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Hello, welcome to basics of finite element analysis, this is the 6th week of the current ongoing 

mook course on FA and this week we will start with continuing our discussion for 1D heat 

conduction problem with convective effects, and in today's lecture we will actually close that 

topic by solving for a problem, and then in the remaining 5 lectures we will explore beam theory 

and how it is solved using the finite element method. So for this lecture we will first write down 

the equations which we had developed in the last lecture. 
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And the overall governing equation for 1D heat conduction with convective effects was this 

thing P, so these 2 terms where β appears they are because of perfect of convection okay, and for 

this particular equation the stiffness matrix elements we had defined were, so that is my stiffness 

element, then in the force vector the terms are AQ + P β T∞ and  because it is the E
th

 element I 

have to put a subscript P on all the parameters and then the Q is Q1 was kA ∂T over ∂X, and 

there is minus sign here at x-bar equals 0 and Q2 for the E
th

 element is exactly the same relation 

but with a positive sign and evaluated at x=he, x bar=he, and these are all X’s are in local 

coordinate system. 

 

So  I am not using X but  I am using X bar and now what we will do is, we will actually develop 

these equations and we will have a convective boundary condition but before we handle the 

convective boundary condition we will do this problem without having the convective term okay. 

So in that case let us assume that β = 0 and then we have seen that the shape function so if it is a 

2 noded element this is node 1, node, 2 length of the element is he then my approximation 

function is 1, ψ1=1 - X bar / he and ψ2 = X bar/he. 

 

So using these functions I can also calculate their derivatives and then my stiffness matrix comes 

out as, so my overall equation I will write that for the element is kA/ he times 1 – 1 -1 11and if I 

have a linear element so then the temperature at linear element at first node is T1
e
 and 

temperature at the 2
nd

 node is T2
e,
 and these are unknowns so T1

e
, T2

e
 and this equals the F vector 

and  the values in that vector are Aq0 he over 2,11+q1
e
 which is a point load or a point source of 

heat. Now suppose I have a bar and for purposes of discussion in this class I am breaking this 

bar. 

 

So I am idealizing this as a line so total bar length is L okay, and I am breaking it up into 3 

elements, element number1, element number2, element number3 and the global nodes are 1,2,3,4 

okay, so I can write 4 sets of equations at the element level which will look like this and then 

using the condition of continuity 3 sets of equations here because they are 3 elements I am sorry 

3 sets of equations at the element level and then using the continuity condition, and the 

continuity condition is that T2
e 

in the first element = T1
e
of the 2

nd
 element, similarly T2

e
 of the 

second element =T1
e
 of the 3

rd
 element so that is one condition. 



So I eliminate 2 variables from there and I also know that whatever is the source term whatever 

is that, whatever is the heat generated so suppose let us say so this is my first element and this is 

the second element and in reality these two elements are sticking at this point right, so the heat 

generated because of Q is expressed here okay, at node 1 and this is at node2 so the total heat 

which is being generated at this location will be contribution from this side and contribution 

from this side so I add up the contributions at the intermediate nodes from 2 elements. 

 

So I add up the equations the same way we added up equations in case of solid mechanics 

problem the same logic, so if I do all that my overall equation at the element level it becomes at 

the not the element level at the assembly level it becomes KA over he 1 – 100 – 12 – 100- 12 – 1 

00 – 11, so this is my global stiffness matrix global k matrix that multiplied by T1,T2  these are 

my global degrees of freedom which are not known and this equals a term, a vector attributable 

to distributed heat load. 

 

So this is 1, 2, 2, and 1 + point heat sources which is Q1 and here this will be 0 because the 

contribution from left side and contribution from right side it will be balanced right, what does 

that mean in context of heat transfer equation, suppose heat is coming in like this so that is 

something I will call Q2
1
 right and in the adjacent element the same amount of heat is going out 

right. So that will be Q1
2
 and when I add these 2 heat terms they will become 0 and net heat 

generation is 0 so at the interfaces these terms will be 0 and here it will be Q4, so that is my 

equation. 

 

At the assembly level okay, now I see that in this equation I have 4 unknowns T1, T2,T3 and T4 

and then I have 2 more unknowns Q1 and Q4 so there are total of 6 equations 6 unknowns and 4 

equations, so I need two extra conditions and these two extra conditions will be gotten through 

application of the boundary conditions. 
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So we will solve this equation for 2 different sets of boundary conditions in case one, in case one 

we will say that T, so this is my overall bar which I have broken into 3 elements right and here 

this is my global degree of freedom so and this is coordinate is X so at X = 0 I said the 

temperature is TA and at X=L temperature is TB so I am saying that I have a bar and the 

temperature at left end is prescribed as TA and the temperature at right end is prescribed is TB. 

 

So this is one set of boundary conditions so if I do that we will prescribe this TA, this will be 

prescribed as TA and this will be prescribed as TB right, so now I have so these are now knowns 

TA and TB because we know these values so now I have 4 unknowns T2,T3, Q1 and Q4 and I have 

4 equations, so now I can solve for these 4 equations, for these 4 unknowns using these 4 

equations so we will actually do that okay, so let us say that TA equals but I assume 100 degrees 

TB = 0 and then for sake of simplicity. 

