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Hello and welcome back to this thirtieth lecture of bio microelectromechanical systems.

(Refer Slide Time: 00:13)
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Now, just  quickly preview what  we did last  time; we talked about these famous Navier-

Stokes conservation of mass and conservation of momentum equations and tried to derive

them from the elementary control volume concept; and then, actually tried to go ahead and

scale down both of these equations; and tried to figure out how they apply to microfluidics.

(Refer Slide Time: 00:52)

Let us actually go ahead and just reiterate a little bit of what the conclusions were out of this

scaling down. We tried to first take the conservation of momentum equation. And, the scale

down version of this equation came out to be 
∂ui

❑

∂x i
❑=0 . And, this essentially indicated…

And, let me just reiterate that, the way that these expressions came into picture – x i would be

related  to  a  scaled  distance  at  that  particular  scale  times  of  x i
❑

;  where,  x i
❑

is  a

dimensionless number. And similarly, ui and uj – both were equated to a scaled velocity at that

particular scale times of ui
❑

. And, the same scale of velocity times of u j
❑

respectively.

And, also we saw that, the time star of the non-dimensional cum quantity in time in this

particular scale would be presented as the original time divided by the distance by u – the

velocity. x i=Dx i
❑ , ui=uui

❑ ,u j=uu j
❑ , t❑=

t
( D /u )

,P❑
=

P
(ηU /D )

And, the pressure star, which is again a non-dimensional quantity in pressure in this particular

scale was represented by – of the term p in the absolute value of pressure divided by eta u by

D. As we all know eta is the viscosity; it is actually scale independent. So, it remains constant

even if you go to the micron scale. You have to assume though that, the equations are that of
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continuity equations or continuous maintain for the viscosity to be independent of time and a

constant property associated with the medium. So, because of micro-flows are mostly in this

domain,  where  the  continuum  is  still  assumed  and  all  the  modeling  is  done  using  the

continuity equations. Therefore, it is almost always obvious to assume the viscosity to be

constant at that particular scale. And so, therefore, the pressure star – that means p star, which

is essentially the dimensionless number in the Navier-Stokes equation would be represented

as  P❑
=

P
(ηU /D )

. So, we derived the second equation – the conservation of momentum

equation and you figured out that, 

ρuD
η [ ∂ui

❑

∂ t❑
+u j

❑ ∂u i
❑

∂ x j
❑ ]={−∂P❑

∂x i
❑ +

∂2u i
❑

∂x j
❑2 }

ℜ=
ρuD
η

And, this we found out last time – the scaling down. And, the Re is more or less less than 100

in  all  microfluidic  devices;  very  often  less  than  0.1.  So,  almost  always  gives  you  an

opportunity to write down minus del p star by del x i star. So, the right-hand side of this

particular equation plus del 2 u i star divided… Or, del x j star square will be equal to 0,

because  the  left-hand  side  here  is  essentially  dominated  by  the  lesser  magnitude  of  the

Reynold’s number.

−∂P❑

∂ xi
❑ +

∂2ui
❑

∂ x j
❑2

So, irrespective of whatever this quantity here is, the overall size of the quantity in the LHS

because of the low value of Reynold’s number is very small in comparison to this quantity

inside the brackets. So, because it is overall negligible, we can assume this RHS part of the

equation to be equal to 0.

So,  what  are  our  conclusions  from this  particular  statement?  So,  one  conclusion,  which

almost always comes out is that, at this particular scale, the momentum equation becomes

time independent. Therefore, it is almost always obvious to assume that, if suppose you have

two or three flows, which are introduced into a same micro-channel and we assume a low

value of Reynold’s number, due to which the left-hand side of the this continuity equation or

momentum equation becomes 0; the obvious conclusion would be that, the pressure-driven

flow – number 1; and, the number two is that, it is time independent. So, therefore, if you
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could actually run past both these different types of flows from the outlet and back into the

inlet and that, you reverse the flows in time, they should be able to emanate as original inlets

to the particular channel. So, this is illustrated in this particular example here. If you see

again, I would just like to reiterate and this slide was shown before.

(Refer Slide Time: 05:50)

There in microfluidics, very often there are situations like this here, where you are seeing;

where, you have these different dyes, which are flowing into this particular channel. You have

about 1, 2, 3, 4, 5, 6, 7 different dyes here. And, as you see, as this flow happens past this

micro-channel  here  and  goes  for  a  certain  distance,  you  are  able  to  extract  the  dyes

independent in the same color as they were introduced originally at the other ends. Therefore,

it is really… The momentum equation is really time independent. Assuming that, these were

to be true; this is actually a simulation result done by Whitesides group at Harvard. If you

assume this flows to be flowing in the reverse direction; then, you should be able to get these

flows out as independent dyes or as independent colors. So, this is in fact the essence of the

scale down form of the momentum equation in this particular scale.

