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Hello and welcome to this manufacturing process technology part 2 modules 17.
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We were talking in the last module about the ion transport theory and we assume that in an iron

environment there are many positive and negative ion centers and each positive ion Center has a

cloud of negative ion centers around it and vice versa, so there are various motions which happen

in such a system which is otherwise electrically neutral the first motion that can think can be

imagined  is  basically  the  random walk  or  the  thermal  motions  of  the  ions  which  would  be

completely randomized excuse me.

The other motion that it suggested is basically you know sort of clouding of the opposite charges

around the central ion of interest of the opposite type so if supposing the central line is positive



we should have an ion cloud formulation around eight of the negative ions and vice versa and in

the third module what we saw is that if we put our electrical potential in such a system there is a

tendency of the electrons or the negative ions to move towards he positive electrode and vice

versa.

And in the process of wait all these ion clouds around atmosphere kind of gets reformulated and

disrupted you know from place to place so it is like a hopping mechanism that discharges would

follow so that the bulk movement of positive charge happens towards the negative electrode and

vice versa, so we also started understanding how we can actually develop a potential function

around the charge around the charge based on an otherwise electrically neutral medium.

Where we can assume a certain density function at a distance of infinity from a central charge of

interest and in this context we laid out this.
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Famous you know divide hierarchical theory and try to you know started to sort of derive it that

let us say there is a central ion of interest which is positively charged and around a point you

know around this charge is a point A where the potential function is given by ψA we also assume

that there are about close to n + 0 and n - 0 positive and negative ions per unit volume at a

distance radius R = ∝ from this particular ion of interest the positive ion of interest.



And having said that we tried to sort of find out that if we wanted to bring a positive charge

which is having z+ valency or a negative charge which is having z- valency near this I and at the

point A from the point infinity the total amount of work that is done for the positive charges

would be then given +z + ε times of  ψA as is the potential function at A and E is the electronic

charge which is 1.6 x 10 -19  coulomb and similarly for the negative charges an identical kind of

work would be done by the positive charge by the system given by –z – ε  ψA, okay.

So this point A is actually a point in the vicinity of the positive ion where the potential function is

assumed as ψA,  
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So if we apply the Boltzmann distribution here so from Boltzmann distribution n plus could be

obtained as n + 0 e-z + ε  ψ /k  times of t and n minus which is actually the number density near the at

the point A so we can call of this as number density at point A okay where the potential function

is  ψA  is given by n + 0 e-z + ε  ψ /kt  k is the Boltzmann constant so I am NOT going to go into the

derivation  of  how we arrived  at  this  but  we will  just  merely  explore whether  the boundary

conditions are obeyed you know as far as this equation is concerned okay.

So we have a k as the Boltzmann constant and we can assume here that at a distance R equal to

infinity these ψA would typically go to 0 which would make the n plus at infinite distance away

from the positive ion as n + 0 and n - 0 putting the value of  ψA = 0 putting the value of  ψA =0



in these two equations 1 & 2 okay and similarly at a certain temperature which is a very low

temperature.

Let us say at absolute zero temperature T = 0 this factor here would be very small okay and so

the n plus or the charge density at the point A because of absolute zero temperature would be

actually equal to zero which is also a true assumption in this particular case, so if I consider the

you know subscript I in a manner so that Ni is the total number of ions B is negative or B is

positive of either kind per unit volume.

And we wanted to find out the electrical charge density at the point A in the near vicinity of the

central charge this would come out to be equal to ρ= n+ z + ε plus is the valency on the positive

ion minus of n minus Z – ε where again n minus is the number density of the negative charge Z

minus is the valency on the negative ion, so we can actually write this down as n + 0 Z + ε e -z + ε

ψ /kt     K being the Boltzmann constant –(n-0) (z – ε e-(-z) so therefore it is plus Z minus ε  ψ / kt

this is  ψA.

The potential at the point A near in the near vicinity of the charge which is the central charge so

if  I  were  to  apply  Taylor  series  here  so  that  the  higher  order  expressions  of  the  series

representation of the exponential function can be neglected.
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We can sort of you know approximate the exponential function we know that X is represented as

a series function by 1 + x/ 1!. X2 /2! so on so forth so if we neglect the higher order terms we can

easily have e to the power X being represented as 1 + X and we put that back into this particular

equation for the net charge density let us say equation 3 so putting the Taylor approximation in

three will result in n + 0, so ρ basically that overall electrical charge density n + 0, z + ε ( 1 – z +

ε  ψ /kt) – N -0,z – ε( 1 – z – ε  ψ A/ kt). 

