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Hello and welcome to this manufacturing process technology part 1 module 29, we will be now

discussing a case of you know a thin section mold with the mold is metallic and primarily the

thermal conductivity of the mold is much, much larger in comparison to the metal which is been

solidify and we would also try to estimate in this condition what is going to be the solidification

time, okay. 

So we have so far covered two different cases just to recall one was a plane sand casting where

we assume prefect welding condition and then we introduced a non-wetting condition and then

try  to  estimate  the  heat  transfer  assuming  interfacial  resistance  because  of  a  thin  air  film

formulated between the casting and the surface., so in this particular case we are having a small

thin section mold with a large casting which is you know predominantly the region 4 on the

curve that we shoed earlier would be the cause of all the temperature difference, okay. So the

thermal resistance of more important consequence would be actually.

(Refer Slide Time: 01:23)
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In this particular case only the region 4, as can be illustrated in this particular figure here so

having said that let us look at what is going to be the surface temperatures also what is going to

be the solidification time that such a process would actually need.

(Refer Slide Time: 01:39)
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So if a large slab shaped casting is produced in thin water cooled mold made up of metal say

copper having much larger conductivity then the solidified casting then the thermal resistance

provided by the interfacial region between the solid and the mold would kind of be eliminated,

okay, it is insignificant almost. So in such a case the predominant thermal resistance would be

offered by the region 4 is I just shown, so neglecting the thermal resistances of all the other

regions the temperature distribution at any instance takes the shape shown in the figure below

right here, okay.

So here the mold metal interface or the casting surface temperature θz or θs can be assumed to

remain constant in time particularly because the mold is also water cooled okay, so you have a

completely water cooled thin mold so obviously there is going to be a you know constancy of the

surface temperature of this particular metal, so let us assume that thermal temperature to be θs=θ0

okay, and let us also assume the freezing temperature to be θf which is not different in the poring,

so poring and freezing are same.

So it indicates the freezing temperature of the metal and at any incidents t, δt indicates the depth

of solidification as you can see particularly here this is the solid liquid front and it is moving

ahead at dδ(t)/dt and δt is the instantaneous thickness of the shell which is being developed here

solid shell and the process can be idealized without much error as a one dimensional heat transfer

problem particular because we are having almost a heat sink you know as a mold because some

water cooled mold and so therefore the heat and transfer would be typically one dimensional.
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The maximum resistance thermal resistance which is offered to this liquid temperature of the

freezing temperature is really the solid, solidified portion of the mold and the other end of this is

really a constant temperature surface or constant casting surface temperature θs. So let us see this

kind of a problem what really happens or how, what would be the estimation of the solidification

time.    

(Refer Slide Time: 03:57)
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So let us estimates the solidification time ts, so we get dδ(ts) should be really equal to half the

thickness of the mold. we assume mold thickness here or casting thickness here to be equal to h,

so therefore there is heat transfer from both sides of the casting so therefore h/2 is really the

plane along which the solidification trans from both sides with propagate and stop, okay. So the

temperature  profile  within  the  range  x  varying  between  0  and  δt  is  given  by

θ−θ s

θ∞−θ s

=erf ( x
2√αs t ) .  I  think  you  had  earlier  talked  about  this  details  when  we  did  the

thermal conductivity and temperature distribution across the sand mold. 
So I am not going to illustrate how this equation came or you do already know that it was from a

similarity variable analysis and one dimensional heat transfer problem which we actually solved

to obtain in the case of sand mold okay, so in this case I will just mention that θ∞ is a integration

constant and we will not bother about it because ultimately we need not use this value for our

calculations okay, so this is the constant of integration if you remember the whole process of the

solution there were many integrals which were formulated in order to estimate the real value of

θ. 

An αs basically is the thermal diffusivity of the mold which was actually also recorded as the

thermal conductivity of the mold per unit density transfer of heat capacity of the mold. So at x=

let us say δ(t), θ the temperature is actually the freezing temperature right, θf so I would put this

value of x and θ in this particular equation we have the error function of δ(t)/2√αst is estimated as

θf-θs/θ∞-θs is remind you this is the casting surface temperature, okay you are assuming that the

mold is water cooled and acts as a sink so this actually cannot change because the freezing point

and the casting surface temperature are similar so are the constant of integration θ∞ and θs  .so

therefore this is really a constant, λ okay. Let us call this constant λ, so we now have then.

erf ( δ (t )

2√α s t )=
θf −θ s

θ∞−θs

=λ
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The error function of (x/2√αst)=λ further let  us x=δ(t).  so further let  us assume that there is

another ratio defined as ζ which is actually equal to this δ(t)/2√αst  or in other words δ(t)  is

basically ζ.2√αst and we have the term written as error function of ζ=λ. Once again, we find that

the depth of solidification varies as the square root of time as you can get an illustration here.