So,  the  domain  of  microfluidics  therefore,  is  a  very  very  novel  and  interesting  domain

wherein it is really really very hard for flows laid out together without any diffusional effects

to mix. However, because of this particular deliberation that has been just shown in the last

slide; and, the time independents of the momentum equation – all the mixing, which happens

at the micron scale takes place because of a concentration gradient; and, it diffusional in

nature. So, basically, that kind of gives as a field that, it may be kind of impossible sometimes

to flow two fluids together in a micro-channel and mixed them. If the two flows have equal
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concentrations and there is no concentration gradient, which is established between the flows.

That  is  number  1.  And,  number  2  is  that,  it  becomes  a  very  interesting  paradigm  in

microfluidics to design intelligent systems, which could be actually… Suppose there is also

existence of diffusion in the parallel flows, which could be actually promoting diffusion and

reducing the diffusion time in a manner that, it becomes lesser than the residence time of the

flows; and, the flow starts mixing. So, these are two interesting paradigms in microfluidics.

(Refer Slide Time: 08:35)

So, I would like to go ahead and actually see some of the effects of Reynold’s numbers on the

different flows particularly within the micro-channel.  And, I call this slide – transition to

turbulence within the micro-channel. So, if you see here, there are different Reynold number

values at which we have plotted the u by umaximum, which is essentially the velocity at a certain

position divided by the velocity at the center, which is the maximum velocity. And, this is

plotted with respect to x by dx, is the position at which the velocity – local velocity is u; and,

D is essentially the diameter of the particular channel. So, as we see here, the Reynold’s

number definitely is a very good predictor of when the turbulence will take place. The plot is

between the velocity ratio at a point within the micro channel; and, the ratio of the distance of

that point from the center.

5



And, the conclusions from this are that, if you see this particular plot here; it is basically at a

very high Reynold’s number value – 2770. You see a fairly large scatter in the velocity. So,

therefore, you can see that, if you see, this scatter can be also represented by this span of the

parabola and inverted parabola. And so, if the span is much more in this case as compared to

the low Reynold’s number cases from 238 to almost 1980 when the scatter is not that high;

and, which also shows that, probably at 2770, there is a transition. Or, between 2770 and

1980, there is definitely a transition into the turbulent zone. So, therefore, there is no control

really on u after this higher Reynold’s number values reached; whereas, at a lower Reynold’s

number value, there is still some control and you can really say that, the flows have not yet

turned into eddies or vortexes; or, it has not really turned into turbulent flows. So, that is what

this  graph would indicate.  So,  therefore,  the flow shows fairly  small  matter  between the

velocity profile for Re values between 238 and 1980. And, a white scatter at 2770, which

means that, the transition is expected in the region 1000 to 2000, which is also true otherwise

that, there is a transition definitely between Reynold’s number 1000 and 2000 whether it is

the macroscopic counterpart or the micro-channel.

(Refer Slide Time: 11:12)

So, one more interesting paradigm to be valuated in microfluidics is related to the effects,

which can come at the entrance of a micro-channel. So, as we know that, as a channel is

approached by a flow of a constant velocity and pressure-driven flow; at the moment after the

flow  enters  the  channel,  there  is  always  sometime,  which  the  flow  takes  to  get  fully

developed, where this parabolic profile of the flow gets created within the micro-channel.

Now, in cases… – within channel; in cases of micro-channels though, this length which is
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also known as the entrance length, where the flow profile or whatever the flow profile takes

would get developed fully really also is a kind of function of the Reynold’s number. And, it is

very very critical to design micro-channels by assuming what really would be the entrance

length over and above which the flow is fully developed within the micro channel. So, let us

explain this event by saying that, there are lot of fundamental differences in the physics of

flows between micro and macro scales.

And, so most of the fabrication techniques – as you know typically to two and a half D. And,

therefore, one might think that, the flow in 2D is independent of the z direction. However, the

aspect ratios that are normally realized that, sometimes 1 and z becomes a critical direction

for this kind of flows. And, when a fluid flows from a large vessel or a reservoir into a small

one of a constant cross-section; which means that, the velocity of approach of this particular

flow is almost constant and it approaches this small channel here. The flow takes or the flow

profile  requires  a  certain  distance  to  get  fully  developed.  So,  this  is  also  known as  the

entrance length. So, various people have tried to experimentally and otherwise calculate what

this entrance length would be.

And so, the best experiment that was proposed by Shah and London was that, the amount of

length needed for central line velocity to develop 99 percent of the full velocity is actually

given by this expression here Le – Le is the entrance length – divided by Dh is equal to… So,

Dh is essentially the diameter of the particular channel is equal to 0.6 divided by 1.0 – 0.035

Re – Reynold’s number at that particular diameter or cross-section. And, plus 0.056 Re –

Reynold’s number at that particular cross-section. 

Le

D h

=
0.6

1−0.035ℜ
+0.056ℜ

So, entrance length is really then a function of the Reynold’s number very critically; and also,

the cross-sectional diameter of the particular micro-channel.  So, typically, Le is  normally

about 60 percent of the hydraulic diameter in case the Reynold’s number is low, because then

there  is  –  one  is  prominent  over  this  term 0.035  Reynold’s number  or  0.056  Reynold’s

number.