So if we open this up we are left with an expression n + 0 Z  + ε – (n -0) (z – ε ) is one term –( n

+ z + ε 2  ψ A / kt – (N -0 ( z – ε 2  ψ A/ kt), so the first term here based on the principle of electro

neutrality which holds true at infinite distance you can assume that there is no influence of the

central charge at a distance R equal to infinity from the charge itself so there is exactly equal

number of positive and negative charges you know therefore this whole expression here n + 0

and n – 0 are same to each other.

So this is the average number density of the charges at R equal to infinity so this becomes equal

to 0 okay and we are left with only two terms here which is n + 0, (z + ε) 2  ψA/ kt + N – ( Z – ε 2

ψ A/kt) so we can represent this as –Ni with σ where σ is ∑ of all different charges varying

between 1 to let us say N charges, where N includes both positive as negative charges Zi2εi2

ψa/KT and this becomes equal to the charge density ρ at the point in the near vicinity of the

positive central charge of interest as represented.
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So if we wanted to look at the expression that comes out let us just record it here ρ becomes

equal to -σ and I Zi2 ε2ψa/KT let us call it equation 4, and this will be referring to because would

be needing this to really solve the potential equate the equation you know involving the potential

function and try to find out what is the potential at A based on some of these assumptions. So if

we look at the electrostatic potential ψa it is related to the ρ or charge density function at A by

Poisson’s equation and this can be represented here by ∂ρψa/∂x2+∂ρψa/∂y2+∂ρψa/∂z2=-4π/D so

let this be equation 5.

So we first apply a sort of coordinate transformation here try to get it converted into a spherical

coordinate you have to remember that the central ion of interest is actually a spherical ion at least

that is what we are assuming it to be, so we use a coordinate transformation to convert into

spherical coordinates.

So here obviously we consider this to be a symmetric distribution of charges which is really

creating a potential function which is also a symmetric distribution and it is only a function of R

so it is a function of radius R. So assuming that so we have this equation right here converted

into1/r2 ∂/∂r(r2∂ψa/∂r) times of r2 becomes equal to -4πρ/D or in other words I can substitute the

value of ρ from equation 4 right here I can write this as -4π/D root a ∑NiZi2[ε2ψa/KT]  so this

becomes plus minus of minus so this actually represents now the final form of the equation.

So if we want to solve it let us assume a term K which is actually given as 4π/D ε2/kT goes in

constant  times σNiZi2 just  for the sake of convenience  we are assuming this  is  in any even

constant okay, so we can represent this whole expression here 1/r2 ∂/∂r(r2∂ψa/∂r) as K2ψa so this

equation here right here you can call this equation 7 has a general solution.
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Provided by ψa as a function of r is Ae-Kr/r + A eʹ Kr/r so this is the general solution and we can 

apply the boundary conditions here to solve for the unknowns which are the coefficients A and 

A  so we already know that there is one boundary corresponding to r tending to infinity where ʹ

the ψa becomes equal to 0 there is no influence of the center line of interest at distance infinity 

from the ion of interest itself so in that event this possibility only can happen if A  is 0 because atʹ

r equal to infinite distance this will go to infinity and this will go to 0.

And so therefore definitely A  has to be 0 and other words ψa can be represented as A eʹ -Kr/r okay,

so if I substitute this value back into equation 4 which was about the density function so the

density  here  was  represented  as  –σNiZi2ε2  ψa/kT  and  I  represent  the  value  of  ψa  into  the

expression so this becomes equal to –NiZi2 ε2 by Boltzmann constant kt times of A e-Kr/r and

already we know that the value of K2 has been represented as 4π/D ε2/kT ∑NiZi2 from the last

equation.

So this whole term right here NiZi2ε2KT can be written down as equal to K2 times of D/4π okay,

so I would like to now substitute this back into this expression for ρ, so the ρ becomes equal to 
-DK2/4π. Ae-Kr/r  and this is how you define the value of the charge density ρ. So our goal now 

in this whole process would be to establish this unknown which is A and this can be again you 

know brought by creating a sort of charge balance equation because we know that otherwise the 

medium is electrically neutral.



So if I had a central ion of interest which is positively charged and there is ion cloud around it so

obviously for electro neutrality sake the values of the charges of the central ion should match

with that of the ion environment in which the ion is present okay, so for electro neutrality sake.
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For electro neutrality the total negative charge assuming the central  ion to be positive of the

atmosphere about a given ion as exactly -Ziε okay, the total charge in the atmosphere around the

central ion of interest can be determined by a spherical shell of thickness dr and distance r from

the center line okay, so we can have this positive charge sitting right about here and we can also

have basically a radius function you know A and we can also have spherical shell around this

which is at a distance R from the central ion and have a thickness dr.

