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Hello, welcome to basics of finite element analysis course, today is the last day of this week and 

in today's lecture we will discuss a particular Eigen value problem and actually develop its finite 

element formulation and solve it, so this problem relates to vibrations in a bar and the governing 

differential equation of the bar is. 
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ρ a times ∂u with respect to time - ∂e, a 𝛿u 𝛿x with respect to x equals Q and to explain suppose 

this is the point where, which I am considering u is the displacement in next direction and it can 



vary with time and position this is my x-coordinate okay, ρ is the density of the bar in this case 

we are assuming that ρ is homogeneous or it is same on that particular small element of the bar. 

 

A is the radius of cross section, e is the Young’s modulus and Q is the traction per unit length,  it 

is traction per unit length so it is units of Newton's per meter. Our goal is to find Eigen value 

problems, Eigen values, and Eigen vectors using FEA okay. Now our first step is so this is our 

second order partial differential equation it is second-order both in time and in space, so the first 

thing we do is we try to convert this into a second order ordinary differential equation and we do 

that by realizing that if the bar is vibrating like this, this motion will be and if it is vibrating on its 

own it will have some sort of a harmonic motion with some natural frequency Ω right. 
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So we say that u(x, t) equals a function u( x) times e 
jΩt

 oh excuse me it is e 
iΩt,

 so this is equation 

1, this is equation 2, so the amplitude of this motion can vary from place to place but at every 

point the point will vibrate in a harmonic way but each point may have a different amplitude 

which is u(x) but the motion of each point will be harmonic, that is what it means. So now what I 

do is put two in one, so what I get is ρA and I am going to just write u rather than u(x) for 

purposes of privacy so ρAu  and because when it is differentiated by time two times. 



 

So I get –Ω
2
- 𝛿 over 𝛿x EA 𝛿u 𝛿x and this entire thing e

iΩt
 right and because we are interested in 

finding out the Eigen values of the problem the right side of the system will be 0. Now we note 

that e
iΩt

 is common to the entire expression so I can eliminate this right so I will erase this, the 

other thing I note so this entire equation is now only in x because this U. 
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U is nothing but a function of x only which means that 𝛿 over 𝛿x equals d over dx right so I will 

replace these partial differential operators with regular differential, operators total derivative 

operators, so it becomes d over dx. So now I see that I can express this entire expression as 

EAU´ is equal to ρ AUΩ
2 

or I can write it as Ω
2
 times ρAU, and there should be a negative sign 

here okay, so this if I look at this it is in the same form as A(U) equals λB (U) which is the 

standard form for Eigen value problem. 

 



So I have developed this converted this form into an Eigen value problem statement okay, now at 

this stage I am going to solve these equations using the finite element method and all of you 

already know how to solve this problem using the finite element method. The first step in the 

finite element method if we want to solve this problem is we will break the domain into small 

elements, the second step will be we will assume interpolation function for U, we will plug those 

things here, we will develop and find the residue of the overall thing over the entire element 

multiplied by a weight function, equate that residue weighted into the thing 0, weaken the 

differential form, weaken the statement. 

 

And develop a system of equations and then we will solve those equations to get our answer, so 

that is the overall process and that is what we are going to do. 
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So our overall equation is EAU´ and I remove the negative sign on this side equals Ω
2
 and what I 

will do is just for purposes of convenience I will replace Ω
2 

by
 
λ, so it is λ times ρAU okay, so 

the weak form, so now we are going to get the weak form but before that we will express it as a 

weighted residual form, so at this stage so suppose my bar is this long and this is one, so I have 

broken it into several elements, this is node 1, node2 let us say the element is he and so for the e
th

   

element I have length is he and there are only two nodes so I am assuming that this is a linear 

element but before I get to the element order I will develop a weighted residual form, so I   

integrate it from zero to he, I have a weight function w multiplied by  x-EAU´ the entire thing  

differentiated with respect to x- λ AρU dx equals 0 dx   e ause I am in local coordinates. 
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From this I develop a weak form, so my weak form is 0 to he and I reduce the differentiability on 

the first term and shift it to w so I get w´ and when I do that the negative sign before EA goes 

away right -λ wAρUdx  equals on the right side I have, so I will get some extra boundary terms 

and I am shifting them to the right side and what I get is w evaluated 0 times Q1
e
 + w evaluated1 

no he times Q2
e
 where Q1

e
 equals - AU´ evaluated at 0 and Q2

e
 equals –A this entire thing  is 

evaluated. 