However, in cases where this Reynold’s number becomes a little bigger, the entrance length

effects are felt more appropriately. This is the hydraulic diameter – cross-sectional diameter

or the hydraulic diameter. So, is cases where the Reynold’s number becomes little bigger, the

contribution from this term and this term is significantly enhanced. Therefore, the entrance
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length becomes less than 60 percent – half the hydraulic diameter. What does it mean really?

It  means  that,  if  suppose  in  case  of  a  micro-channel,  when  the  Reynold’s  number  is

comparatively low, the entrance length has significant amount in terms of 60 percent of the

hydraulic diameter supposed to macro scale with the R e is more, where this is much much

lesser than 60 percent.  So, this  kind of shows that,  whenever you want to design micro-

channel, you almost have to be careful always about selecting the entrance length before the

perturbations of structures that you would like to create within the micro-channels to cause

certain phenomenon – physical phenomenon would start to be placed. So, you need to wait

up till the entrance – the whole entrance length, which is needed for developing the flow fully

is transverse or traversed before the flow can get into a region where significant differences

can be made to it by changing the physical form or shape of the micro-channel. So, definitely,

entrance effects are very very critical as far as microfluidics are concerned. So, this kind of

brings  us  to  an  end  of  the  kind  of  theoretical  analysis  that  was  needed  to  understand

microfluidics.

So, I would like to go ahead now today and try to get into a little more different area as to

what would happen really if the continuum assumptions fail. And essentially, then would be

talking  about  things,  which are more related to  intermolecular  forces.  And,  scaling  from

microns to nanometers, it  is very important that, we consider now an altogether different

approach, which is not driven by continuity; and, which is more driven by intermolecular

forces  between the  molecules,  which  are  present  in  a  very  small  nanometer  cube  size  –

probably control volume. And, after that, after looking into that aspect, really I would like to

go ahead and start the topics of the actual technology that microfluidics can be put to and

then can be directly applied to as in bioMEMS wherein we would start realizing these active

devices like micro-valves, micro-mixers, micro-pumps, etcetera. And, the idea is that, after

we demonstrate all these on a fundamental level, we will go ahead and assemble these units

together on a single bioMEMS platform, which would do something useful and important.

The last part of the course would be probably dedicated to viewing some of the papers and

articles, which have been in this area, where these small fundamental concepts are introduced

and integrated together to form integrated systems. We should do total chemical analysis.

So, let us actually go ahead and see what happens when the scale changes to a little bit lower.

And, as I  told you before in one of my earlier  lectures that,  continuum assumptions fail

beyond a certain scale. Let us say for example, if you have a small control volume, which is

about 1 nanometer cube in dimensions; and, you assume or you try to find out what is the
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density  or velocity of molecules,  which are within this  1 nanometer  cube.  So, there is  a

tendency of the molecules to rush past in the boundaries of these very randomly with time as

a resulting in change in density with time, maybe a change in viscosity with time. So, all

these properties, which were assumed to be kind of averaged out properties as in case of

continuum mechanics  or  continuum fluid  mechanics  would actually  boil  down to  a  time

dependent  property  when  you  go  to  this  particular  scale.  And  so,  therefore,  whatever

presumptions – maybe a Stokes equations made in assuming that, the density is constant, the

flow is in compressible or even if the velocity or this really only dependent on space. And,

even if it  is dependent on time, it does not change at a certain instant of time. So, these

assumptions were made in order to derive the Navier-Stokes equations. However, that is not

true at  that small  scale of 1 nanometer cube or so. And therefore,  inter molecular forces

would play a major role there in order to figure out what is going on in terms of interactions

between the molecules, etcetera.

(Refer Slide Time: 19:35)

So, intermolecular forces – so, what are intermolecular forces really? So, if you look at the

different states of matter, you can really categorize matter into solids, liquids and gases. And,

these are  all  based on the interaction among the different  states depending on the forces

between molecules of these particular states, which comprise the matter. So, these interaction

forces can be very well explained by a model of potential energy of two such molecular

systems, which are close by – by a distance r. And, this is also known as the Lennard Jones

potential model. Essentially, it is a non-dimensional equation; and, we have a scaled down

factor  there.  So,  you  have  a  scale  factor  for  distance  essentially  between  let  say  two
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molecular systems. And so, without going to the details of derivation of such an equation, I

would just like to illustrate, because most of the simulation work, which is at this nanometric

scale as far as fluidics is concerned is more using this model of Lennard Jones potential.

