  the cost  of damping of course

because the damping is more earlier and the damping is less here. So proportional but does

not matter because if you think of the vibration control system the frequency was this the

transfer function and I told you that you know we are this is the region which is actually

damping controlled.

And  if  you  are  somewhere  here  if  you  excitation  frequency  is  away  from  the  natural

frequency then damping you do not bother about and what you are bothered about is that you

got a good stiffness in the bargain and hence you have a good vibration control. But let us say

there  is  a  situation  where I  am somewhere here so I  am going to  do in  that  case I  will

definitely  go  for  the  you  know velocity  feedback  in  the  system and  in  that  case  I  will

definitely go for the gain which is not simply proportional but something more than that.
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So we can change that gain in terms of something like a Kds is actually our differential gain

system,  so  we  have  proportional  integrate  like  derivative  control,  so  let  us  call  it  the

derivative gain and hence the Kds if I get in this manner then this is slightly change it will

become Kds G here also this will change it will become SKdG, so here also it will change

this fellow would now become + Skd.

And here also it is Skd. That is what will happen to the system, so we are going to get no

change in terms of the natural frequency, it will be omega M square. However, we are going

to get 1 new term here which is SKd and here we will be having SKd. Now if I focus once

again at the denominator here then this new denominator is telling us that we are going to



have a system which is something like which has a changed damping. So it will be +S 2 zeta

omega n+Kd. And then we have omega n square.
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Now that means if I have a derivative gain then instead of this type of a change the change

that may happen to the system let us try to figure it out that how it would look like so we

have the initial placement of the system, but now we are going to have a 0 here, so let us say

we have a 0 here and this were the 2 poles systems and as we increase the gain K this 2 poles

will very quickly come towards the real axis.

And one will go to meet this 0 and the other will go away. So what it will mean is that with

new system I can have many different types of close loop performance, I can have critical

damping when the poles will be here, I can have you over damp system with the poles will be

like this. I can have higher damping which is now generally will try to do where will sacrifice

to some the natural frequency of the new natural frequency of the system.

And that we will do in terms of the damping because the damping has now increased from

this much of an angle to this angle. So we are increasing the damping, we are giving up the

stiffness and it will be does not matter because we are once again, if you figure it out that we

are in such a case we are mostly in this domain, in the damping control to omega of the

system. So we can do that and then we can actually design our system accordingly.
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Now what  happens is  that  sometimes  this  kind  of  systems may also  become very fluffy

system you know they do not stabilize when if asked etc. So we can try for another system

which is known as Ki over s and we call that to be an integral control system. So they it will

be Ki over s, so Kg Ki over s times 1+ki over s. This type of system you may get and if we

try to work out for this system then it would look something like we have the G as 1 over s

square so that will be there.

So let us say we put that in the G part so we have this complete formation with us as an

additional term 2 zeta omega n s + omega n square and here we have this s coming up here so

that means there will be this s and this s will actually cancel so this will be s+Ki. So this ss

are going to cancel which is on each other, so we have s+Ki and over s+Ki over s square + 2

zeta omega ns+omega n square.

And this whole thing multiplied by these and as a result we are going to get a slightly higher

order system because these 2 are going to cancel and we are going to get a system which will

be like sq+2 zeta omega ns square+omega n square s+Ki. So this is no longer second order

system that we are going to get a higher order system here.
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And that sometimes helps us in terms of various types of you now design of a system where

the study state performance for example can we actually improve our if there is a input which

is having something like higher order things like parabolic inputs etc. this system will be able

to follow such a case, so in this case depending on various types of respect of the systems you

may have 3 poles like this and hence you can have something like this where the 2 poles are

going on these line.

And the third pole will be going in this particular direction.  So this kind of systems will

actually help in terms of the study state response of the system. This is known as our integral

control.  Now many times we can actually  have a kind of us combination  of all  of them

together, so we can have a PID control and I have already shown you 1 example where we

have shown that how such a PID controller system would work where you have both Kp and

times you have a Kds.

And let us say sometimes we add a constant need and we have a Ki, we have a Ki gain here

and that gain supported by s itself. So we can get a complete you now proportional integral

and derivative controller of the system. So that is all we can actually build up the classical

control systems. So this  is where we will cross this particular  discussion and in the next

dissuasion we will talk about modern control systems. Thank you.


