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Let us do a  quick review of what  we did last  class.  So basically we were talking about

different kind of fields like stress fields, we try to understands what stress fields is in terms of

area vector and the force in the normal as well as tangential direction. We also discussed

some basic differences between volume and surface forces and you know some examples so

kind of a coin like for example, gravity is a big volume force ,it is a body force where as a

forces less to viscosity are more predominantly on the surface to the surface forces. We talk

that describe this stress tensor which is essentially a matrix three by three matrix where you

have the principle stresses in the diagonal element in the non diagonal element here stress

component. We described a basic notional classification of a how to represent the stress tau y

x would mean there is a force in the x direction,  and it  is  along an area vector pointing

towards the positive y direction that is how we call it  τ yx stress which is shear, so area

vector which this  is  forces as shear  it  is  in the y direction in the force itself  is  in  the x

direction.

So we saw that basic classification, we try to derive the basic Newton’s law for viscosity,

Newton’s law for viscous motion of fluids where in a correlation where drawn out between
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the shear stress  τ xy with the rate of deformation du/dy, and we classify different fluid as

Newtonian, non-Newtonian. Newtonian where in this stress and velocity gradient are in direct

proportion  with  each  other;  constant  of  proportionality  being  viscosity  which  later  on

converted into kinematic viscosity, because a better physical idea would be to compare the

viscosity absolute values with density of solution on the medium. So then we talked about

various different kind of non-Newtonian fluids like pseudo plastic where in the viscosity

seems to go down with the deformation rate.  Dilatants where the viscosity would have a

reverse behaviors going up with the deformation rate, and then Bingham plastic which would

essentially behave as a solid up to a certain viscous beyond which it will follow the path of

the Newtonian fluid.

Then, we talked about Thixotropic fluids materials essentially where if it  described about

properties related to you know the variation or the temporal variation of viscosity time that

means the viscosity index eta would vary typically temporarily with time, it will actually

decrease with time. So then we were just about describing the difference between the viscous

and  inviscid  flows;  inviscid  flow again  definitional  are  flow where  the  viscosity  can  be

treated as zero, it is an normally you know it is really an derive situation in a never exist in

nature are there is no fluid in nature which exist with viscosity of a zero value, but then in

micro scale flows or in macroscopic flows we can consider region which becomes inviscid,

because of being away from a flat plate and we will actually a describing the situation by

considering what would happen when a flow of some uniform velocity passes over a flat

fixed plate. So the approximately the plate does not any more matter to create a velocity

gradient, so those are inviscid region of flow.
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Let us go ahead and actually look at little more of what really happen is when the flow means

flat plate. So we were talking about flow coming in x direction with a uniform velocity, let

say U∞  as you can see here and flat plate being position in the o x direction. And then we

talking about two points A and A dash, which represented as x 1 and x 2 on the x coordinate.

So some conclusion about this process that is about does not vary in the x direction and the

velocity at the B would be uniform U∞ , so we can assume that it kind of seems reasonable

to set the velocity would increase move to the y equal to A to y equal to B. So you have a

case here where there is no you know gradient of pressure in the x direction here, the pressure

is pretty much constant, we assume that U∞ to be constant at the ((Refer Time: 05:11)) it is

approach the plate then you consider that the there is almost always zone of no slip, which

comes into this layer which is close approximately of the plate which actually close all way

up to infinity beyond the certain y.

And let say the point where it goes to U∞ is B, so there definitely the shear stresses in the

region B C, C is the point you know at the surface here, and B is the point from which the

velocity goes back to  U∞ and beyond this the flow behaves as a between inviscid that is

how we interpret that in the last class. So, therefore, we know that the shear stress at present

in the region zero to yB in this particular region, so y equal to zero is this plane and y equal to

yB this plane. And essentially for y greater than yB, in this particular case, as you see the shear

forces are absent, because the velocity is now all uniform and it is riming very well with the
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initial velocity U∞ . So there are no whatsoever the shear forces in the inviscid region. And

the V viscous forces and the shear forces are only a between the y equal to yB and y equal to

zero in this particular region here.