So, let us say you have two systems: i and j; and, that means two molecular systems of this

particular  notation.  And,  they  are separated by a  distance  r. So,  the potential  that  would

happen  between  two  of  these  i  and  j  systems,  is  essentially  equal  to

V ij (r )=4∈[C ij( r
σ )

−12

−d ij( r
σ )

−6

] .  Let  me  just  go  ahead  and  explain  what  all  these

different terms are. So, epsilon is essentially the scaled energy. Now, this is the scaled energy

–  characteristic  energy  scale  we  call  it  –  characteristic  energy  scale.  And,  sigma  is  the

characteristic distance scale or the length scale. So, this is the length scale. By now, you are

probably  familiar,  because  we  did  a  scaling  down  in  the  Navier-Stokes  equation  of

conservation of momentum. I probably are aware of what these different scales mean. So, it is

essentially a characteristic distance or a characteristic energy value at the scale at which all

these  different  forces  or  potentials  are  considered.  So,  r  by  sigma  essentially  is  a  non-

dimensional term. Similarly, Vij by epsilon again is a non-dimensional term, because it is a

comparison of the potential with respect to an energy scale; that means a value of energy at

that  particular  scale  in  which all  these experiments  or  all  these equations  being used for

studying intermolecular behavior.

What is more interesting here is that, there are two different terms and dependencies on r by

sigma. One is to the power of minus 12; another is to the power of minus 6. So, these –

essentially this minus 12 term would signify the pair-wise repulsion that exists between two

molecules. And, this  repulsions as you all  know are because of interelectronic repulsions

between the two molecular systems. So, there are orbitals, which contain electrons, which has

a probability of having an electron or having a bunch of electrons. And, when two of such

molecular systems come close by, there is a repulsion between the electrons on both these

systems, which would cause them to have a positive potential. So, it takes some work for

getting them any closer than the characteristic distance r in which they are placed. So, that is

what the r minus 12 dependence would signify.

Then, there is a r minus 6 dependence, which is a mildly attractive potential. And, this is due

to Van der Waals interaction forces.  So,  what are  really Van der Waals forces? They are

basically attractions between formulated between two such molecular systems between the
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electrons on one and the nucleus on another; and similarly, the electrons on the other and the

nucleus on the first one. So, that is what Van der Vaals interaction forces are and they are

principally attractive in nature. However, they are very weak forces, because essentially, the

attraction between the nucleus on the first and the electron on the second has to go through an

electronic layer; I mean it has to seal through an electronic layer; it is sealed by an electronic

layer, which is in between. So, therefore, r by sigma to the power minus 6 dependency is a

pretty much weak force in comparison to the minus 12 dependency, which is a strong force.

So, therefore, we can easily say that, the potential is contributed by the pair-wise repulsion

and the pair-wise attraction given by these two terms here – minus 12 and minus 6.

Also, what is interesting for me to tell you is that, as you know, force in between these two

systems – i and j, is also represented by a negative gradient of the potential between the two

systems. So, we can calculate Fij 

Fij=
∂V ij (r )

∂r
=

4 δ∈
σ [C ij( r

σ )
−13

−
d ij

2 ( r
σ )

− 7

]
where, r is the intermolecular distance between these two molecular systems. Now… So, in

this  particular  scale,  I  can  also  assume  that,  the  corresponding  time  scale  would  be

represented by this quantity here – sigma root over m by epsilon; m by epsilon again is mass

per unit energy, which has the dimensions of square of velocity. And so, velocity – a typical

characteristic velocity at this scale could be represented by the mass at this scale divided by

the energy at  this particular scale.  And so, therefore, if  you under root the mass per unit

energy, it gives you the velocity scale. And, dividing the distance sigma by the velocity scale

would give you an indication of the time scale – what kind of times or characteristics times

would exist in this particular scale.
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(Refer Slide Time: 26:48)

So, what is also interesting here is that, if you really plot the dimensionless parameters v r by

4 epsilon and f r by 48 epsilon times sigma, which is essentially if you just see back in this

equation,  nothing but  this  whole  dimensional  term in  one  case;  the  force  divided by 48

epsilon sigma.  And,  this  whole dimensional  term on another  case,  which is  V ij  –  the

potential function divided by 4 epsilon. So, these are two non-dimensional terms. And, what

is interesting here to find out is that, essentially, there are two curves, which come out: one is

for  the  potential  function.  And  of  course,  these  dimensionless  numbers  are  plotted  with

respect to the separation distance r by sigma. So, what we find out here is that, the behavior

in both the cases are pretty much similar except the fact that, the force value has deeper well

in comparison to… The potential value has a much deeper well in comparison to the force

value here.

What  is  also interesting here is  to  note  that,  beyond a  certain  distance – let  us  say this

particular  distance,  where  it  really  has  the  peak  point;  the  forces  kind  of  try  to  gain

prominence of the Van der Waals attraction. So, this region here is the repulsive force. So, if

you see, the dimensional quantity in this particular example, 
Frσ
48 E

 is continuously going

down; which means that, if you look at the dimensional quantity here, which is let us say

Cij( r
σ )

−13

−
d ij

2 ( r
σ )

− 7

. So, this going down would signify that, this term here – the second

term here is starting to dominate; and, which means that, this is the pair-wise repulsion; this is
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the pair-wise attraction and the Van der Waals attraction. So, the Van der Waals attraction is

continuously dominating or it is trying to dominate. But, essentially, it is being superposed by

the higher value of r by sigma when it is below a certain separation distance. So, after it

crosses a certain characteristic separation distance, this component here really predominates,

which is actually essentially this point here, where the pair-wise attraction becomes more

than the pair-wise repulsion. After which again, there is a slow prominence sort of slow gain

of the first term, where it asymptotically goes all the way to 0. So, if you draw the potential

function really, it also shows similar behavior.