 

AU´ evaluated at he okay. At this stage my next thing is that I assume an interpolation function 

for u, so u is equal to Σ of Uj and Øjx and this is for the e
th

 element and j equals 1 to m and in this 

case I am using M is equal to 2 because I assume that it is a linear element, also my weight 

function equals Øi for the e
th

 element which is the variation using principles of variational 

mechanics this is nothing but it represents a variation in U. 
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So then I get 0 to he  dØi over dx   EA dØj over dx  all for e
th 

equation –λ Aρ over here by the way 

a equals e times A so coming back to my weak form this is my first term –λ A ρ and w I have 

assumed as Øi  for the  e
th 

term and u will be Øj e
th 

term, and because I have to some, you is Σ of 

uj Øj so I have to multiply it by Uj and sum it up j is equal to 1 to m and integrate it over the 

entire domain or, because this is may not appear on your screen clearly so I will again j is equal 

to 1 to m and I am going to multiply  it by Uj 
e
 dx  okay, and this equals w evaluate at 0 Q1

e
+ w 

evaluated he Q2
e.
 Now we look at these two terms, the one in green and the one which is 

underlined as red okay, the green term has EA embedded in it A is the area of cross section and e 

is the Young’s modulus of the material. 

 

 And so it represents kind of the stiffness of the system, if you have a stiffer system e will be 

high if you have a very compliant system e will be less right so this represents. 
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Stiffness of the system, on the other hand the red term the one which is underlined red if we do 

not worry about λ then it is a times ρ times dx is, so suppose you have a small element which is 

dx long, cross-sectional area is a times ρ, ρ is the density so it represents mass of the system. 
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Okay so what we get is two matrixes k – λ m and both these matrices are for the e
th

  element and 

this entire thing is multiplied by an unknown vector U, and on the right side I get a Q vector a 

force vector, but these forces are internal to the system okay, these are internal to the system. 

Here ki j for the e
th

 element equals integral of dØi over dx , dØj over dx  times EA dx , also the 

mass matrix so the stiffness matrix is defined earlier and then mass matrix is defined as integral 

of A ρØiØj dx  and of course everything is with the super script d so that is my stiffness matrix 

and that is my mass matrix. 

 

So in our earlier problems we had only one metrics which was multiplied by the unknown vector 

u, here we have two matrices one is the stiffness matrix the other one is the mass matrix right and 

they are and the mass matrix is multiplied by that λ which is the Eigen value of the system, and 

on the right side you have the Q vector which is basically the internal reaction forces at the two 

ends of the element okay, couple of things. 

 

So this is stiffness matrix if you look at it, it is symmetric because if you replace jby i and i by j 

you get the same answer, so k ij is equal to k ji. The mass matrix is also symmetric in nature 

because when you replace i by j so M i,j is equal to Mji okay so this is the, so these are the two 



matrices k and M, so now at the element level we have developed the Eigen value formulation 

for the problem. 

 

So our next step is to assemble all these things okay so. 
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That is what we are going to do, so before I do that actually I will write down the values of these 

terms so K for the e
th 

element is equal to EA over he and this is for the case when m is equal to 

two, it is for a linear element, for a quadratic element it will be a three-by-three matrix okay for a 

linear element it will be a two-by-two matrix and the terms are 1 -1 -1 and 1, and then the mass 

matrix for the e
th

  element is ρ Ahe over 6 2 1 1 2, there is one thing interesting usually you will 

note at the mass matrix, the overall mass of the system which is an element he long will be what, 

its cross-sectional area times density times he right. 
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So you have in mass matrix at least in this case the numerator ρ Ahe is the mass it is divided by 6 

and then you look at all the terms in the matrix, you have 2 2 1 and 1 if you add them up two 

plus, two plus, two plus, four plus one five and one 6 that divided by six is so, if you add up all 

the elements of the mass matrix they end up with the total mass and the mass matrix can never be 

negative because mass is never negative it can never be negative okay  
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So there is something interesting about your mass matrix, so with this understanding what we 

will do is we will develop assembly for our system, so our system is like this, so it is a long bar 

and at this end of the bae it is rigidly fixed, at the other end of the bar I have a spring whose 

stiffness is K okay, now what I am going to do is I am going to split this bar into four elements. 