So, we will just see what happens in x2 and this particular point, so let us look at the velocity

profile in x1, we see relatively slower moving fluid exerts retarding force on the layer above

it. As time progresses the effect of this retarding force causes the distance where the velocity

is U∞ to increase, thus it x2 yB dash as to be further away then this point here, we just point

of contact c dash. So this is kind of you know proposition rule that as the flow enters this

region and let say at point c, there is a certain velocity gradient that is establish between the

zero point or zero velocity and you know this b, where the velocity is now U∞ , but as that

the flow propagates along plate this frictional force kind of predominate.

So, therefore, this region here where the velocity would go back to  U∞ should increase,

because there is a energy lose and forms of friction as you move from point c to c dash; c

dash of course, is this new point here at you can see on this arrow. So if you assume this to

happen then we can think that you know the fluid applying retarding force to the plates, the

force an increasing as it goes long from zero two towards x 2. So, therefore, definitely the yB

dash here which is essentially this distance should be greater than yB, because it takes a while

because retarding forces more at b dash I mean c dash b dash plane this plane. So, therefore,

we know the fully develop flow here obtain y it is yB dash should certainly be greater than the

value yB. So we can also kind of reasonably assume that y c dash, so yC and yC dash are pretty

much same as you can see here and the reason being that you know the no slip zone would

always be kind of you know close to the surface. It does not go beyond into the bulk.

So from our qualitative picture, we can see that we can visualize these two different flows by

a separating layer between them. One where there is a shear, which is existing at the bottom

starting from the plate all the way up to where the fully developed flow as happened that is

U∞ , and another which is at inviscid region, where it is starts from the U infinity I mean

the fully develop flow and in goes into the bulk, so the layer which is separating these two

also known as called the laminar boundary layer, it is call the laminar boundary layer.
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So,  essentially  if  you consider  the  y  component  of  the  velocity  now, there  is  now very

interesting thing which comes out that let say you know we consider these stream lines of the

flow. And as we know from a earlier definition what are the stream lines they are tangential

vectors are line joining the tangential vectors to the direction of flow of particles so that is

how stream lines can be categorized. So let us consider this stream lines of flow and these

two different flow regions; flow region one here, which is inviscid region in flow different

two rear which is the viscous domain. So what would be need to a assume to be maintain

consistency, so our first information would be to draw these stream line kind of parallel to the

plate assuming that you know the fluids go pass the plate parallel.

Now we interestingly if there are parallel stream lines generated parallel to the surface of the

plates,  and we are saying that  in  a  one case,  there is  a  lesser  amount  of  velocity  which

increase all the way to  U∞ , in other case there is all  U∞ . They would not be much

region much problem in the region one of the inviscid region, but region two definitely there

is going to be mass transfer in the y direction, because of principally you know the amount of

feed of the fluid, if you want the continuity to be valid or if you want to assume the fluid is

the large continuum and the they cannot be any gaps in between can be one indivisible mass

of a substance flowing over the plate. So in that case if there are there is a velocity gradient

and there is a tendency of the lower layers you known parallel to the plate to reach the at a

slower rate certain point, the upper layer should move at a higher rate, and try to free occupy

that point. So there is going to be mass planes for in order to balance such a system of flow.
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This situation does not really exist because as we know that they can be a velocity gradient,

but the they cannot be any really any really any velocity in y direction even if there are

velocity in the y direction, this continuum failure never happens within the fluid. And so what

is needed to maintain the no mass flow kind of situation that this spacing between this stream

lines, different stream lines go and increasing you know the distance from the surface the flat

surface as the flow goes along, so the stream line are all kind of merging out for from the

point, where the flow as just enter along as the flow goes along the surface, flows the stream

lines gets separated by greater and greater distance, so they are not really parallel oriented,

they have different directions, which go once spreading up more and more as the flow goes

along the direction of the plate.