The point where the forces have really changed from being perfectly repulsive to slightly an

attractive here, the potential function is actually dipping down to its minima at that particular

point, where they are probably close to zero forces; there are no forces of any attraction or

repulsion. And, the attraction repulsion is kind of balanced to each other. Both the terms in

the dimensionless quantity are equal to each other. So, if you really look at these – Reynolds,

this Lennard Jones functions in case of diatomic gases particularly… or in case of certain

gaseous states, the values of various parameters available for limited number of molecules

have only been studied and summarized. And specially, they have been done so more for

gases wherein you can find out the characteristic energy scale per unit Boltzmann constant;

and also, the characteristic distance scale.

Mind you – there are only very few systems in the world which have been really modeled and

studied for finding out these different energy scales or distance scales, etcetera. Some of them

are illustrated here in the table, like for example, in case of air, the energy scale would be…

Typically, energy scale connect Boltzmann constant k would typically be equal to about 97

kelvin. For N2 – nitrogen, it would be about 91.5; for CO2, it is 190; oxygen, it is 113; Ar –

124, so on, so forth. And, in terms of distance scale in nanometer range, air molecules have

probably a characteristic distance of 0.362, which goes all the way to about 0.3424 organ. So,

these have been of course, calculated, assumed by assuming the Cij  and d ij parameters

to be both unity. That is how these values have been really calculated. So, the times scale for

these kind of energy and distance scales come out to be about 2.2 pico seconds. So, these are

some of the characteristic dimensions, which are available at the atomistic scale that we are

talking about.

The plot again here as you are seeing has been shown only for these few systems. What is

interesting here, what I did not discuss before is that, it is basically the potential energy scaled

by a factor of 1 by 4 epsilon and the force scaled by sigma by 4 epsilon. And so, the effects of
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these constants in the table above here really is to not change the basic characteristic; but, to

actually shift it by adding a DC bias. So, the whole curve can shift up and down if these per

characteristic parameters – epsilon by k and sigma would change without really changing the

behavior of the trend that, the dimensionless number would follow with respect to r by sigma.

So, that is all about Lennard Jones potential models.

(Refer Slide Time: 32:56)

So, if you look at the states of matters really; what are the differences in terms of forces; so,

in  a  solid,  we  can  assume  all  the  molecules  being  densely  packed  and  held  by  strong

repulsive forces. This pair-wise repulsion is very high in some solids. And, as a result of

which, putting a particular atom from its position out of that is highly difficult, because it is

being repelled from all these sides by equal amount of high repulsive forces. So, it remains in

its state very firmly bound in where it is without really being able to get liberated from that

particular state. So, moving an atom from one neighborhood to another becomes an immense

problem. So, for a molecule to kind of leave its neighborhood and join another neighborhood,

you would need to provide energy to the system. And, this  energy would be in terms of

thermal energy.

So, essentially, if you have bond vibrations, which are happening between this  molecular

systems, after a while the energy – the kinetic energy of the molecules would be sufficient

enough for it to leave one neighborhood to another. And, that is also known as the melting

temperature or the melting point of the particular solid, where the molecules are just about

capable to move between neighborhoods. And, it has sufficient amount of kinetic energy for

doing that. And, beyond the melting temperature of course, the average molecular thermal
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energy becomes high enough, so that the molecules are able to vibrate freely, go over large

distances  and  between  one  neighborhoods  to  another.  And,  if  the  distance  that  they  are

traversing or the distance scale that they are traversing is still sigma; they are also called

liquid state material.

But, then if the distance becomes almost an order of magnitude more like about 10 sigma or

so, they are known as gaseous states. In that kind of a situation, where the intermolecular

distance is more than about 10 sigma; sigma being the distance scale in the solid scale – solid

state; these are essentially then known as the boiling temperature. And, the species are known

as gaseous species. So, in a nutshell, there are three different configurations to look at solid

state. The atoms are firmly bound; there are high – huge amount of repulsive forces to an

atom in its pocket from all its neighbors. And, movement between neighborhoods becomes a

possibility, becomes an impossibility. In gaseous state or in a liquid state, just about when

kinetic energy is applied, has been able to lift it to a state, where the atom can move from one

neighborhood  to  another;  the  distance  is  moved  still  about  same  range  sigma.  But,  the

moment just becomes possible; it is known as liquid state or the melting point or the material.

And, at a point when this sigma increases to about 10 sigma or so and there is total decontrol

on the molecule from its current location, it reaches the boiling point; it is known as the gas

phase.

(Refer Slide Time: 36:16)

So, therefore, with this kind of a concept in mind, let us actually look at what happens when

the continuum fails. So, we would like to do this molecular approaches to estimate flows

particularly when there is a failure of the continuum approach. And so, on the other approach,
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which  has  probably  emerged  for  solving  liquid  flows  is  called  molecular  dynamic

simulations, which talks about all these intermolecular forces as I have been telling before –

intermolecular forces; and, which can be established from the Lennard Jones potential model.