 

So this is element number one, element number two, element number three, element number 

four, so I have a total nodes number of nodes is one, two, three, four and five okay, and I am 

interested in finding out the Eigen values of this problem okay. One thing you will immediately 

notice that suppose this spring was not there then the bar would be would have less problem 

vibrating back and forth right, once the spring is there then the overall stiff system becomes 

stiffer. 

 

So bar will have a higher angular frequency because its over all stiffness that is k it goes up right 

so we have to figure out how to incorporate the 
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Influence of this k in the overall assembly level equations and to do that first we have to develop 

the assembly level equations, so let us write down these assembly level equations for element 1. 

Our assembly level equation is EA over he  1 -1 - 1 1 – λ ρAhe over 6 2 1 1 2, the entire thing is 

multiplied by U1 U2 
e
 and in this case e is this the first element so e is one and this equalsQ1

1
Q2

1
  

okay, so this is the these are the two equations for the first element. The equations for the second 

element are identical except that the superscript 1becomes two okay because we have assumed 

that the length of the element is same in all the cases. 

 

So for element 2 EA over he  1- 1 -1 1 –λ ρAhe  over 6 2 1 1 2, this entire thing is multiplied by 

U1 U2  for the second element and that equals Q vector when Q1 Q2 for the second element. 

Likewise I will have another set of equations for element 3 and here it will be the U vector will 

be U1 U2
3
 = Q1 Q2

3
 as the superscript and for element four again similar set of equations, U1 U2

44 

equals Q1 Q2
44

 okay, so we have developed four sets of element level element equations total 

number of equations her is eight right and we have five nodes. 

 

 1, 2, 3 and 4 and 5, we have five nodes, so the first thing we do is we established the continuity 

conditions for U, what are those continuity conditions at node 2 U2
1
 is equal to U 1

2
 is equal to 



U2, so this becomes U2, this becomes U1 same using same approach so this is U2 I am replacing 

all these local degrees of freedom with their global values, this is U3, this is U4, this is U4, and this 

is U5 okay. 

 

The second thing I have to note is that the total force let us say node 2 so this is continuity and 

they are 3, 3 more relations for that and then the second one is force balance, and for force 

balance the total force at node 2 is Q2
2 

 + Q1
3
  right, similarly the total force at node yeah total 

force at node 4 is Q3
2 

 + Q1
4 ,

 and the total force at node two is the sum of these two correct, so if 

the total force is that much then I have to add these equations so I have to add this equation with 

this equation, I have to add these two equations, and I have to add these two equations, and then 

in that way I will get total of five equations, right now I have eight so I have five equations and I 

have five degrees of freedom. 

 

So the total number of, so the final set of equation becomes if I do that is EA over h0 1 -1 0 0 0o -

1 2 -1 0 0 0 0 0 -1 2 -1 0 0 -1 2 -1 0 0 -1 1, this is my K matrix global K matrix - λ ρAhe over 6 

and I get global mass matrix. What is the mass matrix, 21000, 14100, 01410, 0 this is 00141, 

00014 okay, and this entire thing would be 2, so this entire thing is multiplied by u1, u2, u3 u4, u5, 

and this equals the Q vector and the sum of Q12 this guy and this guy is 0 so what I will get is Q1 

000 and Q5 okay. Now let us look at Q5, Q5 is the force which is being applied on the system due 

to the spring, so if the node 5 it moves by a distance u the spring will apply a force in the 

opposite direction and its value will be K times u5. 
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So Q5 is equal to -K times u5okay, so this guy becomes -K times u5 and what I, and because this 

is unknown u5 I ship this, I move this u5 on the left-hand side. So here what it gets is I get 

another term here and this is plus, I do not have space to write here, this is negative and it will be 

K times h0 by EA. Because there is a common term out here okay, so this is coming this extra 

term is coming because of this term, and once I have done this then on the right side this term 

goes away so this entire the Q5 the term the constant on the right side in the fifth equation 

becomes zero okay. 