So essentially, we conclude that the edge of the boundary layer is not stream line and just

because of you know stream line is something across which there cannot be typically the any

mass transport,  because tangential  to the direction of the stream line the particles are  all

moving their velocity vectors are in the tangential direction to the to the stream line there is

no inward radial flow from one stream line to another. So the boundary layer which is the

separation layer between the inviscid flow which is in the top and the discuss flow which is

the in the bottom is not a stream line, because there has to be kind of you know mass flow to

maintain the balance between the lower velocity  is  and fully  developed flow velocity  U

infinity across this layer. So consecutively we conclude that the edge of the boundary layer is

not stream line, and there is a flow to the boundary layer assuming the difference in the

velocity across it. So based on some of these the concepts, we can divided all the viscous

flow regimes into laminar and turbulent.
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In a laminar regime, the flow structure is  characterized by laminae,  or layers,  this  is the

regime where micro flows are kind of  packed up. And in the flow structure is  turbulent

regime this is mostly macro scale version of flow is by random three-dimensional motion of

fluid particles. We can also categories, so we have already classified fluid as viscous and

inviscid, we have categorized fluid in a laminar in turbulent. We can also categories fluid into

compressible and in compressible. And essentially the main differences that in compressible

flows, there are variations of density along the fluid medium; whereas incompressible flow

assume the density to be just constant across the whole continuum of the fluids. So the flows

in  which  variations  of  density  are  negligible  are  incompressible,  and  there  where  the

variations  density  of  are  substantial  they  are  called  compressible  flows  that  is  how you

divided flows into compressible and incompressible apart from laminar and turbulent, and

viscous and inviscid flows.
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So let us now try to go ahead and derive the first equation of conservation of mass or what we

call the first Navier-Stokes equation, so for that a need to assume again the small control

volume. Let us say we are trying to see the amount of mass flow into this control volume, and

the amount of mass flow outside this control volume. And it is center around point o, in this

further like a cube around this point o with dimensions dx are the rectangle around this point

flow around this point o with the dimension dx, dy and d z and the x, y and z direction. And

what we would be looking at that if you assume that there is no creation of mass with in this

control volume, so whatever is in flowing in to the mass is exactly the control value is exactly

equal to the mass that is out flowing of control volume, so this is also known as continuity

equation or the conservation of mass equation.

Let us try to mathematically or geometrically derive this particular equation. So let say we

have x, y, z direction here. It is a rectangular coordinate system, and we assume a control

volume of a rectangular shape cubical with the values dx, dy and dz dimensions, so further

assume this point over all which this control volume is equally spaced, symmetrically spaced.

And we have three components of the velocity u, v and w, it is a three dimensional flow this

is the origin 0, 0, 0. And the we are trying to investigate what happens in this point o. So the

very first thing that we would like to investigate is let say the density given we have a density

rho here at a point what would be the density at let say ρ x+dx /2 , which is this particular face
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here.  So  this  can  be  expressed  again  as  a  you  know  Taylor  approximation  as

ρx+dx /2=ρ+
∂ ρ
∂ x

dx
2

+
∂ ρ
∂ x

1
2! (

dx
2 )

2

±−− .

(Refer Slide Time: 19:37)

So if you assume these dx to be infinite decimally small element and neglect all the higher

order terms here the d that the rho x plus dx by 2 really comes out to be y we are taking the

this by 2 is because we assume this whole length to be dx and this at the center, so therefore,

this face s this shaded face s here is at distance of exactly dx/2 from o that is why in the dx by

2 term. So, therefore,  ρ x+dx /2=ρ+
∂ ρ
∂ x

dx
2

. Similarly  ux+dx /2=u+
∂u
∂x

dx
2

 , where rho u

del rho by del x and del u by del x are all evaluated at o, you have to keep this in mind,

because there essentially  evaluating what  is  happening at  one of  the edges  based on the

properties of the point o, and all these values that means, including the change of a density

with  respect  to  x  change  of  velocity  with  respect  to  a  velocity  and  the  density  must

necessarily be at the point o.