 

I have assumed a lot of things as unity so I say k =1 , K =1 he = 1 so that our computation 

becomes faster that is all and Q0 =1 and A is also = 1 okay, so this ka / h e =1 so this term and 

this term is also = 1 it is the this term becomes 1 over 2, this term becomes 1 over 2 AQ0 he/2  

over 2 is 1 over 2. So what we are doing is that we are going to prescribe KH, KA / he as1and 



the other term this term as 1/2 and solve for T2 and T3, so we will write down equations from 

these 4 equations for T2 and T3  so the first equation which is the second equation . 
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So this is, so first thing what I will do is I will erase this KA over he because it is nothing but 1 

so that goes away and this term it becomes 1/2 and if I remove this ½ and put it inside so this 

becomes 0.5 and this becomes 11 and 0.5. So I will call this equation 1, call this equation 2, 

equation 3, and this is equation 4, so what I am going to do is with these prescribed boundary 

conditions I am going to write equations 2 and 3, so my equation 2 is – 1 times TA and TA is 

100 so it is -100+2 times T2 -1times T3 and 0 times T4 and that = f2 which is 1 +Q2 which is 0 

okay, so this is my equation 2. The 2nd equation is equation 3 so I am going to write it is 

 

So that is 0 times TA so that is 0-1 times T2 and then 2 times T3 and then - 1 times T4&T4 is 0 

degrees right which is TB so this is 0 and this equals again f3 1 +Q30 so this is my 2nd equation. 

Now 3rd equation, so equation2 and equation 3, so I solve for these two equations and I can 

calculateT2 and T3 and then I can plug these values back in my equations for E1 equations E1 and 



E2 and I can find the values of Q1 and Q4, so this is my first case where I have prescribed at both 

the ends the primary variables which is 0 and 100 degrees okay. 

 

Now what we will do is we will do another case where we will have a convective boundary 

condition at one end and another conduct source heat source at the other end and we will again 

solve these equations, so I am going to erase all this 
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And the second boundary condition is case 2 so in case 2 my boundary condition so this is all 

this also goes away so once again in case 2 the boundary condition here is not known 

temperatures but at X=0 I know how much heat I am injecting in into the system so that is - 

KA∂T over ∂X at X=0 is some constant G0 I know that, that also at this point at X=0  I am 

pumping some heat into the system and the value of that heat is G, G0 okay that is what this 

physically means - KA times ∂T over ∂X, ∂T over ∂X is temperature gradient k is conductivity is 

area of cross section. 

 

 So that is the amount of heat transferred because of temperature difference right and at this point 

at X=L the boundary condition is that K times ∂T over ∂X, so one thing I would like to do is that 



instead of partial derivatives I will express them as total derivatives because the only variable left 

is now X, temperature is not there so partial derivative is same as total derivative so on the right 

side at X=L the boundary condition is K ∂T over ∂X +β T- T∞ at X= L and this I say is 0. 
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So what does that mean? 
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That there is some convective transfer happening, this K∂T over ∂X is heat which is going out 

right and that equals the convective heat transfer, that equals convective heat transfer so then 

how we will see how to account for this convective heat transfer in our boundary conditions. So 

once again my 4  equations and we still assume that A = 1 Q0 = 1 he =1 and what else and we 

will, K, K=1 so these equations are still valid okay, so BC1 is – KA ∂T over ∂X at 0 equals G0 

and we know that the definition of Q1 is this thing okay. 

 

So this term becomes G0. The second boundary condition BC2 is KA and I again I think I messed 

it up this should be complete total derivative ∂T over ∂T +β T- T∞ = 0. Now what I do is this 

equals Q2 right so I express it as Q2 equals – β or I can express it as  my β times T∞ -T and this is 

at X=L and at X=L this is β times T∞ - T4 because at X=L temperature is T4 okay. So I replaced 

this Q4 by this term β T∞ - T4 agreed, this should be Q4 and I missed this A term here so this A 

also should be there so what I have  seen is that I have replaced Q1 by G0 and I have replaced Q4 

by β times T ∞ - T4 okay. 

 



Now once again in these 4 equations, these are 4 equations and I have now 4 unknowns on the 

left side I have T1, T2,T3,T4 these are 4 unknowns, on the right side also there is no unknown 

which is extra because I know β I know T∞,T∞ is the temperature of here far away from the FIN 

or this thing andT4 is an unknown so, but that is already accounted for, so 4 equations, 4 

unknowns. So the next step which I do is that I transfer this T4 on the left side I transfer T4 to the 

left side and when I transfer it, so, so first step was replacing Q4 by this term and now I transfer 

this. 

 

So on my right side is I still have β times T∞ and on my left side I get an extra term β here okay, 

so the effect of convective heat transfer at the end of the bar is accounted by changing or 

modification by because of modification of this K matrix so β comes here and now I can solve 

these 4 equations for 4 unknowns in a fairly straightforward way. So this is what I wanted to 

discuss in context of heat conduction and equation which also has a convective heat transfer term 

and this captures or covers this particular topic, in the next class we will start discussing the 

beam theory and how we can use finite element analysis to solve beam related problems, thank 

you very much. 
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