 

So this is the first boundary condition which is this one, the second boundary condition is that at 

x is equal to 0 that is at node 1, u is 0 so I specify this to be 0 okay. So now I have to worry only 

about finding u2 u3 u4 and u5 okay, which means yeah. So I do not have to worry about my first 

equation, I do not have to worry about my first equation because u1 I have to only worry, I have 

to only solve for u2, u3, u4 and u5. 

 

So I have to worry about the four, last four equations and also in the last four equations when I 

multiply this minus 1, oh excuse me by u1 it will be 0 so contribution of these terms will also be 

0 so I will consider only this block in the K matrix, and for the same logic I will consider only 



this block in the m matrix. So first I have assembled, now I have reduced the number of 

equations. 
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So ultimately what I get is, [[KRED] – λ[MRED]] u2 u3 u4 u5 is equal to 0000 okay, now these, 

these are four equations and four unknowns, these equations will be true in two situations. 

Situation one case 1, u2 = u3 = u4 = u5 = 0 this is one solution. But we do not like this solution it 

is a trivial solution for this I did not have to do all this finite element analysis, the second 

solution will be case two when the determinant of |[Kred]-λ [Mred]| equals 0, if this determinant is 

zero and I know all the values in K reduced, I know all the values in M reduce the only thing 

which I do not know is λ, that is the only thing I do not know. 

 

 So because these are four equations, I will get a fourth-order algebraic equation in λ, fourth 

order equation, so it will have λ
4
 times something plus λ Q times something and so on and so 

forth. So I will get four values, four values of λs, each of these values is called an Eigen value 

because it is a characteristic of the system, that is what it literally means okay. Now once I get 

that λ so, I so I get four λs, λ1, λ2, λ3, λ4. But what is our goal we have to find u right, we have to 

find u that was our goal so we have found these λs. 
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Next what I do is I consider λ1 and I plug that λ1 in [Kred - λ1 Mred] times this reduced vector u2 

u3 u4 u5 equals 0. Now I know everything in this matrix, I also know λ1, so I can find the 

relationships between u2, u3, u4 and u5. When I get those relationships that solution for u is called 

Eigen vector for system corresponding to λ1, corresponding to the first Eigen value. Similarly I 

consider now the second Eigen value so I get a second Eigen vector, then I take the third Eigen 

value I get the third Eigen vector, and if their system is having n number of equations reduced 

number of equations then I will get n Eigen values, n Eigen vectors and each Eigen vector will 

be corresponding to one particular Eigen values okay. So that is the, how I figured out my Eigen 

vectors okay. 
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And finally our original goal was what to find u, our original goal was to find u. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  39:04) 

 

 

 

And we had said that u(x, d) is u(x)e
iωt

 right, so u(x) so in ω we know that λ equals ω
2
 that is 

what we had assumed right. So I know what is ω, so I take first ω1 come corresponding to λ1, I 

put ω1 in this equation, and I also put u1 which is the first Eigen vector. So that is my first 

solution, then I take the second Eigen value, I find out its Eigen vector, put both these Eigen 

vectors and Eigen values in this solution, and I get the second solution for the system, that is the 

that is the second solution and each Eigen vector in this case is also called a mode shape of the 

system. 

 

Mode shape of the system means so you have four nodes suppose two three four and five, first 

node does not move because why? Because it is fixed, so what does a mode shape mean that 

when you are, when the system gets excited by first Eigen frequency maybe u1 is like this, u3 is 

this, this and this, so this is your first mode shape, which means this is the shape or the 

boundaries between which the system is going to vibrate you know, maybe the second mode 

shape will be this. 
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So it all depends on the system you know, so you will have four different shapes corresponding 

to four different Eigen values and the overall solution for each Eigen value is this, so this 

completes our treatment for the Eigen value problem. Next week we will, which will be our final 

week we will extend this discussion into two important topics. The first topic will be time 

dependent problems, how do we solve time-dependent problems, and the second topic we will 

cover will be numerical integration that when we develop all these K matrix relations how do we 

numerically integrate them using our computers. So that is pretty much it and look forward to 

seeing you tomorrow. Bye.  
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