So,  therefore,  we can write  similar  equation for the other  face that  is  the face on this  a

negative  side,  this  particular  face.  And  here  we  can  say  ρ x− dx /2=ρ−
∂ρ
∂x

dx
2

 and

ux− dx /2=u−
∂u
∂x

dx
2

 . Now for concentration of mass, we say in the one direction of the one
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dimension, we have to necessarily assume that the net rate of mass flux out through in the

control surface is essentially equal to the net rate of mass flux coming in the controls surface.

Since the assumption suppose that we have to have necessarily made here. So, therefore, we

have to really see that there not only the x faces, but also y faces and z faces and also faces

along the minus y and minus z direction. And so the whole equation can be thought of as you

know problem with there all these different faces are in flows and out flows, and we are

trying to see how the fluid masses concern in this particular case.

(Refer Slide Time: 22:39)

So what we do here is that let say evaluate the rates of mass flow in flow and outflow at all

the different faces. So the rate of mass flow through the positive x face is one to begin the

control volumes. So we know the density times of velocity is times of area is really the mass

per second, so density times of velocity times the area of the face is mass flow per second. So

here in this case, we can write the ρ x+dx /2×ux+dx /2dydz={ρ+
∂ ρ
∂ x

dx
2 }{u+

∂u
∂ x

dx
2 }dydz .

So  if  you  solve  this  particular  equation,  you  have  the  resolve  value  the  as

[ ρu+ dx
2 {ρ ∂u

∂x
+u

∂ ρ
∂ x }+{∂ ρ

∂ x
∂u
∂x (dx2 )

2

}]dydz .  Now  we  assume  that  the  component  dx

being very, very small into dy d z - the area the component dx by 2 very, very small this
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actually  can  be  approximated

zero which eliminates together

this particular term here. So we

are left with the equation 

[ ρu+ dx
2 {ρ ∂u

∂x
+u

∂ ρ
∂ x }] dydz=ρudydz+

1
2 {∂uρ

∂ x }dxdydz

. This is the basically just comes from you know the differentiation of the product formula so

that is what the mass flow rate is really towards the positive x face.

Now, let see what would rate would be at the negative x face, and the only difference this

case would be the rho and the U both are evaluated at x minus dx by 2 face, the area vector

always remains same in the magnitude dy/dx so this typically of course, you have to have so

the area vector is all though it is same in magnitude by it is actually negative in direction. It is

exactly opposite direction points to minus x side in this case you have to have a minus sign

representing the direction of the area vector dy dz. So in this case, the expression can be

simplified as 

−ρx −dx /2×ux − dx /2dydz=[− ρu+
dx
2 {ρ ∂u

∂ x
+u

∂ρ
∂x }]dydz=− ρudydz+

1
2 {∂uρ

∂ x }dxdydz

so that is how the rate of negative x face.

(Refer Slide Time: 28:11)

Let us do the same for the positive as well the as the negative y face, so for the bottom

pointing towards  the  negative y direction,  we can represent  this  as   −ρ y− dy /2×u y −dy /2

times of this case if you look at the area vector in the negative y direction it is dx times of dz.

So, therefore, this can be represented as −ρ y− dy /2×u y −dy /2dxdz  , and this comes out to be

again further simplified in a simplified manner comes out to be
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 −ρ y− dy /2×u y −dy /2dxdz=−ρvdxdz+
1
2 {∂vρ

∂ y }dxdydz  .  So  for  the  top  surface  pointing

towards  the  plus  y  direction,  this  would  come  out  to  be

ρ y+dy /2×u y+dy /2dxdz=ρvdxdz+
1
2 {∂vρ

∂ y }dxdydz .

(Refer Slide Time: 30:03)

Similarly, we do the same for the face pointing towards the minus z direction. And here, we

can write the velocity vector to be  −ρ z− dz/2×uz− dz/2dxdy=−ρwdxdy+
1
2 {∂wρ

∂z }dxdydz .