So,  the  MD  technique  is  in  principle  very  straightforward;  it  is  an  application  of  just

Newton’s  second  law.  And  so,  what  is  Newton’s  second  law,  the  product  of  mass  and

acceleration is equal to the total amount of force that a particular system should have. So,

same can be translated into molecular systems as well. So, however, we have to somehow

ascertain how to find the acceleration of this kind of a molecular system.

We already know that,  from Lennard  Jones  potential,  we can  find out  the average force

between two molecular systems: i and j separated by a distance of r. So, essentially, that is

what we are doing here; the product of mass and acceleration of each particle is equated to

the sum total of forces because of Lennard Jones equations. And, the technique really begins

with a collection of molecules in space. Now, each molecule has a random velocity assigned

to  it  as  per  Boltzmann velocity  distribution.  And,  the  molecular  velocities  are  integrated

forward in time to arrive at the new molecular positions. And, if you see the intermolecular

forces really, which are equated to
mi d

2r i

d t2
; let us say time instant t is equal to minus d by d

r; this is the negative gradient of potential – Lennard Jones potential – sigma i naught equal to

j; that means these are systems – all systems of the likes i and all system of the likes j; there

are  two  different  molecular  systems  between  which  there  is  a  force  of  attraction  and

repulsion. So, it is the negative gradient with respect to r of V i j.

mid
2r i

d t2
=

−∂
∂r

∑
i→ j

V ij ( ŕ i−ŕ j )

Here the assumptions that we use to simplify is that, if  you consider a molecular system

really, it is a huge amount or a huge number of molecules. 1 mole as you know is about 10 to

the power of 23 molecules.  And so, therefore,  if  suppose you are talking about a certain

radius or if you are talking about a molecular system where there are thousands of these

molecules, which are interplaying and there are intermolecular forces between these thousand

of molecules; there would be a tendency of the computations to go extensively at a very high

rate. And, that is sometimes… So, essentially that, the whole idea is that,  in a molecular

system like this, if you have one molecule and surrounding thousands or actually millions of

molecules;  there  are  intermolecular  forces  between  this  one  molecule  of  interest  and  its
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neighborhood, which comprises of millions of such forces. And, it makes the whole system

computationally extensive. And, the solutions may not converge with time and there maybe

issues related to more number of computations. And, to solve this problem, you really need to

consider an effective radius within which you can consider the interactions. So, this is called

a cutoff radius.

If the radius is exceeded or the radius goes beyond the cutoff radius, we assume that, the

molecular forces are rising out of molecules rising or which are outside this cutoff radius is 0.

So, you kind of terminate the calculations at a certain intermolecular distance; beyond which

you assume that, the distances are too large for the forces to be really effective in the overall

calculations. So, therefore, this Lennard Jones function really changes into V ij (ŕ i −ŕ j ) ; rj is

essentially the vector radius;  where,  there would be a force cutoff. So, this is the cutting

radius or cutoff radius. And, any point below this would be effectively considered in the

calculations here.  So, the force… So, it is kind of a truncated solution.  So, the truncated

solution of the force between a radius – with a cutoff radius of let us say r j within this

particular case is given by minus d y d r of sigma; i not equal to j; that means these are two

different molecular systems:  V ij (ŕ i−ŕ j ) . And, this is equated to by the Newton’s second

law 
mid

2r i

d t2
. So, this is the acceleration at time t.

The forward integration of this twice successively would give you the new position vector r I;

from which  you can  again  recalculate  this;  consider  its  criteria  to  define  the  new cutoff

radius. And so, therefore, from position to position, you can have a very good estimate of the

velocity, the position vectors and the acceleration vectors of these individual particles based

on  this  force  change  of  momentum  approximation.  And  so,  therefore,  the  averages  of

velocities let us say are calculated by if you have a knowledge of all positions by this forward

time integration and you want to find the x velocity; so all the x positions – the d by d x i by d

t; you make a sigma of all these and calculate an average velocity – an average density – an

average of other properties, etcetera.

Mind you because these positions are changing with time, these quantities would also be

changing with  time.  So,  even  though  the  continuum assumption  is  not  evaluated  in  this

particular  case,  the  averages  keep  on varying  based  on the  interactions  –  the  molecular

interactions in that small controlled volume. And so, therefore, and this appropriate… This is

a very appropriate and a very accurate technique to simulate the motional properties of fluids
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at the nanometer scale. So, these are called molecular dynamic simulations. In fact,  such

simulations can be used to study a lot of a properties like combustion, fluid mechanics in

general,  then all  sort  of surface-based interactions with charged molecules or interactions

between different charged molecules in a system, so on, so forth. And, they are very very

useful as a technique to predict the position vectors, velocity, average properties, etcetera;

time-variant essentially. So, this kind of gives you an estimate of how from continuum to a

scale  where  continuum does  not  hold.  You  could  change  your  approach  to  get  different

solutions.