Okay represented by the volume elemental volume times charge density function okay so if we

assume only one central ion and posterior around it we have the elemental volume of this small



spherical shell as for πr2dr you know so with this dv times of ρ as the total charge in the spherical

shell.

If I integrate the shell from the value A all the way to r equal to infinity which is assumed to be

for completeness you know a single ion balance complete balance so a to infinity this should be

essentially equal to the charge density minus Ziε okay and this is more so because obviously the

iron here of the central  you know of the central  ion here would be having exactly the same

magnitude of charge at the atmosphere around it.
There is no more positive ion in the whole system that is what we are assuming we are assuming

on  the  one  central  positive  ion  okay  in  this  whole,  whole,  whole  division  so  therefore  we

substitute the value of ρ from the previous step in this expression here we get ρ from the previous

step was minus a square of k/4π dielectric constant d to the power of minus kr/r so if I substitute

that here we get in they do infinity 4πr2 times of minus a capital K2/4πD e-Kr/r times of dr should

be equal to minus Ziε so the 4π goes away the r goes away.

And we are left with an expression a square of k times of d integral a to infinity re-Kr to the

equals Ziε so if I am able to solve this value with the known terms because I already know what

is the valence which is into question I already know what is the K value I already know what is

this function here you know between E and infinity the dielectric constant of the medium so I

would be able to solve for the unknown which is K in this particular which is a in this particular

equation.
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So let  us  now integrate  this  expression  by parts  kind  of  recall  that  the  integration  by parts

expression says any integral FX g-  xdx from A and B A to B can be represented as FX GX a to be

under the limits A to B minus integral of A to B f- xgx dx right so our first function is in our case

of the value r and our second function g- x in this particular case is e-kr meaning there by that you

know the, the first function fr is r and the second function gr okay.

Because  g- R is  already e-kr becomes  equal  to  minus  e-kr xk okay so that  is  how gr  can be

represented so if I put this or substitute this back into this by parts formulation we have integral a

to infinity B is infinity in our case r e-Kr which we need to calculate in the last step becomes

equal to minus r e-Kr xk between limits A and B minus of and so now we have one expression

which is f -R which is one so we have only minus of e-Kr x k times of dr integral A to infinity this

B is infinity.

In our case so that is how we write this expression and when we solve for this particular integral

this comes out to be e to the power of minus Kr x2 of k between limits a and infinite okay so this

thing is solved here and the first expression which comes out corresponding to infinity are equal

to infinity is 0 minus of minus that is positive a-ka/R.

And the second calculation the limits here becomes equal to plus e-Ka/k2 okay so that is how you

solve this by parts and if I substitute this back into the expression that was obtained earlier which

was a capital k square d x of this integral right here whose solution is given as a-ka by K+e-Ka/k2

equal to Ziε I would have a solution for the value A.
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And this can be represented here as further said Ziε eKa/ d 2 1+Ka okay in other words if I put

this back into the expression ψA is recorded as a-kr/r which is equal to said Ziε eKa times of e to the

power of minus kr /d1+Ka times of our so obviously that is how you can have your potential

function in a point A which is in the near vicinity of the main charge equation further if I wanted

to sort of see what is the contribution from the ion and what is that from the atmosphere.

I can resolve this in a manner that it can be calculated at the point r equal to a if I substitute that

here these are going to go away and we are left with the potential function at the surface of the

charge as Ziε/D1+Ka times of A and if I wanted to further resolve this into partial fraction I

would be left with two terms here I can write this down as Ziε by D times of 1 by a minus capital

K by 1 plus capital ka okay.



So obviously the first term would be due to the ion itself so that is the contribution from the eye

on itself  but what we are interestingly seeing here that there is also a contribution from the

atmosphere back to the ion on which can be represented as Ziε K/D1+ ka in other words I can

also represent only this part as Ziε/D times of 1+Ka okay so this right here is the effective radius

you can say just because this was the radius of the ion of the centerline this could be the effective

radius of the ion atmosphere.

So as you are able to see here that when we are talking about the central ion of interest and a

point round a which is at the surface here there is a contribution from the ion itself there is also a

contribution from the atmosphere itself the ions radius obviously is a given by this part of the

potential function at the surface corresponding to r equal to a and the other part here comes from

the environment.

Is given by the and an effective radius which is 1+Ka/K so with this I would like to end this

particular module but in the next module I am going to look at how you can apply instead of a

single charge if I had an ensemble of charge on a surface can we really find out a potential

function  close to  the surface  because of  the  series  of  such charges  trapped within  the  solid

electrode so with this I would like to end this particular module thank you so much.
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