And  similarly  for  the  top  pointing  towards  the  plus  z  direction,  we  have

ρ z+dz /2×uz+dz/ 2dxdy=ρwdxdy+
1
2 {∂wρ

∂ z }dxdydz .
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So essentially the net mass flux then as I already talked about should be equal to the flow

through plus x direction plus the flow through minus x face plus the flow through the top plus

y plus four through minus y plus four through plus z plus four through minus z direction. And

we also assume here that if there were also make it very generic in nature. First of all let us

find out what is the summation of all these different force so that comes out to be equal to

minus rho u and I am just borrowing this from the earlier cases that we have derive minus rho

u dy dz plus half of del rho u by del x times of dx dy dz plus rho u times of dy dz plus half of

del rho u by del x times of dx dy dz plus we have similar terms for you know for the plus y

minus y and plus z minus z direction let us write them down.

ρudydz+
1
2 {∂uρ

∂ x }dxdydz− ρudydz+
1
2 {∂uρ

∂ x }dxdydz −ρvdxdz+
1
2 {∂vρ

∂ y }dxdydz+ ρvdxdz+
1
2 {∂vρ

∂ y }dxdydz+ρwdxdy+
1
2 {∂wρ

∂ z }dxdydz− ρwdxdy+
1
2 {∂wρ

∂z }dxdydz
.

And what you are left with are the second terms here right here which if we you know kind of

sum up together.
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We would be getting in equation with 

¿
∂uρ
∂ x
¿

+
∂uρ
∂ x

+
∂uρ
∂ x

dxdydz . So essentially, this is

really the net rate of mass flux out through the control volume surface, so I can write this as

the net rate of mass flux out through the control surface. What is interesting here is to point

out is that if the rate of change of mass inside the control volume is a function of you know

time that there is the mass which is generated of created inside them to control volume. In

that  case  we can always write  down that  the  rate  of  change of  mass  inside the  controls

volumes - CV is equal to 
∂ρ
∂ t

dxdydz , the rate of change of density and this can be a case

of compressive flows where there is a rate of change of density with time. Incompressible

force of flows of course, this dp by dt does not make any times d rho by dt rho s it is zero, we

assume that the density these constant temporarily is the variation of density with time of the

control volume del x del y del z. So in a more generic manner, the equations one and two

here, which have been derived; if added together should give you a situation whether it is for

compressive flow or incompressible flows.

And what you can do is that you know the total amount of mass in this manner which either

inflows  and  outflows  are  gets  generated  should  be  equal  it  to  give  zero  because  of  the

conservation of the mass so mass cannot be crated or destroyed. If you are assuming continue
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assumption inside the such a control volume particular fluid, so in that case the  

¿
∂uρ
∂ x
¿

+

∂vρ
∂ y

+
∂wρ
∂ z

dxdydz=0 .  And it actually can be in a more rigid manner written down as

∇ ρ v́+
∂ ρ
∂ t

=0 , so this is what the first of the Navier-Stokes equations are about continuity

or conservation of mass.

(Refer Slide Time: 39:10)

So typically for an incompressible flow though what you would be left with is a just this part

of the term, so what we will left with just  ∇ ρ v́ .  So incompressible flow cases, when

particularly 
∂ρ
∂ t

=0 , the continuity equation really reduces to ∇ ρ v́=0 so that means the

ρ( ∂u
∂ x

+
∂v
∂ y

+
∂w
∂ z )=0  .  Remember in incompressible flows this rho does not vary time

more space so there is absolute no variation in the density, the density either in time or space

both remains same and constant, so this is the situation of incompressible flows.

So, therefore, this becomes equal to zero, and other words  ( ∂u
∂x

+
∂ v
∂ y

+
∂w
∂z )=0   is new

form of the continuity equation particularly for incompressible flows. So this kind of try to
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understand this for an example let say we have given there exists two-dimensional flow in x y

plane, for which u becomes equal to A x. So you have to find in the possible y component for

steady flows, steady incompressible flows using the continuity equation, and also how many

y components, how many such y components be possible. So as we know here 
∂ρ
∂ t

=0 or

rho is an constant and therefore the whole continuity equation changes to del cross v vector

equals zero del u by del x plus sorry del u by del x plus give me a minute here plus del v by

del y plus del w by z equal to 0.