Now the constant ζ has to be determined in order to find out the time of solidification okay, along

these two relationships which are here.
δ (t )=2 ζ √α st

So let us consider the rate of energy flow or the energy balance at the solid, liquid interface we

have ks ∂θ/∂x at x=δ, equals to ρmLdλ/dt so obviously at this front δ which is the you know this is

the mold, this is the solid part and this is basically the liquid part so we are talking about this x=δ

as function of times so if there is a depth the gradient dθ/dx which exists at x=δ that times of the

thermal  conductivity  of the solid  ks should be equal  to  the total  amount  of heat  rate  that  is

liberated because of the moving front we assume that at incidence t this front is moving at a rate

dδ/dt.

k s
∂θ
∂ x x=δ

=ρm L
dδ
dt

So the area terms get cancelled here, areas are on both sides actually so you have the rate of

change of volume times of the specific latent heat okay, so that is times of densities basically the

total amount of heat rejected out of the solidifying metal and ksa ∂θ/∂x at x=δ the total amount of

heat which comes out of the liquefied metal into the solid liquid boundaries, so they should be

heat balanced so ks here in this particular case is the conductivity of the solidified metal and this
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can be written down as αs ρm(cs), cs is the specific heat capacity of the solidified material and ρm

is the density of metal which is same in solid and liquid state okay, so this is the unified density

does not change much with respect to solidification at the freezing temperature.
 (Refer Slide Time: 11:56)
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I am just borrowing it from earlier equation so (θ∞-θs)d/dx times of the error function x/2√αst

and .therefore this can be you know defined as (θ∞-θs)1/2√αst. I am going to just differentiate this

error  function  times  of  again  2/√π  exp[-(x/2√αst)2 okay,  so  that  is  how  the  error  function  is

differentiated I think I have mentioned it in the last lecture and so this really can be put back into

the equation that we were doing earlier as ks∂θ/∂x at k=∂ we can actually put this as ks/√α s (θ∞-

θs)1/√πt okay, exponential and this becomes -∂/2√αst2 and that can be equated to ρmLdδ/dt okay,

in order to find out what is going to be the dδ/dt in this particular case.

So  we  can  substitute  the  value  of  α  as  here  as  √ks/ρmcs okay, where  again  it  is  a  thermal

diffusivity of the solid phase so it is can be defined as the thermal conductivity of the solid phase

per unit the density of the solid or liquid metal similar to each other times of the specific heat

capacity of the solid phase, okay. So this we substitute for θ∞-θs so that is what we substitute the

equation and δ which earlier was 2ζ√αst from what we have concluded here earlier okay, so we

had assumed this ζ to be δt/√2αst.

So when we substitute this back let us see what is going to be the final form so the first thing that

I would like to get is expression for dδ/dt from this term so dδ/dt becomes equal to 2ζ being

constant √αs/√t this goes away so we are left with ζ√αs/√t and on the other hand we have the from

equations done earlier here.

(Refer Slide Time: 16:13)
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We have that the θ-θs really is a function of θ∞-θs error function of the term ζ okay, this was ζ

corresponding to x tending to δ if you may just remember okay. So if I just substitute this value

here on the expression which I formulated in the last step this expression right here let us call it

equation 1, then we have.

(Refer Slide Time: 17:03)
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√ksρmcs θf-θs/errf(ζ)1/√πt e-ζ2*ρmLζ√αs/√t, so basically on one hand we are substituting the value

of δ okay, dδ/dt from this expression here another hand this term θ∞-θs is replaced by θ-θs so

therefore this is how the expression gets formulated after the substitutions of these two values

respectively that the δ/dt and the θ∞-θs, so I will just now condense this expression.
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And write this as ζeζ2 error function of ζ on one side okay, is equal to θ f-θs/√π cs/L, so typically if

you wanted to find out what is going to be the value of ζ, so ζ as you already are aware is

basically δt/2√αst and this δ tends to h/2 if the casting is completely solidified so the ζ here would

typically b=h/4√αst or if I am able to find out the value of ζ all I need to do is to do ζ 2=h2/16αsts

and obviously when δ is h/2 t becomes ts that means it solidifying the whole casting at that one if

point of time.

And the ts becomes equal to h2/16αsζ2 so the trick here really is to find out what is this ζ from this

equation right now here and this would need estimation for numerical integration method and

there are standard tables which have to be obtained for the error function corresponding to the

different values of ζ so that the left hand side and right hand side of this equation 1 can be away

and from that you can have the time of solidification as the h2/16αs mind you this is the thermal

diffusivity of the solid part which is ks/ρmcs you had earlier seen.
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How we have substituted into the expression times of the ζ2okay, let me just write this there little

proper manner here okay, so this is times of ζ2. So I think we now can iteratively sort of estimate

what is going to be the solidification time and we will see in this particular case also numerically
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how the time is going to get varied because of this constant casting surface temperature. So in the

interest of time we will close on this module and probably explore a little more of this processes

in the next module, thank you so much. Bye.

Acknowledgement

Ministry of Human Resources & Development

Prof. Satyaki Roy
Co – ordinator, NPTEL IIT Kanpur

NPTEL Team
Sanjay Pal

Ashish Singh
Badal Pradhan
Tapobrata Das
Ram Chandra
Dilip Tripathi

Manoj Shrivastava
Padam Shukla
Sanjay Mishra

Shubham Rawat
Shikha Gupta
K.K Mishra

Aradhana Singh
Sweta

Ashutosh Gairola
Dilip Katiyar

Sharwan
Hari Ram

Bhadra Rao
Puneet Kumar Bajpai

Lalty Dutta
Ajay Kanaujia

Shivendra Kumar Tiwari

an IIT Kanpur Production
©copyright reserved

         
          

12