(Refer Slide Time: 44:27)

Now, I would like to now go more towards the application side and describe these different

kind  of  applications  of  these  micro-scale  fluidic  techniques  into  realizing  engineering

products like micro-valves, micro-mixers, micro-pumps, and etcetera. So, let us study these

one by one. So, would like to first start by looking at micro-mixers.
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(Refer Slide Time: 44:36)

So, if you look at really the characterization of a micro-flows; the first property which comes

out as we have seen earlier is the low value of Reynold’s number. Of course, it is the ratio

between  inertial  and  viscous  forces  again.  And,  you  can  mathematically  define  it  as

e=
ρ v D

η
 ; rho is the density; v is the velocity; d is the dimension at that particular scale;

and, mu is the viscosity of the medium. And, the way you calculate d in Reynold’s number is

essentially four times area by parameters. And, it is also known as the hydraulic diameter of a

particular section. So, based on the different ranges that this Reynold’s number kind of comes

into  ranges  of  values,  you  could  categorize  flows  into  many  types.  So,  this  table  here

illustrates the corresponding range of Reynold’s number with the description of the flow. So,

as you are looking at R e between 0 and 1, which is mostly the case in microfluidics, the

flows are highly viscous; they are highly laminar; and, they are as if they execute creeping

motion as if they are moving in a very tightly packed – close-packed channel or creeping in a

close-packed channel without really interfering much into each other’s path. The molecules

move in perfect stream lines parallel to each other.

So, for a Reynold’s number of 1 to 100, the flow still remain very very laminar. And, there is

of  course,  very  strong dependency on the Reynold’s number as  this  particular  scale.  So,

suddenly, the flow properties may demonstrate a change in behavior with very minute change

in  the  Reynold’s  number.  If  you  go  slightly  above  and  consider  the  Reynold’s number

between 100 and 1000, the flows again are very very laminar; they have not yet changed

regimes; however, here in this particular range, you could really have a very good boundary
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layer, which is formulated. If you may recall,  boundary layer again is the layer, which is

separating the fully developed flow from the flow, which is made up of these – flow which is

actually having shear stress. Or, they are nominated by shear. So, therefore, this boundary

between the fully developed part and the sheared part of the flow is what laminar boundary

layer  apparently  is.  And,  this  boundary  layer  formulates  whenever  very  close  to  a  fixed

surface  maybe  a  channel  inner  or  some  kind  of  flat  plate  or  flow  over  a  surface.  So,

essentially, this  Reynold’s number  –  range of  100 to  1000 would  inculcate  a  prominent

boundary layer. And, here most of the theorizing of boundary layer is very very useful.

If you change the Reynold’s number a little bit from 1000 plus all the way to about 10,000;

there is a slow transition, which takes place; and, the flow goes from laminar to turbulence.

But, then this is really a transition; you have instances where the flow is slightly laminar or

instances where the flow is turbulent and there is slowly changing the behavior after a certain

value let us say 10 to the power 4 or so up to about 10 to the power 6. The flow becomes

fully fully turbulent. And of course, in this particular range, there is some Reynold’s number

dependence,  which  happens  particularly  from 10  to  the  power  4  to  10  to  the  power  5

Reynold’s number; beyond which up to all the way up to infinity, not only flow this turbulent,

but it is having any very less dependency on the Reynold’s number. And essentially, that is

probably because the flow really gets defined, but the local eddies and vertices more than the

overall bulk flow. And, that is essentially what these different categories of flows are with

respect to different values of Reynold’s numbers. So, what I would like to reiterate here is

that, as I told you before in the 1 to 100 case or even less than 1 case as is mostly the case in

case of… It is mostly the case in all the microfluidic devices. The mixing behavior or the

mass  transport  between  the  mixing  inter  layers  typically  is  not  really  dependent  on  the

momentum of the flows. There are no eddies or no vertices which would cause mass transport

between the two mixing inter layers just by virtue of motion. You need something else to

drive the flow in a perpendicular direction. And, what could be more appropriate done, a

concentration gradient. And so, therefore, the diffusion approximation comes into picture.

Most of the micro-scale flows mixing takes place primarily by diffusion.
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If you look at the diffusion equation really, the diffusion flux, because of the existence of this

concentration gradient here dc/dx, they are kind of proportional to each other. So, diffusion

flux is proportional to the negative gradient of concentration with respect to the perpendicular

distance. And, the proportionally constant really is d here; the diffusion constant, which can

be varied for different states of the matter. For example, diffusion constant is very very low if

you consider solid. You see this scale below here – diffusion constant is in the range of about

10−10  in case of solid. In case of polymers and glasses, this constant increases a little bit;

goes to about 10−8 . But, still is very very low; most liquids have a diffusion constant in

the range of  10−6  to  10− 4   in this particular region. And so, therefore, it is of some

significance; the diffusion is of some significance as far as liquid is concerned. But, in case of

gases,  as  this  constant  is  very  high,  it  is  about  10−2 to  10−1 centimeter  square  per

second. And so, therefore, you have to be very very careful about diffusion as you go to gas

flows.