(Refer Slide Time: 42:57)

So,  essentially  this  means that  and also we although already know that  the flow is  two-

dimensional, so flow such a two dimensional flow v essentially should be a function of x y

right velocity v vector should only be a function of x and y. So, therefore, there is no third

component which exists or w equal to zero. In many case, so that compressible equation on

the continuity equation changes to 
∂u
∂x

=
−∂v
∂ y

=− A  . So, therefore, we can safely kind of

try to integrate and find out the value for the velocity v, so as you do that we can get v is

essentially  v=−∫ Ady+ f (x )   or  − Ay+C  .  We can assume of  function of  x to  be

constant along the y direction. So the V essentially becomes minus a y plus function of x so

this is essentially in variable in the y direction, it is a pure function of x.
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So, therefore, maybe treated as a constant in this particular case it could also be a normal

constant from that so essentially a possible y component for the study incompressible flow

can be expressed as minus ay plus function of x. So you can also say that because there is a

function of  x  involved then  many such solutions  of  the  y component  of  velocity  that  is

possible  using  the  continuity  equation.  So let  us  also  do a  little  bit  of  different  kind  of

example  related  to  an  operating  piston  and  certain  cylinder  pressure  to  understand  the

continuity equation little better.

(Refer Slide Time: 45:19)

So in this particular example,  as you see that there is a gas filled pneumatic struts in an

automobile suspension system. And it behaves like a piston cylinder operators. The boundary

conditions that are given is that one end or a one instance when the piston is at say the total

length l equal to zero 0.15 meters away from the closed end of the cylinder. The glass density

is uniform rho is equal to 18 kg per meter cube. And the piston begins to move away from the

closed end that velocity equal to roughly about 12 meters per second. And the gas motion in

one-dimensional really one-dimensional in this case and proportional to the distance from the

closed end, so it varies linearly from zero to velocity v, which means that at two ends of the

close n in the present velocity is zero and when you goes to the length l equal to 0.15 meter,

which is at one end from that means this is away from closed end, for that is for the ((Refer

Time: 46.44)) at that the velocity U becomes V. So we have to evaluate the rate of change of

the gas density at this particular instance, particularly when the piston is at 0.15 meter from
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the  closed  end  and we also  need  to  obtain  an  expression  for  the  average  density  is  the

function of time. So we need to find what rho average is in terms of rho t here.

(Refer Slide Time: 47:23)

So, let us actually try to solve this using continuity equation we have a cylinder here in the

example,  three  fix  ends  and  movable  piston  is  say  here.  And essentially  what  has  been

indicated here is that the gas density within this volume is 18 kg per meter cube. And this is

the closed end and this is for the textometry that the piston can travel and here in the question

the textometry has been given as 0.15 meter, so essentially distance here is a 0.15 meters. So

we also further know that the velocity zero, let say we are talking about the x direction is

starting from zero here all the way up to l, so velocity is zero when x is equal to zero, and

velocity really is v when x equal to this l value.

So, therefore, and also we further know that as it is given here that the gas motion is one-

dimensional and proportional to the distance from the closed end. It varies linearly from zero

to u x, because it is a linear variation. We can assume that the u is really equal to some

constant k times of x; v becomes equal to kl because u is v as a x is l essentially or k becomes

v by l. So u essentially as a again vx yl that is how u is x equal to 0, u 0 or x equal to l, u is

equal to v. So all set in this is what velocity equation is in terms of x. So, now apply the

continuity equation here, we know that by the continuity equation, we have del dot rho v
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vector; v is the velocity vector is essentially plus del rho by del t essentially equal to zero. So

∂uρ
∂ x

+
∂vρ
∂ y

+
∂wρ
∂ z

+
∂ ρ
∂ t

=0 . 

 (Refer Slide Time: 50:15)

Essentially if we just put the value of u equal to u=u ( x )=
vx
L

value and with respect to this

is the only velocity mind you this is only one dimensional case has been indicated, piston

cylinder arrangement. So, therefore,  
∂ v
∂ y

∨ ∂w
∂z

=0 , so only the other value which comes

out of this whole del cross rho v is essentially 

∇ ρ v́+
∂ ρ
∂ t

=
∂uρ
∂x

+
∂ ρ
∂ t

=0

∂ρ
∂ t

=− ρ
∂u
∂ x

−u
∂ ρ
∂ x

=0

rho del u by del x or del rho u by del x. And we know that do you know from because it is

actually  a  compressible  flow  in  this  particular  illustration,  we  have  this  plus  del  t  is

essentially equal to 0. So if we try to figure out what this value would be del rho by del t

becomes equal to minus rho del u by del x minus u del o by del x and as we know that du by
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dx tau  u by  tau  x is  essentially  constant  v  by l.  And therefore,  we have  also the  value

∂ρ
∂ t

=− ρ
v
L

, so this minus rho v by L minus u del rho by del x.

Now if you look at this, let say this is equation three, so if you really look at the question and

the problem statement, rho has been assumed to be uniform in the volume are not with the

time t here; the rho is varying with time t is temporarily varying, it is not varying spatially

really. So, therefore, del rho by del x, because it is uniform within the volume is supposedly

equal to the zero and we are left with no other choice, but del rho by del t one side equal to

minus rho v by l and that is equation four. So let us try to figure out what on integration this

quantity would result in what would really with the density function in terms of the velocity,

length etcetera.

(Refer Slide Time: 53:14)

So here, we would like to illustrate that the length L really is we can assume this to be equal

to let say the initial length L0 that the piston is at plus v times of t, where v is the velocity of

the piston and t is the time of movement. So there is some L 0 value, let say the piston is

somewhere, if you see in this particular figure here, the piston is at some value when let say

moves at a certain velocity v, this value is may be zero. And we want to consider any length L

which is equal to L 0 plus v times t, after time t it would be here, and this is really the new

length L so that is how define this whole length of traverse of the piston in side this cylinder.

So if you assume this to be the final length at time t assuming this to be the length in have
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initial or the process started, we have integral d rho by rho where rho varies from let say

some quantity rho 0 to some value of density rho t equals integral minus zero to t v by l dt.

And essentially as you know that this is L the actually comes from this L 0 plus v t, so will

have this as zero to t thing of zero to t v by l zero plus vt dt.

L=L0+vt

∫
ρ0

ρ
dρ
ρ

=∫
0

t
V
L

dt=∫
0

t
V

L0+vt
dt

ln
ρ
ρ0

=ln
L0

L0+vt

ρ (t )=ρ0[
1

1+
vt
L0

]
So, therefore, ln rho by rho naught really becomes equal to ln lL naught by L naught plus vt.

If you just solve this integral it is essentially and put limits zero and t comes out to be L

naught by L zero plus vt. In other words, density is a function of time really is equal to the

density time t equal to zero plus 1 by 1 plus v t by L 0. So at time t equal to zero therefore, as

the second part of the question is assumes del rho by del t the change of density rate of

change of density would be rho 0 v by l. And rho 0 being of already given equal to 18 kg per

meter cube and this is at length l 0 0.15meter this particular length and it is moving with the

velocity 12 that the whole density variation with respect to time becomes equal to minus

1440 kg per meter cube second.

So as you found out here that the continuity equation can be very easily used for this kind of

compressible flow problems is well density varies which time as well as earlier problem as

you saw was that of incompressible flows. So in micro scale though, if you consider the flow

mechanics  mostly  flows  are  treated  to  be  incompressible  and  strictly  laminar  in  nature,

because although there are twin faces flow problems at the micro scale, but the modeling

becomes extremely complicated and difficult, so limiting ourselves mostly to the single phase

flow problem in such a situation. So this kind of brings as to an end of this particular lecture,

we will  try to cover up the second Navier-Stoke equation that is the conservation of the

momentum in the next class.
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Thank you.
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