However, most microfluidics being single phase and mostly liquid dominated, the diffusion

constants that we will be considering in all our calculations are in the range of about 10−6

to 10− 4   . So, the mass transport M t across the boundary between two fluids is also equal

to the flux times of the area of interface between the two mixing fluids. So, you have let us

say two fluids running parallel and their interfacial area is a and flux is phi. So, the amount of

mass transport Mt really is equal to phi times a; phi being the mass transport per unit area or

the flux of mass per unit area. So, therefore, interfacial area in such cases becomes highly
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prominent  especially  when mixing is  concerned.  So, if  you have somehow a mechanism

wherein you can accommodate two flows over a longer amount of or over larger amount of

area,  automatically,  their  mass  transport  would  be  more.  Sometimes  it  becomes

architecturally promising to design micro-mixers, where this area of interface between the

two flows is  increased resulting in  some mass transport.  So,  area is  more than the mass

transport M t is more.

Also, of special significances, an equation, which I am not going to prove here though; but,

then I have just borrowed it from normal diffusion kinetics. And, here it talks about the time

of diffusion. And so, the time of diffusion essentially equal to d square by 2D; d being the

path length over which the two flows are going for which they are diffusing at the end or

throughout as they are going with respect to each other; and, big D here is the diffusion

coefficient. So, if you have a length l of a channel over which these two flows are mixing and

going as they move along; the length l is nothing but the path l – the path d – a path length d.

So, if the length is more, then in that case, the time of diffusion tau is automatically more. 

So, this length is essentially the cross-sectional length when we are talking about two flows,

which are going in a particular channel of the cross-sectional length l. So, it almost makes

sense to assume here that, the time of diffusion will reduce if the d value, that is, the cross

section length value of the two flows is reduced. So, if I am able to somehow create shorter

laminase of these flows and thus the cross-sectional length of the flow reduces by division of

d into let  us say n; where,  n is the number of laminase; then,  automatically, the time of

diffusion should also reduce as the square of the reduction in the d. And, it is a very important

understanding that one must have in order to design what you call  passive micro-mixers,

where the whole idea is how the diffusion length can be split up into smaller values, so that

time  of  diffusion  would  reduce.  And,  the  whole  essence  of  microfluidic  structures  or

microfluidic architectures is how the time where these two flows have been introduced from

one side and the side within the chip is going to be more than the time that the fluids take to

diffuse into each other. So, by the end of the day, at the end of the day when it emerges out

from the other side of the chip, they are fully mixed. 

So, range of d values for different states are indicated here in this particular illustration. And

essentially,  that  is  a  little  bit  of  fundamentals  of  how  mixing  would  take  place  at  the

microscopic length scale.
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So, what really would be considered when we talk about design of micro-mixers? So, the

number 1 problem that we are left with this is the small value of the Reynold’s number; and

therefore,  the  diffuse  of  mixing.  So,  design  consideration  should  be  definitely  based  on

somehow being able to promote diffusion between the two layers. And essentially, which

means faster mixing time in general requirements, small device size; and also, it should have

kind of integration ability particularly in complex system with the overall  setup.  So, fast

mixing time again can be achieved by as I told you before, decreasing the path length. The

path length means the cross-sectional path – the path that the diffusion happens along, is

perpendicular to the direction of the actual flow of these fluids. And, you can also have more

accurate or better mixing and faster mixing by increasing the interfacial area between the two

or more mixing streams. So, smaller the mixing channel length, faster would be the mixing

process. However, the desired high throughput particulate in field and high driving pressures

do not tolerate too small channels; that is unfortunate a part.

Most of these flows in microfluidics as you know are pressure driven. And therefore, too

small a channel would have too high a resistance. And therefore, the yield at the end of the

channel of the flow would be so small that, it  is very negligible. So, you have to design

something where in you can still be able to get substantial amount of throughput, but at the

same time the mixing can be faster. And so, therefore, lamination is something that comes

into picture automatically; that means you split up let us say two streams of two different

dyes or two different colors, which you want to mix into multiple streams stacking with each

other. So, if you have n such splits, what would happen is that, you have one stream with a
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diffusion length d – a cross-sectional length or two streams going into a cross-sectional length

l or d, which is also the diffusion length. And, in another instance, after n splitting, the cross-

sectional length is simply reduced by d by m. 

We are going to investigate this a little bit further as we do mixer designing. So, therefore, the

first solution really is to split n sub-streams and rejoining them again in a single stream, so

that the mixing time reduces by a factor of n2. So, this is basically the principle of lamination

mixers. So, this kind of brings us to an end of this particular lecture. We have a take-home

message that, mixing essentially is diffusional, this is dependent on the interfacial area, it is

dependent on the diffusion length; time of diffusion essentially has to be kind of lesser than

the time of residence for the flow to be effectively mixing with each other. And, overall

requirements of a micro-mixer should be it has a faster mixing time, small device size and

integration ability particularly in a higher order complex system. So, we will consider these

aspects in a little more detail in the next lecture. Thank you.

(Refer Slide Time: 58:32)
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